Ticha Sethapakdi

23 Jan 2014

Glasses for the Masses by @creativethumbs is a fully customizable pair of glasses made with OpenScad.

Here’s the thing.

glasses4

glasses5

glasses1

glasses2

 

Essentially it’s a program that allows the user to specify the parameters of a pair of glasses–such as height, width, roundness, and lens tint–and creates a model of the pair of glasses with the desired specifications. I would like to think that people find this project beautiful and useful.

This project was not inspired by anything in particular; it was more of a personal experiment because I am incredibly picky about the things I wear / what I put on my body. Because of that, when I have to go shopping for articles such as glasses I often leave the store empty-handed because I am not satisfied with their selections. Sometimes I would feel that an aspect of a certain design fits better with that of another, but there is no design that meets my expectations. Alternatively, I would find a pair of glasses that look exactly the way I want them to, but end up not fitting well. I was hoping to use this program as a way to address this conflict between consumer desires and product availability, and I also was interested in creating something that was practical as well as aesthetic. The program works mostly the way I wanted it to–it has a lot of variables that the user can change and the glasses actually look like glasses. While changing the parameters in the code can give very varied and interesting results, the program still has a fair share of errors (such as scaling issues and proportions) that I would need to fix if I wanted to put it to use. With regard to that, I would have to add details, such as leg joints, to the model if it needed to be used as reference for an actual physical object.

One of the many challenges of this project was getting the lens to scale properly when the ’roundedness’ value changed. Because the square lens are constructed using a minkowski transformation, greater ’roundedness’ values mean larger cylinders are being wrapped around the quadrangle–which means the lens after the transformation will become larger than the rectangle they were formed by. Even after hours of scratching my head, I was not able to derive a mathematical relationship between the size of the lens before and after the minkowski transformation–I ended up using an arbitrary inverse-square-root equation that seemed to work well for smaller inputs.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
 
/* Parametric glasses by Ticha Sethapakdi */
 
//----USER DEFINED VARIABLES-----
 
//the style of the glasses can either be 'squared' or 'oval'
frame = "oval";
//value from 1-6; can technically be larger, but some parts may look awkward...
roundedness = 6;
 
//1 for regular glasses; 2 for sunglasses
style = 2;
 
width = 10;
height = 5;
length = 14;
 
//for "oval" mode only:
radius = 7;
 
//see the SVG color list (http://en.wikibooks.org/wiki/OpenSCAD_User_Manual/The_OpenSCAD_Language#color) 
//for all possible color selections
//e.g. Crimson, Coral, Fuchsia, Chocolate, Navy...
frame_color = "Crimson";
 
//if the style is "sunglasses", the user may customize the color of the lens
//again, consult the SVG color list for a range of selections
lens_color = "Aqua";
 
 
//-------------------------------
 
/* The glasses are created here */
eyegap = 5;
 
if(frame == "squared") {
	rotate([90,0,0]) {
		translate([sqrt(roundedness), -sqrt(roundedness), 0]){
		scale([1/sqrt(roundedness), 1/sqrt(roundedness), 0.5]){
		translate([width/2+eyegap/2-1.5/roundedness, 0,0]) {
			//draws one side of the frame
			color(frame_color) {
				difference() { 
					minkowski() {
						hull() {
							cube([width, 1, 1], center = true);
							translate([0,-height+1,0]){cube([3*width/4, 3*height/4, 1], center = true);}
						}
						cylinder(r=roundedness, h=1);
					}
 
					translate([0,-0.8,0]){ scale([0.8,0.8,2]){
					minkowski() {
						hull() {
							cube([width, 1, 1], center = true);
							translate([0,-height+1,0]){cube([3*width/4, 3*height/4, 1], center = true);}
						}
						cylinder(r=roundedness, h=1);
					}}}
				}
 
