
Introduction

“I am two with nature.”
! —Woody Allen

Here we are: the beginning.  Well, almost the beginning. This introduction is here to just get our 
feet wet. If it’s been a while since you’ve done any programming in Processing (or any math, for 
that matter), this will get your mind back into computational thinking before we head into some 
of the more difficult and complex material.

In Chapter1, we’re going to talk about the concept of a vector and how it will serve as the 
building block for simulating motion throughout this book.   But before we take that step, let’s 
think about what it means for something to even move around the screen.   Let’s begin with one 
of the best-known and simplest simulations of motion—the Random Walk.

I.1 Random Walks

Imagine you are standing in the middle of a balance beam.  Every ten seconds, you flip a coin.  
Heads, take a step forward.  Tails, take a step backwards.   This is a random walk—a path that is 
defined as a series of random steps.    Stepping off that balance beam and onto the floor, you 
could perform a random walk by flipping that same coin twice with the following results:

Flip 1 Flip 2 Result

Heads Heads Step forward.

Heads Tails Step right.

Tails Heads Step left.

Tails Tails Step backward.

Yes, this may seem like a particularly unsophisticated algorithm.  Nevertheless, random walks 
can be used to model phenomena that occur in the real world, from the movements of molecules 
in a gas to the behavior of a gambler spending a day at the casino.   In our case, we begin the 
random walk keeping three things in mind regarding this book with three goals in mind.   

1) We need to review a programming concept central to this book—object-oriented 
programming.  The random walker will serve as a template for how we will use object-
oriented design to make things that move around a Processing window.
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2) the random walk instigates the two questions that we will ask over and over again throughout 
this book: “How do we define the rules that govern the behavior of our objects?” and then 
“How do we implement these rules in Processing?”

3) Throughout the book, we’ll periodically need a basic understanding of randomness, 
probability, and Perlin noise.  The random walk will allow us to demonstrate a few key points 
that will come in handy later.

I.2 The Random Walker Class

Let’s review a bit of object-oriented programming (“OOP”) first by building a “Walker” object.   
This will be only a cursory review.  If you have never worked with OOP before, you may want 
something more comprehensive.  I’d suggest stopping here and reviewing the basics on the 
Processing web site before continuing: http://processing.org/learning/objects/.   

An object in Processing is an entity that has both data and functionality.  We are looking to 
design a Walker object that both keeps track of its data (where it exists on the screen) and has the 
capability to perform certain actions (such as draw itself or take a step).

A class is the template for building actual instances of objects.  Think of a class as the cookie 
cutter where the objects are the cookies themselves.    Let’s begin by defining this template—
what it means to be a Walker object.  

The Walker only needs two pieces of data—a number for its x-location and one for its y-location.

class Walker {! ! $$ Objects have data
  int x;
  int y;

Every class must have a constructor, a special function that is called when the object is first 
created.  You can think of it as the object’s setup().   There, we’ll initialize the Walker’s starting 
location (in this case, the center of the window).

  Walker() {! ! $$ Objects have a constructor where they are initialized
    x = width/2;
    y = height/2;
  }

Finally, in addition to data, classes can be defined with functionality.  In this example, a Walker 
has two functions.   We first write a function to display itself (as a white dot).

  void display() {! ! $$ Objects have functions
    stroke(255);
    point(x,y);
  }
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The second function directs the object to take a step.   Now, this is where things get a bit more 
interesting.   Remember that floor on which we were taking random steps?  Well, now we can 
use a Processing window in that same capacity.  There are four possible steps—a step to the right 
can be simulated by incrementing x ( x++); to the left by decrementing x (x--); a step forward by 
going down a pixel (y++) and a step backwards as up a pixel (y--).   How do we pick from these 
four choices?   Earlier we stated that we could flip two coins.  In Processing, however, when we 
want to randomly choose from a list of options, we can pick a random number using random().

 void step() {

   int choice = int(random(4));! $$ 0, 1, 2, or 3
  
The above line of code picks a random floating point number between 0 and 4 and converts it to 
an integer, resulting in 0, 1, 2, or 3.   Technically speaking, the highest number will never be 4.0, 
but rather 3.999999999 (with as many 9’s as there are decimal places); since the conversion 
process to an integer lops off the decimal place, the highest int we can get is 3.  Next, we take the 
appropriate step (left, right, up, or down) depending on which random number was picked.

   if (choice == 0) {! ! ! $$ The random “choice” determines our step
     x++;
   } else if (choice == 1) {
     x--;
   } else if (choice == 2) {
     y++;
   } else {
     y--;
   }
 }
}

Now that we’ve written the the template for making a Walker object, it’s time to make an actual 
Walker object in the main part of our sketch—setup() and draw().   Assuming we are looking to 
model a single random walk, we declare one global variable of type Walker.

Walker w;! ! ! $$ A Walker object

Then we create the object in setup() by calling the constructor with the new operator.  

Example: Traditional Random Walk
void setup() {
  size(640,360);
  w = new Walker();! $$ Create the Walker
  background(0);
}

Finally, during each cycle through draw(), we ask the Walker to take a step and draw a dot.

void draw() {
  w.step();!! ! $$ Call functions on the Walker
  w.display();
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}

Since we only draw the background once in setup() (rather than clearing it continually each time 
through draw()), we see the trail of the random walk in our Processing window.

There are a couple improvements we could make with the random walker.  For one, this walker’s 
step choices are limited to four—up, down, left, and right.  But any given pixel in the window 
has eight possible neighbors, and a ninth possibility is to stay in the same place.

To implement a walker that can step to any neighboring pixel (or stay put) we could then pick a 
number between zero and eight (nine possible choices).  However, a more efficient way to write 
the code would be to simply pick from three possible steps along the x-axis (-1, 0, or 1) and three 
possible steps along the y-axis.

  void step() {
    int stepx = int(random(3))-1;    $$ Yields -1, 0, or 1
    int stepy = int(random(3))-1;
    x += stepx;
    y += stepy;
  }

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 4



Taking this a step further, we could use floating point numbers (i.e. decimal numbers) for x and y  
instead and move according to an arbitrary random value between -1 and 1.

  void step() {
    float stepx = random(-1, 1);
    float stepy = random(-1, 1);
    x += stepx;
    y += stepy;
  }

All of these variations on the “traditional” random walk have one thing in common: at any 
moment in time, the probability that the walker will take a step in a given direction is equal to the 
probability that the walker will take a step in any direction.   In other words, if there are four 
possible steps, there is a one in four (or 25%) chance the walker will take any given step.  With 
nine possible steps, it’s a one in nine (or 11.1%) chance.  

Conveniently, this is how the random() function works.  Processing’s random number generator 
(which operates behind the scenes) produces what is known as a “uniform” distribution of 
numbers.   We can test this distribution with a Processing sketch that counts each time a random 
number is picked and graphs it as the height of a rectangle.

Example: Random Number Distribution
int[] randomCounts;  $$ An array to keep track of how often random numbers are picked

void setup() {
  size(640,240);
  randomCounts = new int[20];
}

void draw() {
  background(255);
  
  int index = int(random(randomCounts.length));  $$ Pick a random number and increase the count
  randomCounts[index]++;

  
  stroke(0);   $$ Graphing the results
  fill(175);
  int w = width/randomCounts.length;
  for (int x = 0; x < randomCounts.length; x++) {
    rect(x*w,height-randomCounts[x],w-1,randomCounts[x]);
  } 
}
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The above screenshot shows the result of the sketch running for a few minutes.   Notice how 
each bar of the graph differs in height.   Our sample size (i.e. the number of random numbers 
we’ve picked) is rather small and there are some random discrepancies, where certain numbers 
are picked more often.  Over time, with a good random number generator, this would even out. 

Pseudo-Random Numbers
The random numbers we get from the random() function are not truly random and are therefore known as 
“pseudo-random.”  They are the result of a mathematical function that simulates randomness.  This function 
would yield a pattern over time, but that time period is so long that for us, it’s just as good as pure randomness!

I.3  Probability and Non-Uniform Distributions

Remember when you first started programming in Processing?  Perhaps you wanted to draw a lot  
of circles on the screen.  So you said to yourself: “Oh, I know.  I’ll draw all these circles at 
random locations, with random sizes, and random colors.”   In a computer graphics system, it’s 
often easiest to seed a system with randomness.   In this book, however, we’re looking to build 
systems modeled on what we see in nature.  Defaulting to randomness is not a particularly 
thoughtful solution to every design problem—in particular, the kind of problems that involve 
creating an organic or natural-looking design.

With a few tricks, we can change the way we use random() to produce “non-uniform” 
distributions of random numbers.    This will come in handy throughout the book as we look at a 
number of different scenarios.    When we examine genetic algorithms, for example, we’ll need a 
methodology for performing “selection”—which members of our population should be selected 
to pass their DNA down to the next generation.   Remember the concept of survival of the fittest?    
Let’s say we have a population of monkeys evolving.  Not every monkey will have a equal 
chance of reproducing.  To simulate Darwinian evolution, we can’t simply pick two random 
monkeys to be parents.  We need the more “fit” ones to be more likely to be chosen.  We need to 
define the “probability of the fittest.”   For example, perhaps a particularly fast and strong 
monkey has a 90% chance of procreating, while a weaker one has only a 10% chance.

Let’s review the basic principles of probability, first looking at “Single Event Probability,” i.e. 
the likelihood of something to occur.  

Given a system with a certain number of possible outcomes, the probability of any given event 
occurring is the number of outcomes that qualify as that event divided by the total number of 
possible outcomes. The simplest example is a coin toss. There are a total of two possible 
outcomes (heads or tails). There is only one way to flip heads. Therefore, the probability of heads 
is one divided by two, i.e. 1/2 or 50%.

Consider a deck of fifty-two cards. The probability of drawing an ace from that deck is:

number of aces / number of cards = 4 / 52 = 0.077 = ~ 8%
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The probability of drawing a diamond is:

number of diamonds / number of cards = 13 / 52 = 0.25 = 25%

We can also calculate the probability of multiple events occurring in sequence as the product of 
the individual probabilities of each event.

