# breep-Intersections

```// Generating random lines and highlighting intersections var boolDoRefresh; var slider; var totalLines;     function setup() { createCanvas(720, 480); background(255, 117, 102); boolDoRefresh = true; slider = createSlider(1, 100, 12) slider.position(10, 10) }   function draw() {     if (boolDoRefresh) { lines = []; background(255, 179, 102);   for ( i = 0; i < slider.value(); i ++){ var x1 = random(width); var x2 = random(width); var y1 = random(height); var y2 = random(height); lines[i] = [x1, y1, x2, y2] }   // Line intersections for ( i = 0; i < slider.value(); i++){ for ( j = 0; j < slider.value(); j++){     var intersection = findingIntersection(lines[i][0], lines[i][1], lines[i][2], lines[i][3], lines[j][0], lines[j][1], lines[j][2], lines[j][3]); if ( intersection != false) { stroke(0); fill(173, 216, 230); ellipse(intersection.x, intersection.y, 20, 20); } } }     // Line drawing for (i = 0; i < slider.value(); i ++){ strokeWeight(1); line( lines[i][0], lines[i][1], lines[i][2], lines[i][3]) } fill(0); text(slider.value(), 150, 27) boolDoRefresh = false; } }   function mousePressed() { boolDoRefresh = true }   // Function implementation inspired by Paul Bourke's algorithm // http://paulbourke.net/geometry/pointlineplane/function // And implemented by Leo Bottaro // http://paulbourke.net/geometry/pointlineplane/javascript.txt   function findingIntersection(x1, y1, x2, y2, x3, y3, x4, y4) {   // Check if none of the lines are of length 0 if ((x1 === x2 && y1 === y2) || (x3 === x4 && y3 === y4)) { return false }   denominator = ((y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1))   // Lines are parallel if (denominator === 0) { return false }   let ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3)) / denominator let ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)) / denominator   // is the intersection along the segments if (ua < 0 || ua > 1 || ub < 0 || ub > 1) { return false }   // Return a object with the x and y coordinates of the intersection let x = x1 + ua * (x2 - x1) let y = y1 + ua * (y2 - y1)   return {x, y} }```