			}
 
			//draws the lens
			if(style == 2) {
				color(lens_color, 0.7) {
					translate([0,-0.8,0]){ scale([0.8,0.8,0.5]){
					minkowski() {
						hull() {
							cube([width, 1, 1], center = true);
							translate([0,-height+1,0]){cube([3*width/4, 3*height/4, 1], center = true);}
						}
						cylinder(r=roundedness, h=1);
					}}}
				}
			}
 
			else {
				color("white", 0.4) {
					translate([0,-0.8,0]){ scale([0.8,0.8,0.5]){
					minkowski() {
						hull() {
							cube([width, 1, 1], center = true);
							translate([0,-height+1,0]){cube([3*width/4, 3*height/4, 1], center = true);}
						}
						cylinder(r=roundedness, h=1);
					}}}
				}
			}
 
			//leg
			color(frame_color) {
				hull() {
					translate([width/2 + roundedness, (height/2)*0.6-2,-1.5]){ 
						cube([1, 2.5, 5], center = true);  	
					}
 
					translate([width/2 + roundedness, (height/2)*0.6-2,-23.5]){ 
						cube([1, 1.5, 3], center = true);
					}
 
				}
				hull() {
					translate([width/2 + roundedness, (height/2)*0.6-2,-24.5]){ 
						cube([1, 1.5, 1.5], center = true);
					}
					translate([width/2 + roundedness, (height/2)*0.6-5,-32.5]){ 
								cube([1, 1.5, 1.5], center = true);
					}
				}
			}
 
		}}}
 
		//bridge
		color(frame_color) {
 
			hull() {
				translate([0.25, -1.8, 0.25]){ 
						cube([0.5, 1, 1], center = true);
				}
				translate([eyegap/3, -1.8, 0.25]){ 
						cube([0.2, 1.5, 1], center = true);
				}
			}
		}
	}
 
	mirror([1,0,0]) {rotate([90,0,0]) {
		translate([sqrt(roundedness), -sqrt(roundedness), 0]){
		scale([1/sqrt(roundedness), 1/sqrt(roundedness), 0.5]){
		translate([width/2+eyegap/2-1.5/roundedness, 0,0]) {
			//draws one side of the frame
			color(frame_color) {
				difference() { 
					minkowski() {
						hull() {
							cube([width, 1, 1], center = true);
							translate([0,-height+1,0]){cube([3*width/4, 3*height/4, 1], center = true);}
						}
						cylinder(r=roundedness, h=1);
					}
					translate([0,-0.8,0]){ scale([0.8,0.8,2]){
					minkowski() {
						hull() {
							cube([width, 1, 1], center = true);
							translate([0,-height+1,0]){cube([3*width/4, 3*height/4, 1], center = true);}
						}
						cylinder(r=roundedness, h=1);
					}}}
				}
 
			}
 
			//draws the lens
			if(style == 2) {
				color(lens_color, 0.7) {
					translate([0,-0.8,0]){ scale([0.8,0.8,0.5]){
					minkowski() {
						hull() {
							cube([width, 1, 1], center = true);
							translate([0,-height+1,0]){cube([3*width/4, 3*height/4, 1], center = true);}
						}
						cylinder(r=roundedness, h=1);
					}}}
				}
			}
 
			else {
				color("white", 0.4) {
					translate([0,-0.8,0]){ scale([0.8,0.8,0.5]){
					minkowski() {
						hull() {
							cube([width, 1, 1], center = true);
							translate([0,-height+1,0]){cube([3*width/4, 3*height/4, 1], center = true);}
						}
						cylinder(r=roundedness, h=1);
					}}}
				}
			}
 
			//leg
			color(frame_color) {
				hull() {
					translate([width/2 + roundedness, (height/2)*0.6-2,-1.5]){ 
						cube([1, 2.5, 5], center = true);  	
					}
 
					translate([width/2 + roundedness, (height/2)*0.6-2,-23.5]){ 
						cube([1, 1.5, 3], center = true);
					}
 