The probability of a coin coming up heads three times in a row is:

(1 / 2) * (1 / 2) * (1 / 2) =  1 / 8 (or 0.125).

In other words, a coin will land heads three times in a row one out of eight times (with each 
“time” being three tosses.) 

Exercise:  What is the probability of drawing two aces in a row from the deck of cards?

There are a few different techniques for using the random() function with probability in code. 
For example, if we fill an array with a selection of numbers (some repeated), we can randomly 
pick from that array and generate events based on what we select. 

int[] stuff = new int[5];
stuff[0] = 1;! ! ! $$ 1 is stored in the array twice to increase its likelihood
stuff[1] = 1;! ! ! of being picked
stuff[2] = 2;
stuff[3] = 3;
stuff[4] = 3;
int index = int(random(stuff.length));  $$ Picking a random element from an array
if (stuff[index] == 1) {

If you run this code, there will be a 40% chance of printing the value 1, a 20% chance of printing 
2, and a 40% chance of printing 3. 

Another strategy is to ask for a random number (for simplicity, we consider random floating 
point values between 0 and 1) and allow an event to occur only if the random number we pick is 
within a certain range.  For example:

float prob = 0.10;     $$ A probability of 10%
float r = random(1);   $$ A random floating point value between 0 and 1
if (r < prob) {        $$ If our random number is less than 0.1
   // DO SOMETHING!   
}

This same technique can also be applied to multiple outcomes.

Outcome A — 60% | Outcome B — 10% | Outcome C — 30%

To implement this in code, we pick one random float and check where it falls. 

! between 0.00 and 0.60 (60%) –> outcome A
! between 0.60 and 0.70 (10%) –> outcome B
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! between 0.70 and 1.00 (30%) –> outcome C
  
  float num = random(1);         
  
  if (num < 0.6) {  $$ If random number is less than .6
    // Outcome A 
  } else if (num < 0.7) { $$ Between 0.6 or 0.7
    // Outcome B
  } else {   $$ Greater than 0.7
    // Outcome C  
  }
}

We could use the above methodology to create a random walker that tends to move to the right.  
Here is an example of a Walker with the following probabilities:

• chance of moving up: ! ! 20%
• chance of moving down: ! 20%
• chance of moving left: ! ! 20%
• chance of moving right: ! 40%

  Example: Walker that tends to move to the right
  void step() {
    
    float r = random(1);
    
    if (r < 0.4) {! ! $$ A 40% of moving to the right!
      x++;
    } else if (r < 0.6) {
      x--;
    } else if (r < 0.8) {
      y++;
    } else {
      y--;
    }
  }

Exercise: Create a random walker with dynamic probabilities.  For example, can you give it a 
50% chance of moving in the direction of the mouse?

I.4 A Normal Distribution of Random Numbers
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Let’s go back to that population of simulated Processing monkeys.  Your program generates a 
thousand “Monkey” objects with each monkey setting a value for height in the constructor—
between 200 and 300 (this is a world of monkeys that have heights between 200 and 300 pixels).

float h = random(200,300);

Does this accurately depict the heights of real-world beings?   Think of a crowded sidewalk in 
New York City.   Pick a random person and it may appear that their height is random.  
Nevertheless, it’s not the kind of random that the random() produces.   People’s heights are not 
uniformly distributed; there are a great deal more people of average height than there are very 
tall or very short ones.   To simulate nature, we may want it to be more likely that our monkeys 
are of average height (250 pixels), yet allow them to still on occasion be very short or very tall.

A distribution of values that cluster around an average (referred to as the “mean”) is known as a 
“normal” distribution.   It is also called the Gaussian distribution (named for mathematician Carl 
Friedrich Gauss) or, if you are French, the Laplacian distribution (named for Pierre-Simon 
Laplace).  Both mathematicians were working concurrently in the early nineteenth century on 
defining such a distribution.    

When you graph the distribution, you get something that looks like the following, informally 
known as the bell curve.

  

The curve is generated by a mathematical function that defines the probability of any given value 
occurring as a function of the mean (often written as !, the Greek letter mu) and standard 
deviation (", the Greek letter sigma).   

The mean is pretty easy to understand.  In the case of our height values between 200 and 300, we 
can intuitively have a sense of the mean (i.e. average) as 250.    However, what if I were to say 
that the standard deviation is 3 or 15?   The graphs above should give us a hint. The graph on the 
left shows us the distribution with a very low standard deviation, where the majority of the 
values cluster closely around the mean.  The graph on the right shows us a higher standard 
deviation, where the values are more evenly spread out from the average.   

The numbers work out as follows.  Given a population, 68% of the members of that population 
will have values in the range of one standard deviation from the mean, 98% within two standard 
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deviations, 99.7% within three standard deviations.   Given a standard deviation of five pixels, 
only 0.3% of the monkey heights will be less than 235 pixels (three standard deviations below 
the mean of 250) or greater than 265 pixels (three standard deviations above the mean of 250).

Calculating Mean and Standard Deviation

Consider a class of ten students who receive the following scores (out of 100) on a test:

85, 82, 88, 86, 85, 93, 98, 40, 73, 83

The mean is the average:  81.3

The standard deviation is calculated as the square root of the average of the squares of deviations aroundthe mean. 
In other words, take the difference from the mean for each person and square it (variance). Calculate the average of 
all these values and take the square root as our standard deviation.

Score Difference from Mean Variance

85 85-81.3 = 3.7 (3.7)2 = 13.69

40 40-81.3 = -41.3 (-41.3)2 = 1705.69

etc.

Average Variance: 254.23

The standard deviation is the square root of the average variance = 15.13

Luckily for us, to use a normal distribution of random numbers in a Processing sketch, we don’t 
have to do any of these calculations ourselves.   Instead, we can make use of a class known as 
Random, which we get for free as part of the default Java libraries imported into Processing (see: 
http://docs.oracle.com/javase/6/docs/api/java/util/Random.html for more information).    

To use the Random class, we must first declare a variable of type Random and create the 
Random object in setup().

Random generator;! ! ! $$ We use the variable name “generator” as what we
! ! ! ! ! have here can be thought of as a random number generator
void setup() {
  size(640,360);
  generator = new Random();
}

If we want to produce a random number with a normal (or Gaussian) distribution each time we 
run through draw(), it’s as easy as calling the function nextGaussian().

void draw() {
  float num = generator.nextGaussian();! $$ Asking for a Gaussian random number
}
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Here’s the thing.  What are we supposed to do with this value?  What if we wanted to use it to, 
for example, assign the x-position of a shape we draw on screen?

The nextGaussian() function returns a normal distribution of random numbers with the 
following parameters: a mean of zero and a standard deviation of one.    Let’s say we want a 
mean of 360 (the center horizontal pixel in a window of width 640) and a standard deviation of 
60 pixels.   We can adjust the value to our parameters by multiplying it by the standard deviation 
and adding the mean.

Example: Gaussian Distribution

void draw() {
  float num = (float) generator.nextGaussian();! $$ Note nextGaussian() returns a double
  float sd = 60;
  float mean = 360;

  float x = sd*num + mean;! ! $$ Multiply by standard deviation and add the mean

  noStroke();
  fill(255,10);
  ellipse(x,180,16,16);
}

By drawing the ellipses on top of each other with some transparency, we can see the distribution 
visually.  The brightest spot is near the center, where most of the values cluster, but every so 
often circles are drawn farther to the right or left of the center.

Exercise:  Consider a simulation of paint splatter drawn as a collection of colored dots. Most of 
the paint clusters around a central location, but some dots do splatter out towards the edges.  
Can you use a normal distribution of random numbers to generate the locations of the dots?  
Can you also use a normal distribution of random numbers to generate a palette of color?

Exercise: A Gaussian random walk is defined as one in which the step size (how far you move in 
a given direction) is generated with a normal distribution.  Implement this variation of our 
random walk.

I.5 A Custom Distribution of Random Numbers
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There will come a time in your life where you do not want a uniform distribution of random 
values or a Gaussian one.   Let’s imagine for a moment that you are a random walker in search of 
food.   Moving randomly around a space seems like a reasonable strategy for finding something 
to eat.   After all, you don’t know where the food is, so you might as well search randomly until 
you find it.  The problem, as you may have noticed, is that random walkers  return to previously 
visited locations many times (this is known as “oversampling”).   One strategy to avoid such a 
problem is to, every so often, take a very large step.   This allows the walker to forage randomly 
around a specific location while periodically jumping very far away to  reduce the amount of 
oversampling.   This variation on the random walk (known as a Lévy flight) requires a custom set 
of probabilities.   Though not an exact implementation of a Lévy flight, we could state the 
probability distribution as follows: the longer the step, the less likely it is to be picked; the 
shorter the step, the more likely.

Earlier in this prologue, we saw that we could generate custom probability distributions by filling 
an array with values (some duplicated so that they would be picked more frequently) or by 
testing the result of random().  Certainly, we could implement a Levy flight by saying there is a 
1% chance of the walker taking a large step.

float r = random(1);
if (r < 0.01) {! ! $$ A 1% chance of taking a large step
  xstep = random(-100,100);
  ystep - random(-100,100);
} else {
  xstep = random(-1,1);
  ystep - random(-1,1);
}

However, this reduces the probabilities to a fixed number of options.  What if we wanted to make 
a more general rule—the higher a number, the more likely it is to be picked?  3.145 would be 
more likely to be picked than 3.144, even if that likelihood is just a tiny bit greater.  In other 
words, if x is the random number, we could map the likelihood on the y-axis with y = x. 

If we can figure out how to generate a distribution of random numbers according to the above 
graph, then we will be able to apply the same methodology to any curve for which we have a 
formula.

One solution is to pick two random numbers instead of one.  The first random number is just that, 
a random number.  The second one, however, is what we’ll call a “qualifying random value.”  It 
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will tell us whether to use the first one or throw it away and pick another one.  Numbers that 
have an easier time “qualifying” will be picked more often, and numbers that rarely qualify will 
be picked infrequently.   Here are the steps (let’s consider for now only random values between 0 
and 1).

