tli-Interruptions

Observations
  1. The piece is square.
  2. The piece shows black lines on a white background.
  3. The black lines are the same length.
  4. The black lines are rotated randomly.
  5. The black lines are approximately arranged in a grid.
  6. Some black lines are removed from the grid in patches.
Results

https://editor.p5js.org/helveticalover/sketches/6cTRH1cfC

Process

Deriving an implementation from the observations I listed above were fairly simple. I wrote an algorithm to place lines arranged in a square grid, rotate the lines by a random angle between 0 and 180 degrees, and culled lines that were located in a cell above some threshold for Perlin noise. The trickiest part of knowing how to implement this algorithm was thinking of a way to remove "patches" of lines rather than random cells, but this was solved once I remembered Perlin noise. After the implementation came tuning parameters to imitate Molnár's original. I tuned the number of lines, the length of the lines, the stroke weight of the lines, the scale of the Perlin noise, and the threshold for culling lines. The last two parameters in particular were trickiest because Interruptions displays a very specific frequency and distribution of removed "patches". Too many or too few interruptions, as well as too large or too small interruptions, would drastically change the appearance of the piece. In the interest of replicating Interruptions as closely as possible, I spent the most effort tuning these variables.