				}
				hull() {
					translate([width/2 + roundedness, (height/2)*0.6-2,-24.5]){ 
						cube([1, 1.5, 1.5], center = true);
					}
					translate([width/2 + roundedness, (height/2)*0.6-5,-32.5]){ 
								cube([1, 1.5, 1.5], center = true);
					}
				}
			}
 
		}}}
 
		//bridge
		color(frame_color) {
 
			hull() {
				translate([0.25, -1.8, 0.25]){ 
						cube([0.5, 1, 1], center = true);
				}
				translate([eyegap/3, -1.8, 0.25]){ 
						cube([0.2, 1.5, 1], center = true);
				}
			}
		}
	}}
 
}
 
 
//ROUNDED FRAME
else if (frame == "oval") {
	rotate([90,0,0]) {
		translate([6.5*radius/8+eyegap/2, 0,0]) {
			//draws one side of the frame
			color(frame_color) {
				difference() { 
					cylinder(1,radius,radius, center = true);
 
					scale([0.8,0.8,2]){
						cylinder(1,radius,radius, center = true);
					}				
 
				}
 
			}
 
			//draws the lens
			if(style == 2) {
				color(lens_color, 0.7) {
					scale([0.8,0.8,0.5]){
						cylinder(1,radius,radius, center = true);
					}	
				}
			}
 
			else {
				color("white", 0.4) {
					scale([0.8,0.8,0.5]){
						cylinder(1,radius,radius, center = true);
					}	
				}
 
			}
 
			//leg
			color(frame_color) {
				hull() {
					translate([radius, 0, -2]){ 
						cube([1, 2.5, 5], center = true);  	
					}
 
					translate([radius, 0,-23.5]){ 
						cube([1, 1.5, 3], center = true);
					}
 
				}
				hull() {
					translate([radius, 0 ,-24.5]){ 
						cube([1, 1.5, 1.5], center = true);
					}
					translate([radius, -2,-32.5]){ 
								cube([1, 1.5, 1.5], center = true);
					}
				}
			}
 
		}
 
		//bridge
		color(frame_color) {
 
			hull() {
				translate([0.25, 1.5, 0]){ 
						cube([0.5, 1, 1], center = true);
				}
				translate([eyegap/3, 1.5, 0]){ 
						cube([0.2, 1.5, 1], center = true);
				}
			}
		}
	}
 
	mirror([1,0,0]) {rotate([90,0,0]) {
		translate([6.5*radius/8+eyegap/2, 0,0]) {
			//draws one side of the frame
			color(frame_color) {
				difference() { 
					cylinder(1,radius,radius, center = true);
 
					scale([0.8,0.8,2]){
						cylinder(1,radius,radius, center = true);
					}				
 
				}
 
			}
 
			//draws the lens
			if(style == 2) {
				color(lens_color, 0.7) {
					scale([0.8,0.8,0.5]){
						cylinder(1,radius,radius, center = true);
					}	
				}
			}
 
			else {
				color("white", 0.4) {
					scale([0.8,0.8,0.5]){
						cylinder(1,radius,radius, center = true);
					}	
				}
 
			}
 
			//leg
			color(frame_color) {
				hull() {
					translate([radius, 0, -2]){ 
						cube([1, 2.5, 5], center = true);  	
					}
 
					translate([radius, 0,-23.5]){ 
						cube([1, 1.5, 3], center = true);
					}
 
				}
				hull() {
					translate([radius, 0 ,-24.5]){ 
						cube([1, 1.5, 1.5], center = true);
					}
					translate([radius, -2,-32.5]){ 
								cube([1, 1.5, 1.5], center = true);
					}
				}
			}
 
		}
 
		//bridge
		color(frame_color) {
 
			hull() {
				translate([0.25, 1.5, 0]){ 
						cube([0.5, 1, 1], center = true);
				}
				translate([eyegap/3, 1.5, 0]){ 
						cube([0.2, 1.5, 1], center = true);
				}
			}
		}
	}}
 
 
}
 
else {
	echo("Undefined frame style!");
}