1. Pick a random number: R1
2. Compute a probability P that R1 should qualify.  Let’s try: P = R1.
3. Pick another random number: R2
4. If R2 is less than P, then we have found our number—R1!
5. If R2 is not less than P, go back to step 1 and start over.

Here we are saying that the likelihood that a random value will qualify is equal to the random 
number itself.  Let’s say we pick 0.1 for R1.  This means that R1 will have a 10% chance of 
qualifying.  If we pick 0.83 for R1 then it will have a 83% chance of qualifying.  The higher the 
number, the greater the likelihood that we will actually use it.

Here is a function (named for the Monte Carlo method, which was named for the Monte Carlo 
casino) that implements the above algorithm, returning a random value between zero and one.

float montecarlo() {
  while (true) {! $$ We do this “forever” until we find a qualifying random value

    float r1 = random(1);! $$ Pick a random value
    float probability = r1;! $$ Assign a probability

    float r2 = random(1);! $$ Pick a second random value
    if (r2 < probability) {! $$ Does it qualify?  If so, we’re done!
      return r1;
    }
  }
}

Exercise: Use a custom probability distribution to vary the size of a step taken by the random 
walker.   The step size can be achieved by affecting the range of values picked.  Can you map the 
probability exponentially—i.e. making the likelihood a value is picked equal to the value 
squared?

  float stepsize = random(-10,10);  $$ A uniform distribution of step sizes. Change this!
  
  float stepx = random(-stepsize,stepsize);
  float stepy = random(-stepsize,stepsize);
    
  x += stepx;
  y += stepy;

(Later we’ll see how to do this more efficiently using vectors.)

I.6 Perlin Noise (A Smoother Approach)

One of the qualities of a good random number generator is that the numbers produced have no 
relationship.   If they exhibit no discernible pattern, they are considered random.
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As we are beginning to see, a little bit of randomness can be a good thing when programming 
organic, life-like behaviors.  However, randomness as the single guiding principle is not 
necessarily natural.   An algorithm known as “Perlin noise,” named for its inventor Ken Perlin, 
takes this concept into account.   Perlin developed the noise function while working on the 
original Tron movie in the early 1980s.  It was originally designed to create procedural textures 
for computer generated effects; in 1997 Perlin won an Academy Award in Technical 
Achievement for this work. Perlin noise can be used to generate a variety of interesting effects 
such as clouds, landscapes, and patterned textures like marble.

“Perlin noise” has a more organic quality because it produces a naturally ordered (i.e. “smooth”) 
sequence of pseudo-random numbers.    The graph on the left below shows Perlin noise over 
time (the x-axis represents time; note how the curve is smooth) while the graph on the right 
shows pure random numbers over time.  (The code for generating these graphs is available with 
the accompanying book downloads.)

    
Perlin Noise                                                        Random

Noise Detail
If you visit the Processing.org noise reference, you’ll find that noise is calculated over several “octaves.” You can change the 
number of octaves and their relative importance by calling the noiseDetail() function.  This in turn changes how the noise 
function behaves   . http://processing.org/reference/noiseDetail_.html

You can learn more about how noise works from Ken Perlin himself: http://www.noisemachine.com/talk1/ 

Processing has a built-in implementation of the Perlin noise algorithm with the function noise().  
The noise() function takes one, two, or three arguments (referring to the “space” in which noise 
is computed: one, two, or three dimensions.)  Let’s start by looking at one-dimensional noise.  

Consider for a moment drawing a circle in our Processing window at a random x-location.

float x = random(0,width);! $$ A random x-location
ellipse(x,180,16,16);

Now, instead of a random xlocation, we want a Perlin noise x-location that is “smoother.”  You 
might think that all you need to do is replace random() with noise(), i.e.

float x = noise(0,width);! $$ A noise x-location?

While conceptually this is exactly what we want to do—calculate an x-value that ranges between 
zero and the width according to Perlin noise—this is not the correct implementation.    While the 
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arguments to the random() function specify a range of values between a minimum and a 
maximum, noise() does not work this way.  Instead, the output range is fixed—it always returns a 
value between zero and one.  We’ll see in a moment that we can get around this easily with 
Processing’s map() function, but first we must examine what exactly noise() expects us to pass in 
as an argument.

We can think of one-dimensional Perlin noise as a linear sequence of values over time.   For 
example:

Time Noise Value

0 0.365

1 0.363

2 0.363

3 0.364

4 0.366

Now, in order to access a particular noise value in Processing, we have to pass a specific moment 
in time to the noise() function.  For example:

float n = noise(3);

According to the above table, noise(3) will return 0.364 at time equals three. We could improve 
this by using a variable for “time” and asking for a noise value continuously in draw().  
float t = 3;! !

void draw() {
  float n = noise(t);! $$ We need the noise value for a specific “moment in time”
  println(n);
}

The above code results in the same value printed over and over.   This is because we are asking 
for the result of the noise() function at the same point in “time”—3—over and over.  If we 
increment the “time” variable t, however, we’ll get a different result.

float t = 0;! ! $$ Typically we would start at time = 0, though this is arbitrary

void draw() {
  float n = noise(t);
  println(n);

  t += 0.01;! ! $$ Now, we move forward in time!
}

How quickly we increment “t” also affects the smoothness of the noise.   If we make large jumps 
in time, then we are skipping ahead and the values will be more random.    
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Try running the code several times, incrementing t by 0.01, 0.02, 0.05, 0.1, 0.0001, and you will 
see different results.

Now we’re ready to answer the question of what to do with the noise value.   Once we have the 
value with a range between zero and one, it’s up to us to map that range to what we want.   The 
easiest way to do this is with Processing’s map() function.   The map() function takes five 
arguments.  First up is the value we want to map, in this case n.  Then we have to give it the 
value’s current range (minimum and maximum) followed by our desired range.  

In this case, we know that noise has a range between zero and one, but we’d like to draw our 
circle with a range between zero and the window’s width.

float t = 0;

void draw() {
  float n = noise(t);
  float x = map(n,0,1,0,width);! $$ Using map() to customize the range of Perlin noise
  ellipse(x,180,16,16);

  t += 0.01;
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} 

We can apply the exact same logic to our random walker, and assign both its x- and y-values 
according to Perlin noise.

Example: Noise Walker
class Walker {
  float x,y;

  float tx,ty;

  Walker() {
    tx = 0;
    ty = 10000;
  }

  void step() {
    x = map(noise(tx), 0, 1, 0, width);! $$ x- and y-location mapped from noise
    y = map(noise(ty), 0, 1, 0, height);

    tx += 0.01;! ! ! ! $$ Move forward through “time”
    ty += 0.01;
  }
}

Notice how the above example requires an additional pair of variables: “tx” and “ty”.  This is 
because we need to keep track of two “time” variables, one for the x-location of the walker and 
one for the y.   But there is something a bit odd about these variables. Why does tx start at zero 
and ty at 10,000?  While these numbers are arbitrary choices, we have very specifically 
initialized our two time variables with different values.  This is because the noise function is 
deterministic; it gives you the same result for a specific time t each and every time.  If we asked 
for the the noise value at the same time t for both x and y, then x and y would always be equal, 
resulting in the walker only moving along a diagonal.   Instead, we simply use two different parts 
of the noise space, starting at 0 for x and 10,000 for y so that x and y can appear to act 
independently of each other.
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In truth, there is no true concept of “time” at play here.  It’s a useful metaphor to help us 
understand how the noise function works, but really what we have is space, rather than time.  
The graph above depicts a linear sequence of noise values in a one-dimensional space, and we 
can ask for a value at a specific x-location whenever we want.   In examples, you will often see a 
variable named “xoff” to indicate the “x offset” along the noise graph rather than “t” for time (as 
noted in the diagram).

Exercise: In the above random walker, the result of the noise function is mapped directly to the 
walker’s location.  Create a random walker where you instead map the result of the noise() 
function to a walker’s step size?

The reason why this idea of noise values living in a one-dimensional space is important is that it 
leads us right into a discussion of two-dimensional space.  Let’s think about this for a moment.  
With one-dimensional noise, we have a sequence of values in which any given value is similar to 
its neighbor.  Because the value is in one dimension, it only has two neighbors: a value that 
comes before it (to the left on the graph) and one that comes after it (to the right).

Two-dimensional noise works exactly the same way conceptually.  The difference of course is 
that we aren’t looking at values along a linear path, but values that are sitting on a grid.  Think of 
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a piece of graph paper with numbers written into each cell.  A given value will be similar to all of 
its neighbors: above, below, to the right, left, and along any diagonal.

  
If you were to visualize this graph paper with each value mapped to the brightness of a color, we 
would get something that looks like clouds.  White sits next to light gray, which sits next to gray, 
which sits next to dark grey, which sits next to black, which sits next to dark gray, etc.

This is what noise was originally invented for.  Tweak the parameters a bit, play with color, and 
the resulting image might look more like marble or wood or any other organic-looking texture.

Let’s take a quick look at how you implement two-dimensional noise in Processing.  If you 
wanted to color every pixel of a window randomly, you would need a nested loop, one that 
accessed each pixel and picked a random brightness.

loadPixels();
for (int x = 0; x < width; x++) {
  for (int y = 0; y < height; y++) {
    float bright = random(255);! ! $$ A random brightness!
    pixels[x+y*width] = color(bright);
  }
}
updatePixels();

To color each pixel according to the noise() function, we’ll do exactly the same thing, only 
instead of calling random() we’ll call noise().  

    float bright = map(noise(x,y),0,1,0,255);
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This is a nice start conceptually—it gives you a noise value for every xy location in our two-
dimensional space.  The problem is that this won’t have the cloudy quality we want.  Jumping 
from pixel 200 to pixel 201 is too large of a jump through noise.  Remember, when we worked 
with one-dimensional noise, we incremented our “time” variable by 0.01 each frame, not by 1!    
A pretty good solution to this problem is to just use different variables for the arguments to noise.  
For example, we could increment a variable called “xoff” each time we move horizontally, and a 
“yoff” variable each time we move vertically through the nested loops.

float xoff = 0.0;        $$ Start xoff at 0

for (int x = 0; x < width; x++) {

  float yoff = 0.0;      $$ For every xoff, start yoff at 0

  for (int y = 0; y < height; y++) {
    float bright = map(noise(xoff,yoff),0,1,0,255);! ! $$ Use xoff and yoff for noise()
    pixels[x+y*width] = color(bright);! ! ! ! $$ Use x and y for pixel location

    yoff += 0.01;   $$ Increment xoff 
  }
  xoff += 0.01;     $$ Increment xoff 
}

Exercise: Play with color, noiseDetail(), and the rate at which xoff and yoff are incremented to 
achieve different visual effects.

Exercise: Add a third argument to noise that increments once per cycle through draw() to 
animate the two-dimensional noise.

Exercise: Use the noise values as the heights of a landscape.  See the screenshot below as a 
reference.

We’ve examined several traditional uses of Perlin noise in this section.  With one-dimensional 
noise, we used smooth values to assign the location of an object to give the appearance of 
wandering.  With two-dimensional noise, we created a cloudy pattern with smoothed values on a 
plane of pixels.  It’s important to remember, however, that Perlin noise values are just that—
values.  They aren’t inherently tied to pixel locations or color.  Any example in this book that has 
a variable could be controlled via Perlin noise.  When we model a wind force, the strength of that 
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force could be controlled by Perlin noise.  When we design a fractal tree pattern, the angles 
between the branches could be controlled by Perlin noise.   When we develop a flow field 
simulation, the speed and direction of objects moving along a grid could be controlled by Perlin 
noise.

 
Tree with Perlin noise Flow field with Perlin noise

I.7 Onward

We began this chapter by talking about how randomness can be a crutch.  In many ways, it’s the 
most obvious answer to the kinds of questions we ask continuously—how should this object 
move? What color should it be?    This obvious answer, however, can also be a lazy one.

As we finish off this prologue, it’s also worth noting that we could just as easily fall into the trap 
of using Perlin noise as a crutch.   How should this object move? Perlin noise!  What color 
should it be?  Perlin noise!  How fast should it grow?  Perlin noise!

The point of all of this is not to say that you should or should not use randomness.  Or that you 
should or should not use Perlin noise.   The point is that the rules of your system are defined by 
you and the larger your toolbox, the more choices you’ll have as you implement those rules.   
The goal of this book is to fill your toolbox.  If all you know is random, then your design 
thinking is limited.  Sure, Perlin noise helps, but you’ll need more.  A lot more.  

I think we’re ready to begin.
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Chapter 1.  Vectors
“Roger, Roger. What's our vector, Victor?”
 -- Captain Oveur, Airplane

In this chapter:
• What is a vector?
• What are we using vectors for?
• Basic vector math

• add, subtract, multiply
• dot, cross

• How to program your own Vector class (but really we are using PVector) 
• Motion 101—position, velocity, acceleration
• Object Oriented Program, an object full of vectors
• An interactive object with dynamic acceleration

[THIS CHAPTER IS MISSING SOME EXERCISES (AMONG OTHER THINGS)]

This book is all about looking at the world around us, and coming up with clever ways to simulate that 
world with code.  Divided into three parts, the book will start by looking at basic physics—how a bowling 
ball rolls towards the pins, a pendulum swings in the air, the earth revolves around the sun, etc.  
Absolutely everything contained within the first five chapters of this book requires the most basic 
building block for programming motion—the vector.   And so this is where we begin our story.  

Now, the word vector can mean a lot of different things. Vector is the name of a new wave rock band 
formed in Sacramento, CA in the early 1980s.  It’s the name of a breakfast cereal manufactured by 
Kellogg’s Canada.   In the field of epidemiology, a vector is used to describe an organism that transmits 
infection from one host to another.  In the C++ programming language, a Vector (std::vector) is an 
implementation of a dynamically resizable array data structure.   

While all interesting, these are not the definitions we are looking for.   Rather, what we want is this 
vector:

A vector is a collection of values that describe relative position in space.  
[this definition needs work]
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Vectors: You Complete Me

Before we get into vectors themselves, let’s look at a beginner Processing example that demonstrates why 
we should care about vectors in the first place.  If you’ve read any of the introductory Processing 
textbooks or taken a class on programming with Processing (and hopefully you’ve done one of these 
things to help prepare you for this book), you probably, at one point or another, learned to how to write a 
simple bouncing ball sketch.  

Example 1.1: Bouncing Ball with No Vectors

float x = 100;
float y = 100;
float xspeed = 1;
float yspeed = 3.3;

void setup() {
  size(200,200);
  smooth();
  background(255);
}

void draw() {
  noStroke();
  fill(255,10);
  rect(0,0,width,height);
  
  // Add the current speed to the location.
  x = x + xspeed;
  y = y + yspeed;

  // Check for bouncing
  if ((x > width) || (x < 0)) {
    xspeed = xspeed * -1;
  }
  if ((y > height) || (y < 0)) {
    yspeed = yspeed * -1;
  }

  // Display at x,y location
  stroke(0);
  fill(175);
  ellipse(x,y,16,16);
}

In the above example, we have a very simple world—a blank canvas with a circular shape (“ball”) 
traveling around.  This “ball” has some properties.

 LOCATION:    x and y
 SPEED:   xspeed and yspeed

In a more advanced sketch, we could imagine this ball and world having many more properties:

 ACCELERATION:  xacceleration and yacceleration
 TARGET LOCATION:  xtarget and ytarget
 WIND:  xwind and ywind
 FRICTION:  xfriction and yfriction

It’s becoming more and more clear that for every singular concept in this world (wind, location, 
acceleration, etc.), we need two variables.  And this is only a two-dimensional world. In a 3D world, we’d 
need x, y ,z, xspeed, yspeed, zspeed, etc.   Our first goal in this chapter is to learn the fundamental 
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concepts behind using vectors and rewrite this bouncing ball example.  After all, wouldn’t it be nice if we 
could simply write our code like the following?

Instead of:

float x;
float y;
float xspeed;
float yspeed;

Wouldn’t it be nice to have. . .

Vector location;
Vector speed;

Vectors aren’t going to allow us to do anything new.  Using vectors won’t suddenly make your Processing  
sketches magically simulate physics; however, they will simplify your code and provide a set of functions 
for common mathematical operations that happen over and over and over again while programming 
motion.

As an introduction to vectors, we’re going to live in two dimensions for quite some time (at least until we 
get through the first several chapters.)  All of these examples can be fairly easily extended to three 
dimensions (and the class we will use—PVector—allows for three dimensions.)  However, for the time 
being, it’s easier to start with just two.

Vectors: What are they to us, the Processing programmer?

Technically speaking, the definition of a vector is the difference between two points.   Consider how you 
might go about providing instructions to walk from one point to another.

Here are some vectors and possible translations:

(  3, 5) --> Walk three steps east, turn and walk five steps north.
(  2,-1) --> Walk two steps east, turn and walk one step south.
(-15, 3) --> Walk fifteen steps west, turn and walk three steps north.

You’ve probably done this before when programming motion.  For every frame of animation (i.e. single 
cycle through Processing’s draw() loop), you instruct each object on the screen to move a certain number 
of pixels horizontally and a certain number of pixels (vertically).  
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For a Processing programmer, we can now 
understand a vector as the instructions for 
moving a shape from point A to point B, an 
object’s “pixel velocity” so to speak.

For every frame:

location = location + velocity

If velocity is a vector (the difference between 
two points), what is location?   Is it a vector too?  
Technically, one might argue that location is not 
a vector, since it’s not describing the change 
between two points—it’s simply describing a 
singular point in space.  And so conceptually, we think of a location as different: a single point rather than 
the difference between two points.  

 

Nevertheless, another way to describe a location is the path taken from the origin to reach that location. 
Hence, a location can be the vector representing the difference between location and origin.  Therefore, if 
we were to write code to describe a vector object, instead of creating separate Point and Vector classes, 
we can use a single class which is more convenient.

Let’s examine the underlying data for both location and velocity.  In the bouncing ball example we had 
the following:

location --> x,y
velocity --> xspeed,yspeed

Notice how we are storing the same data for both—two floating point numbers, an x and a y. If we were 
to write a vector class ourselves, we’d start with something rather basic:

class PVector {

  float x;
  float y;

  PVector(float x_, float y_) {
    x = x_;
    y = y_;
  }
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}

At its core, a PVector is just a convenient way to store two values (or three, as we’ll see in 3D examples.).  

And so this. . .

float x = 100;
float y = 100;
float xspeed = 1;
float yspeed = 3.3;

. . . becomes . . .

PVector location = new PVector(100,100);
PVector velocity = new PVector(1,3.3);

Now that we have two vector objects (“location” and “velocity”), we’re ready to implement the algorithm 
for motion—location = location + velocity.   In Example 1.1, without vectors, we had:

  // Add the current speed to the location.
  x = x + xspeed;
  y = y + yspeed;

In an ideal world, we would be able to rewrite the above as:

  // Add the current velocity vector to the location vector.
  location = location + velocity;

However, in Processing, the addition operator ‘+’ is reserved for primitive values (integers, floats, etc.) 
only.  Processing doesn’t know how to add two PVector objects together any more than it knows how to 
add two PFont objects or PImage objects.   Fortunately for us, the PVector class includes functions for 
common mathematical operations.

Vectors: Addition

Before we continue looking at the PVector class and its add() method (purely for the sake of learning 
since it’s already implemented for us in Processing itself), let’s examine vector addition using the notation 
found in math and physics textbooks.

Vectors are typically written either in boldface type or with an arrow on top.  For the purposes of this 
book, to distinguish a vector from a scalar (scalar refers to a single value, such as an integer or a floating 
point), we’ll use the arrow notation:

Vector: 
Scalar: x

Let’s say I have the following two vectors:
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    = (5,2)   = (3,4)
   

Each vector has two components, an x and a y.  To add two vectors together we simply add both x’s and 
both y’s.  In other words:

   =  + 

translates to:

  x = x + x
  y = y + y

and therefore:

  x =  5 + 3
  y =  2 + 4

and therefore:

   =  (8,6)

Now that we understand how to add two vectors together, we can look at how addition is implemented in 
the PVector class itself.    Let’s write a function called add() that takes as its argument another PVector 
object.

class PVector {

  float x;
  float y;

  PVector(float x_, float y_) {
    x = x_;
    y = y_;
  }

  void add(PVector v) {
    x = x + v.x;
    y = y + v.y;
  }
}

Now that we see how add() is written inside of PVector, we can return to the location + velocity algorithm 
with our bouncing ball example and implement vector addition:

  // Add the current velocity to the location.
  location = location + velocity;
  location.add(velocity);

And here we are, ready to successfully complete our first goal—rewrite the entire bouncing ball example 
using PVector.  

Example 1.2: Bouncing Ball with PVector!

PVector location;
PVector velocity;

We can visually represent adding 
vectors by placing them end to end.
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void setup() {
  size(200,200);
  smooth();
  background(255);
  location = new PVector(100,100);
  velocity = new PVector(2.5,5);
}

void draw() {
  noStroke();
  fill(255,10);
  rect(0,0,width,height);
  
  // Add the current speed to the location.
  location.add(velocity);

  if ((location.x > width) || (location.x < 0)) {
    velocity.x = velocity.x * -1;
  }
  if ((location.y > height) || (location.y < 0)) {
    velocity.y = velocity.y * -1;
  }

  // Display circle at x location
  stroke(0);
  fill(175);
  ellipse(location.x,location.y,16,16);
}

Now, you might feel somewhat disappointed.  After all, this may initially appear to have made the code 
more complicated than the original version.  While this is a perfectly reasonable and valid critique, it’s 
important to understand that we haven’t fully realized the power of programming with vectors just yet.   
Looking at a simple bouncing ball and only implementing vector addition is just the first step.  As we 
move forward into a more complex world of multiple objects and multiple forces (we’ll cover forces in 
the next chapter), the benefits of PVector will become more apparent.

We should, however, make note of an important aspect of the above transition to programming with 
vectors.  Even though we are using PVector objects to describe two values—the x and y of location and 
the x and y of velocity—we still often need to refer to the x and y components of each PVector 
individually.  When we go to draw an object in Processing, there’s no means for us to say:

ellipse(location,16,16);

The ellipse() function does not allow for a PVector as an argument.  An ellipse can only be drawn with 
two scalar values, an x coordinate and a y coordinate.  And so we must dig into the PVector object and 
pull out the x and y components using object-oriented dot syntax.

ellipse(location.x,location.y,16,16);

The same issue arises when testing if the circle has reached the edge of the window, and we need to 
access the individual components of both vectors: location and velocity.

if ((location.x > width) || (location.x < 0)) {
  velocity.x = velocity.x * -1;
}

Vectors: More Algebra
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Addition was really just the first step.   There is a long list of common mathematical operations that are 
used with vectors when programming the motion of objects on the screen.   Below is a comprehensive list  
of the mathematical operations available as functions in the PVector class.  We’ll go through a few of the 
key ones now.  As our examples get more and more sophisticated, we’ll continue to reveal the details of 
these functions.

• add()—add vectors
• sub()—subtract vectors
• mult()—scale the vector with multiplication
• div()—scale the vector with division
• mag()—calculate the magnitude of a vector
• normalize()—normalize the vector to unit length of 1
• limit()—limit the magnitude of a vector
• heading2D()—the heading of a vector expressed as an angle
• dist()—the Euclidean distance between two vectors (considered as points)
• angleBetween()—find the angle between two vectors
• dot()—the dot product of two vectors
• cross()—the cross product of two vectors

Having already covered addition, let’s start with subtraction.  This one’s not so bad; just take the plus sign 
and replace it with a minus!

Vector subtraction:  =  - 

translates to:

   x = x - x
   y = y - y

and the function inside PVector therefore looks like:

  void sub(PVector v) {
    x = x - v.x;
    y = y - v.y;
  }

  
[THIS DIAGRAM REALLY NEEDS WORK, WELL, THEY ALL DO, BUT THIS ONE IN 
PARTICULAR]
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The following example demonstrates vector subtraction by taking the difference between two points—the 
mouse location and the center of the window.

Example 1-3: Vector subtraction
void setup() {
  size(200,200);
  smooth();
}

void draw() {
  background(255);
  
  PVector mouse = new PVector(mouseX,mouseY);
  PVector center = new PVector(width/2,height/2);
  
  mouse.sub(center);
  
  translate(width/2,height/2);
  line(0,0,mouse.x,mouse.y);
  
}

Both addition and subtraction with vectors follow the same algebraic rules as with real numbers.

The commutative rule:    +  =  + 

The associative rule:  + (  + )  = (  + ) +

Fancy terminology and symbols aside, this is really quite a simple concept.  We’re just saying that common sense 
properties of addition apply to vectors as well.  

   3 + 2 = 2 + 3 
   
   (3 + 2) + 1 = 3 + (2 + 1)

Moving on to multiplication, we have to think a little bit differently.  When we talk about multiplying a 
vector, what we usually mean is scaling a vector.  Maybe we want a vector to be twice its size or one-
third its size.  In this case, we are saying “Multiply a vector by 2” or “Multiply a vector by 1/3”.   Note we 
are multiplying a vector by a scalar, a single number, not another vector.

To scale a vector by a single number, we multiply each component (x and y) by that number.

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page  9

Two PVectors, one for the mouse 
location and one for the center of the 
window.

PVector subtraction!

Draw a line to represent the vector.



Vector multiplication:  =  * n

translates to:
   x = x * n
   y = y * n

Let’s look at an example with vector 
notation.

   = (-3,7)
   n = 3 

     =  * n
   x = -3 * 3
   y =  7 * 3

    = (-9, 21)

The function inside the PVector class therefore is written as:

 void mult(float n) {
   x = x * n;
   y = y * n;
 }

And implementing multiplication in code is as simple as:

PVector u = new PVector(-3,7);
u.mult(3);

Example 1-4: Vector multiplication
void setup() {
  size(200,200);
  smooth();
}

void draw() {
  background(255);
  
  PVector mouse = new PVector(mouseX,mouseY);
  PVector center = new PVector(width/2,height/2);
  mouse.sub(center);
  
  mouse.mult(0.5);
  
  translate(width/2,height/2);
  line(0,0,mouse.x,mouse.y);
  
}

Division is exactly the same as multiplication—only, of course, using a forward slash instead of a 
multiplication sign.

void div(float n) {

When you multiply a vector by a 
number, only its size (also known as 
magnitude or length) changes.  Its 
direction stays the same!
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  x = x / n;
  y = y / n;
}

PVector u = new PVector(8,-4);
u.div(2);

As with addition, basic algebraic rules of multiplication and division apply to vectors.

The associative rule:     (n*m)*  = n*(m* )
The distributive rule, 2 scalars, 1 vector:  (n + m)*  = n*  + m*
The distributive rule, 2 vectors, 1 scalar:   (  + )*n = n*  + n*

Vectors:  Magnitude

Multiplication and division, as we just saw, are means by which the length of the vector can be changed 
without affecting direction.  Perhaps you’re wondering: “Ok, so how do I know what the length of a 
vector is?  I know the components (x and y), but I don’t know how long (in pixels) actual arrow is?!” 

  

Understanding how to calculate the length (referred from here on out as magnitude) is incredibly useful 
and important. 

Notice in the above diagram how when we draw a vector as an arrow and two components (x and y), we 
end up with a right triangle.  The sides are the components and the hypotenuse is the arrow itself.   We’re 
very lucky to have this right triangle, because once upon a time, a Greek mathematician named 
Pythagoras developed a nice formula to describe the relationship between the sides and hypotenuse of a 
right triangle.

The length or “magnitude” of a vector  is often written as: ||  ||
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The Pythagorean theorem: a squared plus b squared equals c squared.

Armed with this lovely formula, we can now compute the magnitude of  as follows:

• || || = sqrt ( x* x + y* y)

or in PVector:

float mag() {
  return sqrt(x*x + y*y);
}

Example 1-3: Vector magnitude
void setup() {
  size(200,200);
  smooth();
}

void draw() {
  background(255);
  
  PVector mouse = new PVector(mouseX,mouseY);
  PVector center = new PVector(width/2,height/2);
  mouse.sub(center);

  float m = mouse.mag();
  fill(0);
  rect(0,0,m,10);
  
  translate(width/2,height/2);
  line(0,0,mouse.x,mouse.y);
  
}

Vectors:  Normalizing

Calculating the magnitude of a vector is only the beginning.  The magnitude function opens the door to 
many possibilities, the first of which is normalization.  Normalizing refers to the process of making 
something “standard” or, well, “normal.”  In the case of vectors, let’s assume for the moment that a 
standard vector has a length of one.  To normalize a vector, therefore, is to take a vector of any length and, 
keeping it pointing in the same direction, change its length to one, turning it into what is called a unit 
vector.
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The ability to quickly access the unit vector is useful since it describes a vector’s direction without regard 
to length, and we’ll see this come in handy once we start to work with forces in Chapter 2. 

For any given vector , its unit vector (written as û) is calculated as follows:

• û =  / || ||

In other words, to normalize a vector, simply divide each component by its magnitude.  This is pretty 
intuitive.  Say a vector is of length 5.  Well, 5 divided by 5 is 1.  So looking at our right triangle, we then 
need to scale the hypotenuse down by dividing by 5.   In that process the sides shrink, divided by 5 as 
well.

In the PVector class, we therefore write our normalization function as follows:

  void normalize() {
    float m = mag();
    div(m);
  }

Of course, there’s one small issue.  What if the magnitude of the vector is zero?  We can’t divide by zero!   
Some quick error checking will fix that right up:

  void normalize() {
   float m = mag();
   if (m != 0) {
     div(m);
   }
 }
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Example 1-X: Normalizing a Vector
void setup() {
  size(200,200);
  smooth();
}

void draw() {
  background(255);
  
  PVector mouse = new PVector(mouseX,mouseY);
  PVector center = new PVector(width/2,height/2);
  mouse.sub(center);
  
  mouse.normalize();
  mouse.mult(50);

  translate(width/2,height/2);
  line(0,0,mouse.x,mouse.y);
  
}

Vectors: Motion

Why should we care?  Yes, all this vector math stuff sounds like something we should know about, but 
why exactly?  How will it actually help me write code?   The truth of the matter is that we need to have 
some patience.  The awesomeness of using the PVector class will take some time to fully come to light.  
This is actually quite common when first learning a new data structure.   For example, when you first 
learn about an array, it might seem like much more work to use an array than to just have several 
variables stand for multiple things.   But that plan quickly breaks down when you need a hundred, or a 
thousand, or ten thousand things.  The same can be true for PVector.  What might seem like more work 
now will pay off later, and pay off quite nicely.  And you don’t have to wait too long, as your reward will 
come in the next chapter.

For now, however, we want to focus on simplicity.  What does it mean to program motion using vectors?   
We’ve seen the beginning of this in our first example: the bouncing ball.   An object on screen has a 
location (where it is at any given moment) as well as a velocity (instructions for how it should move from 
one moment to the next).   Velocity is added to location:

location.add(velocity);

And then we draw the object at that location:

ellipse(location.x,location.y,16,16);

This is Motion 101.

• Add velocity to location
• Draw object at location

In the bouncing ball example, all of this code happened in Processing’s main tab, within setup() and draw
().   What we want to do now is move towards encapsulating all of the logic for motion inside of a class. 
This way, we can create a foundation for programming moving objects in Processing.   We’ll take a 
moment now to review the basics of object-oriented programming in this context, but this book will 
otherwise assume knowledge of working with objects (which will be necessary for just about every 
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example from this point forward).   However, if you need a further refresher, I encourage you to check out 
the online OOP Processing tutorial: http://processing.org/learning/tutorials/objects/.

The driving principle behind object-oriented programming is the union of data and functionality.  Take the 
prototypical OOP example: a car.  A car has data—color, size, speed, etc.  It also has functionality—drive
(), turn(), stop(), etc.   A car class brings all that stuff together in a template from which car instances, i.e. 
objects, are made.   The benefit of OOP is nicely organized code that makes sense when you read it.

Car c = new Car(red,big,fast);
c.drive();
c.turn();
c.stop();  

In our case, we’re going to create a generic “Mover” class, a class to describe a shape moving around the 
screen.  And so we must consider the following two questions:

1) What data does a Mover have?
2) What functionality does a Mover have?

Our “Motion 101” algorithm tells us the answers to these questions.  A “Mover”  object has two pieces of 
data: its location and its velocity, two PVector objects.

class Mover {
  
  PVector location;
  PVector velocity;

Its functionality is just about as simple.  It needs to move and it needs to be seen.  We’ll implement these 
as functions named update() and display().  update() is where we’ll put all of our motion logic code and 
display() is where we will draw the object.

  void update() {
    location.add(velocity);
  }

  void display() {
    stroke(0);
    fill(175);
    ellipse(location.x,location.y,16,16);
  }

}

We’ve forgotten one crucial item, however: the object’s constructor.  The constructor is a special function 
inside of a class that creates the instance of the object itself. It is where you give instructions on how to 
set up the object.  It always has the same name as the class and is called by invoking the new operator: “ 
Car myCar = new Car( ); ”.

In our case, let’s just initialize our mover object by giving it a random location and a random velocity.

  Mover() {
    location = new PVector(random(width),random(height));
    velocity = new PVector(random(-2,2),random(-2,2));
  }

If object-oriented programming is new to you, one aspect here may seem a bit confusing.  After all, we 
spent the beginning of this chapter discussing the PVector class.  The PVector class is the template for 
making the object “location” and the object “velocity”.  So what are they doing inside of yet another 
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object, the “Mover” object?   In fact, this is quite normal in object-oriented programming.  An object is 
simply something that holds data (and functionality).  That data can be numbers (integers, floats, etc.) or 
other objects!  We’ll see this over and over again in this book.   For example, in Chapter X, we’ll write a 
class to describe a system of Particles.  That “ParticleSystem” object will have as its data a list of Particle 
objects. . .and each Particle object will have as its data several PVector objects!

Let’s finish off the Mover class by incorporating a function to determine what the object should do when 
it reaches the edge of the window.  For now let’s do something simple, and just have it wrap around the 
edges.

  void checkEdges() {

    if (location.x > width) {
      location.x = 0;
    } else if (location.x < 0) {
      location.x = width;
    }

    if (location.y > height) {
      location.y = 0;
    } else if (location.y < 0) {
      location.y = height;
    }

  }

Now that the Mover class is finished, we can look at what we need to do in our main program.  We first 
declare a Mover object:

Mover mover;

Then initialize the mover in setup():

  mover = new Mover(); 

and call the appropriate functions in draw():

  mover.update();
  mover.checkEdges();
  mover.display(); 

Here is the entire example for reference:

Example 1.3: Motion 101 (velocity)

Mover mover;

void setup() {
  size(200,200);
  smooth();
  background(255);
  mover = new Mover(); 
}

void draw() {
  noStroke();
  fill(255,10);
  rect(0,0,width,height);
  
  mover.update();
  mover.checkEdges();
  mover.display(); 
}
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class Mover {

  PVector location;
  PVector velocity;

  Mover() {
    location = new PVector(random(width),random(height));
    velocity = new PVector(random(-2,2),random(-2,2));
  }

  void update() {
    location.add(velocity);
  }

  void display() {
    stroke(0);
    fill(175);
    ellipse(location.x,location.y,16,16);
  }

  void checkEdges() {

    if (location.x > width) {
      location.x = 0;
    } else if (location.x < 0) {
      location.x = width;
    }
    
    if (location.y > height) {
      location.y = 0;
    } else if (location.y < 0) {
      location.y = height;
    }

  }

}

OK. At this point, we should feel comfortable with two things—(1) What is a PVector? and (2) How do 
we use PVectors inside of an object to keep track of its location and movement?  This is an excellent first 
step and deserves an mild round of applause.   Before standing ovations and screaming fans, however, we 
need to make one more, somewhat larger, step forward.   After all, watching the Motion 101 example is 
fairly boring -- the circle never speeds up, never slows down, and never turns.  For more interesting 
motion, for motion that appears in the real world around us, we need to add one more PVector to our class
—acceleration.  

The strict definition of acceleration we’re using here is: the rate of change of velocity.  Let’s think about 
that definition for a moment.  Is this a new concept?  Not really.  Velocity is defined as the rate of change 
of location.  In essence, we are developing a “trickle down” effect.  Acceleration affects velocity which in 
turn affects location (for some brief foreshadowing, this point will become even more crucial in the next 
chapter when we see how forces affect acceleration, which affects velocity, which affects location.)  In 
code, this reads:

  velocity.add(acceleration);
  location.add(velocity);

As an exercise, from this point forward, let’s make a rule for ourselves.  Let’s write every example in the 
rest of this book without ever touching the value of velocity and location (except to initialize them).  In 
other words, our goal now for programming motion is as follows—come up with an algorithm for how 
we calculate acceleration and let the trickle-down effect work its magic.   And so we need to come up 
with some ways to calculate acceleration:
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ACCELERATION ALGORITHMS!

  1) A constant acceleration
  2) A totally random acceleration
  3) Perlin noise acceleration
  4) Acceleration towards the mouse

Number one, though not particularly interesting, is the simplest, and will help us begin incorporating 
acceleration into our code.   The first thing we need to do is add another PVector to the Mover class:

class Mover {

  PVector location;
  PVector velocity;
  PVector acceleration;

And incorporate acceleration into the update() function:

  void update() {
    velocity.add(acceleration);
    location.add(velocity);
  }

We’re almost done.  The only missing piece is initialization in the constructor.  

  Mover() {

Let’s start the mover object in the middle of the window. . . 
    location = new PVector(width/2,height/2);

. . . with an initial velocity of zero.    
    velocity = new PVector(0,0);

This means that when the sketch starts, the object is at rest.  We don’t have to worry about velocity 
anymore as we are controlling the object’s motion entirely with acceleration.  Speaking of which, 
according to Algorithm #1, our first sketch involves constant acceleration.  So let’s pick a value.
    acceleration = new PVector(-0.001,0.01);

  }

Maybe you’re thinking, “Gosh, those values seem awfully small!”   That’s right, they are quite tiny.  It’s 
important to realize that our acceleration values (measured in pixels) accumulate over time in the velocity, 
about thirty times per second depending on our sketch’s frame rate.   And so to keep the magnitude of the 
velocity vector within a reasonable range, our acceleration values should remain quite small.   We can 
also help this cause by incorporating the PVector function limit().   

velocity.limit(10);

This translates to the following:

What is the magnitude of velocity?  If it’s less than 10, no worries; just leave it as is.  If it’s more 
than 10, however, reduce it to 10!
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Exercise: Write the limit() function for the PVector class.

  void limit(float max) {
    if (_______ > _______) {
      _________();
      ____(max);
    }
  }

Let’s take a look at the changes to the Mover class now, complete with acceleration and limit().

Example 1.4: Motion 101 (velocity and constant acceleration)

class Mover {

  PVector location;
  PVector velocity;
  PVector acceleration;
  float topspeed;

  Mover() {
    location = new PVector(width/2,height/2);
    velocity = new PVector(0,0);
    acceleration = new PVector(-0.001,0.01);
    topspeed = 10;
  }

  void update() {
    velocity.add(acceleration);
    velocity.limit(topspeed);
    location.add(velocity);
  }
  
  // display() is the same

  // checkEdges() is the same

}

Now to Algorithm #2,“a totally random acceleration.”  In this case, instead of initializing acceleration in 
the object’s constructor, we want to pick a new acceleration each cycle, i.e. each time update() is called.

Example 1.5: Motion 101 (velocity and random 
acceleration)

  void update() {
    
    acceleration = new PVector(random(-1,1),random(-1,1));
    acceleration.normalize();
    
    velocity.add(acceleration);
    velocity.limit(topspeed);
    location.add(velocity);
  }
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While normalizing acceleration is not entirely necessary, it does prove useful, as it standardizes the 
magnitude of the vector, allowing us to try different things. Such as:

(a) scaling the acceleration to a constant value

   acceleration = new PVector(random(-1,1),random(-1,1));
   acceleration.normalize();
   acceleration.mult(0.5);

(b) scaling the acceleration to a random value

   acceleration = new PVector(random(-1,1),random(-1,1));
   acceleration.normalize();
   acceleration.mult(random(2));

While this may seem like an obvious point, it’s crucial to understand that acceleration does not merely 
refer to the speeding up or slowing down of a moving object, but rather any change in velocity in either 
magnitude or direction.   Acceleration is used to steer an object, and we’ll see this again and again in 
future chapters as we begin to program objects that make decisions about how to move about the screen.

[INCLUDE PERLIN NOISE EXAMPLE REFFERING BACK TO PROLOGUE]

Vectors: Static vs. Non-Static

Before we get to acceleration Algorithm #4 (accelerate towards the mouse), we need to cover one more 
rather important aspect of working with vectors and the PVector class: the difference between using static 
methods and non-static methods.

Forgetting about vectors for a moment, take a look at the following code:

float x = 0;
float y = 5;

x = x + y;

Pretty simple, right?  x has the value of 0, we add y to it, and now x is equal to 5.  We could write the 
corresponding code pretty easily based on what we’ve learned about PVector.

PVector v = new PVector(0,0);
PVector u = new PVector(4,5);
v.add(u);

The vector v has the value of (0,0), we add y to it, and now x is equal to (4,5).  Easy, right?

OK, let’s take a look at another example of some simple floating point math:

float x = 0;
float y = 5;

float z = x + y;

x has the value of 0, we add y to it, and store the result in a new variable z.   The value of x does not 
change in this example (neither does y)!  This may seem like a trivial point, and one that is quite intuitive 
when it comes to mathematical operations with floats.   However, it’s not so obvious with mathematical 
operations in PVector.  Let’s try to write the code based on what we know so far.

PVector v = new PVector(0,0);
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PVector u = new PVector(4,5);
PVector w = v.add(u);

The above might seem like a good guess, but it’s just not the way the PVector class works.   If we look at 
the definition of add() . . .

 void add(PVector v) {
    x = x + v.x;
    y = y + v.y;
 }

. . . we see that this code does not accomplish our goal.  First, it does not return a new PVector (the return 
type is “void”) and second, it changes the value of the PVector upon which it is called.  In order to add 
two PVector objects together and return the result as a new PVector, we must use the static add() function.  

Functions that we call from the class name itself (rather than from a specific object instance) are known 
as static functions. 

// Assuming two PVector objects: v and u

PVector.add(v,u);

v.add(u);

Since you can’t write static functions yourself in Processing, you might not have encountered them 
before.  In the case of PVector, static allows us to perform generic mathematical operations on PVector 
objects without having to adjust the value of one of the input PVectors.  Let’s look at how we might write 
the static version of add():

  static PVector add(PVector v1, PVector v2) {
    PVector v3 = new PVector(v1.x + v2.x, v1.y + v2.y);
    return v3;
  }

There are several differences here:

• The function is labeled as static.
• The function does not have a void return type, but rather returns a PVector.
• The function creates a new PVector (v3) and returns the sum of the components of v1 and v2 in that  

new PVector.

When you call a static function, instead of referencing an actual object instance, you simply reference the 
name of the class itself.

PVector v = new PVector(0,0);
PVector u = new PVector(4,5);
PVector w = v.add(u);
PVector w = PVector.add(v,u);

The PVector class has static versions of add(), sub(), mult(), and div().

Exercise:  Translate the following pseudo-code to code using static or non-static functions where 
appropriate.
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• The PVector v equals (1,5)
• The PVector u equals v multiplied by 2.
• The PVector w equals v minus u.
• Divide the PVector w by 3.

PVector v = new PVector(1,5);
PVector u = ________._____(__,__);
PVector w = ________._____(__,__);
___________;

Vectors: Interactivity

To finish out this chapter, let’s try something a bit more complex and a great deal more useful.  We’ll 
dynamically calculate an object’s acceleration according to a rule, acceleration Algorithm #4 —“the 
object accelerates towards the mouse.”

Anytime we want to calculate a vector based on a rule or a formula, we need to compute two things: 
magnitude and direction.  Let’s start with direction.  We know the acceleration vector should point from 
the object’s location towards the mouse location.  Let’s say the object is located at the point (x,y) and the 
mouse at (mouseX,mouseY).  
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As illustrated in the above diagram, we see that we can get a vector (dx,dy) by subtracting the object’s 
location from the mouse’s location.   After  all, this is precisely where we started this chapter—the 
definition of a vector is “the difference between two points in space”!

dx = mouseX - x
dy = mouseY - y

Let’s rewrite the above using PVector syntax.   Assuming we are in the Mover class and thus have access 
to the object’s location PVector, we then have:

PVector mouse = new PVector(mouseX,mouseY);
PVector dir = PVector.sub(mouse,location);

We now have a PVector that points from the mover’s location all the way to the mouse.  If the object were 
to actually accelerate using that vector, it would appear instantaneously at the mouse location.  This does 
not make for good animation, of course, and what we want to do now is decide how quickly that object 
should accelerate toward the mouse.

In order to set the magnitude (whatever it may be) of our acceleration PVector, we must first ________ 
that direction vector.  That’s right, you said it.  Normalize.   If we can shrink the vector down to its unit 
vector (of length one) then we have a vector that tells us the direction and can easily be scaled to any 
value.   One multiplied by anything equals anything.  

float anything = ?????
dir.normalize();
dir.mult(anything);

To summarize, we take the following steps:

• 1) Calculate a vector that points from the object to the target location (mouse).
• 2) Normalize that vector (reducing its length to 1)
• 3) Scale that vector to an appropriate value (by multiplying it by some value)
• 4) Assign that vector to acceleration

And here are those steps in the update() function itself:

 void update() {

    PVector mouse = new PVector(mouseX,mouseY);
    PVector dir = PVector.sub(mouse,location);
    
    dir.normalize();
    
    dir.mult(0.5);
    
    acceleration = dir;

    velocity.add(acceleration);
    velocity.limit(topspeed);
    location.add(velocity);

  }
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Exercise:  This example is remarkably close to the concept of gravitational attraction (where the object is 
attracted to the mouse location).  Gravitational attraction will be covered in more detail in the next 
chapter. However, one thing missing here is that the strength of gravity (magnitude of acceleration) is 
inversely proportional to distance.  This means that the closer the object is to the mouse, the faster it 
accelerates.   Try implementing the above example with a variable magnitude of acceleration, either 
stronger when it is closer or when it is farther away.

Let’s see what this example would look like with an array of Mover objects (rather than just one).

Example 1.6: Accelerating towards mouse
Mover[] movers = new Mover[20];

void setup() {
  size(200,200);
  smooth();
  background(255);
  for (int i = 0; i < movers.length; i++) {
    movers[i] = new Mover(); 
  }
}

void draw() {
  noStroke();
  fill(255,10);
  rect(0,0,width,height);

  for (int i = 0; i < movers.length; i++) {
    movers[i].update();
    movers[i].checkEdges();
    movers[i].display(); 
  }
}

class Mover {

  PVector location;
  PVector velocity;
  PVector acceleration;
  float topspeed;

  Mover() {
    location = new PVector(random(width),random(height));
    velocity = new PVector(0,0);
    topspeed = 4;
  }

  void update() {

    PVector mouse = new PVector(mouseX,mouseY);
    PVector dir = PVector.sub(mouse,location);
    dir.normalize();
    dir.mult(0.5);
    acceleration = dir;

Why doesn’t the circle stop when it reaches the target?

The object moving has no knowledge about trying to stop at a destination; it only knows where the destination is 
and tries to go there as quickly as possible. Going as quickly as possible means it will inevitably overshoot the 
location and have to turn around, again going as quickly as possible towards the destination, overshooting it again, 
and so on, and so forth.   Stay tuned; in later chapters we’ll learn how to program an object to “arrive” at a location 
(slow down on approach).
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    velocity.add(acceleration);
    velocity.limit(topspeed);
    location.add(velocity);
  }

  void display() {
    stroke(0);
    fill(175);
    ellipse(location.x,location.y,16,16);
  }

  void checkEdges() {

    if (location.x > width) {
      location.x = 0;
    } else if (location.x < 0) {
      location.x = width;
    }

    if (location.y > height) {
      location.y = 0;
    }  else if (location.y < 0) {
      location.y = height;
    }

  }

}

Chapter 1 Project:

[AN END OF CHAPTER PROJECT / EXERCISE WOULD GO HERE]
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Chapter 2.  Forces
“Don't underestimate the Force.”
! -- Darth Vader

In this Chapter:
• Acceleration is the Key
• Newton’s Laws
• Making up a force
• Force accumulation
• A real world force simulated, a few examples

• Attraction (Gravity)
• Friction
• What else?

• Many things acting on many things

In the final example of Chapter 1, we saw how we could calculate a dynamic acceleration based on a vector pointing 
from a circle on the screen to the mouse location.   The resulting motion resembled a magnetic attraction between 
circle and mouse, as if some force were pulling the circle in towards the mouse and the key to that force was 
acceleration.  In this chapter we will formalize our understanding of the concept of a force and its relationship to 
acceleration.    Our goal, by the end of this chapter, is to understand how to make multiple objects move around the 
screen and respond to a variety of environmental forces.

Forces and Sir Isaac Newton

Before we begin examining the practical realities of simulating forces in code, let’s take a conceptual look at what it 
means to be a force in the real world.   Just as with the word “vector”, “force” is often commonly used to mean a 
variety of things.  It can used to indicate a powerful intensity, as in “She pushed the boulder with great force” or “He 
spoke forcefully.”   The definition of force that we care about is much more formal and comes from Isaac Newton’s 
laws of motion:

Force is a vector that causes an object with mass to accelerate.

The good news here is that we recognize the first part of the definition—“a force is a vector”. Thank goodness we just 
spent a whole chapter learning what a vector is and how to program with PVectors!   

Let’s look at Newton’s three laws in relation to the concept of a force.

Newton’s First Law
Every body persists in its state of being at rest or of moving uniformly straight forward, except insofar as it is 
compelled to change its state by force impressed.
[TAKEN FROM WIKIPEDIA, CITE: http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion]?

By the time Newton came along, the prevailing theory of motion—formulated by Aristotle—was nearly two thousand 
years old. It stated that if an object is moving, some sort of “force” is required to keep it moving.   Unless that moving 
thing is being pushed or pulled, it will simply slow down or stop.   Right?

This, of course, is not true.   In a vacuum, if an object is moving, it requires no force to keep it moving.   An object not 
in a vacuum, such as a ball thrown in the air on earth, might slow down because of air resistance (a force) or speed up 
while falling due to gravity (another force).    An object’s velocity will remain constant if no forces act upon it.  An an 
object at rest (with a velocity of zero) will stay at rest if no forces act upon it.

It should also be noted that an object’s velocity will remain unchanged if the forces that act on it cancel each other out, 
i.e. the net force adds up to zeroThis is often referred to as equilibrium.

!
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In our Processing world, we could restate Newton’s 1st law as follows:

Newton’s First Law as seen through the eyes of Processing
An object’s PVector velocity will remain constant if it is in a state of equilibrium.

Skipping Newton’s Second law (arguably the most important law for our purposes) for a moment, let’s move on to 
the Third law.

Newton’s Third Law
For a force there is always an equal and opposite reaction: or the forces of two bodies on each other are always equal 
and are directed in opposite directions.
[ALSO TAKEN FROM WIKIPEDIA, CITE: http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion]

This law is often stated as “For every action there is an equal and opposite reaction."  When I push on the wall, the 
wall pushes back on me (with equal force in the opposite direction.)  When sumo wrestlers meet in the middle of the 
ring, for every push there is an equal and opposite push.  

This law often causes some confusion in the way that it is stated, however.   For one, it sounds like one force causes 
another.  Truly, there is no “origin” force.  A better way of stating the law might be: “Forces always occur in pairs.  
The two forces are of equal strength, but in opposite directions.”

Now, this still causes confusion because it sounds like these two forces always cancel each other out.   This is not the 
case.  First, the forces act on different objects.  And second, just because the two forces are equal, it doesn’t mean that 
the movements are equal (or that the objects will stop moving).  After all, we have to take many other factors into 
account.   If one sumo wrestler is much bigger than the other, even if the forces are equal, the larger wrestler will 
overpower the smaller one.   And certainly, the current velocity of each object is important—if a wrestler is running 
towards another wrestler rather than standing in place, this will have a strong effect on the outcome.

Let’s take a look at a quick example.  Say you are wearing roller skates and you push on a table that is leaning against 
a wall.

!
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When you push against the table, Newton’s third law tells us that the table pushes against you.  In turn, you 
accelerate away from the table sliding along the floor.  But the table does not accelerate away from you.  This could be  
due to a number of different reasons.  For example, if the table is extremely heavy (i.e. has a higher mass) its 
acceleration will be much smaller (we’ll get into why with Newton’s second law).  In addition, there are other forces 
at work, such as friction against the floor and a force pushing back from the wall.

Newton’s Third Law as seen through the eyes of Processing

If we calculate a PVector f that is a force of object A on object B, we must also apply the force -f  (or PVector.mult
(f,-1);) that B exerts on object A.

We’ll see that in the world of Processing programming we don’t always have to stay true to the above.  Sometimes, 
such as in the case of gravitational attraction between bodies (see ex. 2.x on p.XX), we’ll want to model equal and 
opposite forces.  Other times, such as when we’re simply saying, “Hey, there’s some wind in the environment,” we’re 
not going to bother to model the force that a body exerts back on the air.  In fact, we’re not modeling the air at all!  
Remember, we are simply taking inspiration from the physics of the natural world and not simulating everything 
with perfect precision.

Newton’s Second Law

F = M * A
Force equals mass times acceleration.

And here we are at the most important law for the Processing 
programmer.   Why?  Well, let’s write this a different way.

A = F / M
Acceleration is directly proportional to force and inversely 
proportional to mass.  This means that if you get pushed, the harder 
you are pushed, the faster you’ll move (accelerate).  The bigger you 
are, the slower you’ll move.

Now, in the world of Processing, what is mass anyway?  Aren’t we dealing with pixels?  To start in a simpler place, 
let’s say that in our pretend pixel world, all of our objects have a mass equal to 1.  F/ 1 = F.  And so:

A = F

Weight vs. Mass

• The mass of an object is a measure of the amount of 
matter in the object (measured in kilograms).

• Weight, though often mistaken for mass, is 
technically the force of gravity on an object. From 
Newton’s second law, we can calculate it as mass 
times the acceleration of gravity (w = m * g). Weight 
is measured in Newtons.

• Density is is defined as the amount of mass per unit 
of volume (grams per cubic centimeter, for example).

Note that an object that has a mass of one kilogram on 
earth would have a mass of one kilogram on the moon. 
However, it would weigh only one-sixth as much.

!
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The acceleration of an object is equal to force.  This is great news.  After all, we saw in Chapter 1 that acceleration was 
the key to the controlling the movement of our objects on screen.  Location is adjusted by velocity, and velocity by 
acceleration.  Acceleration was where it all began.  Now we learn that force is truly where it all begins.

Forces and Processing—Newton’s Second Law as a function

Let’s say we have a class called Mover, with location, velocity, and acceleration.

class Mover {
  PVector location;
  PVector velocity;
  PVector acceleration;

  Mover() {
    location = new PVector(random(width),random(height));
    velocity = new PVector(0,0);
    acceleration = new PVector(0,0);
  }

  void update() {
    velocity.add(acceleration);
    location.add(velocity);
  }
}

Now our goal is to be able to add forces to this object, saying perhaps:

mover.applyForce(wind);

or: 

mover.applyForce(gravity);

where wind and gravity are PVectors.  According to Newton’s second law, we could implement this function as 
follows.

  void applyForce(PVector force) {
    acceleration = force;
  }

Forces and Processing—Force Accumulation

This looks pretty good.  After all, it’s a literal translation of Newton’s second law (without mass): Acceleration = 
Force.   Nevertheless, there’s a pretty big problem here.  Let’s return to what we are trying to accomplish: creating a 
moving object on the screen that responds to wind and gravity.

mover.applyForce(wind);
mover.applyForce(gravity);
mover.update();
mover.display();

Ok, let’s be the computer for a moment.  First, we call applyForce() with wind.  And so the Mover object’s acceleration 
is now set to the wind PVector.   Second, we call applyForce() with gravity.  And so the Mover object’s acceleration is 
now set to the gravity PVector.    Third, we call update().  What happens in update?  Acceleration is added to velocity.

velocity.add(acceleration);

!
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We’re not going to see any error in Processing, but zoinks!  We’ve got a major problem.  What is the value of 
acceleration when it is added to velocity?  It is equal to the gravity force.  Wind has been left out!  If we call 
applyForce() more than once, it overrides each previous call.   How are we going to handle more than one force?

The answer is through a process known as force accumulation.  It’s actually very simple; all we need to do is add all 
of the forces together.  At any given moment, there might be one, two, six, twelve, or three hundred and three forces.  
As long as our object knows how to accumulate them, it doesn’t matter how many forces act on it.

 void applyForce(PVector force) {
    acceleration.add(force);
 }

Now, we’re not finished just yet.  There is one more piece to force accumulation.  Since we’re adding all the forces 
together at any given moment, we have to make sure that we clear acceleration (i.e. set it to zero) before each time 
update() is called.   Let’s think about wind for a moment.   Sometimes the wind is very strong, sometimes it’s weak, 
and sometimes there’s no wind at all.   At any given moment, there might be a huge gust of wind, say, when the user 
holds down the mouse.

if (mousePressed) {
  PVector wind = new PVector(0.5,0);
  mover.applyForce(wind);
}

When the user releases the mouse, the wind will stop and according to Newton’s first law, the object will continue to 
move at a constant velocity.   However, if we had forgotten to reset acceleration to zero, the gust of wind would still 
be in effect.  Even worse, it would add onto itself from the previous frame, since we are accumulating forces!    
Acceleration, in our simulation, has no memory; it is simply calculated based on the environmental forces present at a 
moment in time.   This is different than, say, location, which must remember where the object was the previous frame 
in order to move properly to the next.   

The easiest way to implement clearing the acceleration for each frame is to multiply the PVector by zero at the end of 
update().

 void update() {
    velocity.add(acceleration);
    location.add(velocity);
    acceleration.mult(0);
 }

Exercise:  Using forces, simulate a helium-filled balloon floating upward (and bouncing off the top of a window).  Can you add a 
wind force which changes over time, perhaps according to Perlin noise?

Forces and Processing—dealing with Mass

OK. We’ve got one tiny little addition to make before we are done with integrating forces into our Mover class and 
are ready to look at examples.  After all, Newton’s second law is really F = M * A, not F = A.   Incorporating mass is as 
easy as adding an instance variable to our class, but we need to spend a little more time here because a slight 
complication will emerge.

First we just need to add mass.

class Mover {
  PVector location;
  PVector velocity;
  PVector acceleration;
  float mass;

!
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Mass is a scalar (float), not a vector, as it’s just one number describing the amount of matter in an object.  We could be 
fancy about things and compute the area of a shape as its mass, but it’s simpler to begin by saying, “Hey, the mass of 
this object is, um, I dunno, how about 10?”

 Mover() {
    location = new PVector(random(width),random(height));
    velocity = new PVector(0,0);
    acceleration = new PVector(0,0);
    mass = 10.0;
  }

This isn’t so great since things only become interesting once we have objects with varying mass , but it’ll get us 
started.  Where does mass come in?  We use it while applying Newton’s second law to our object.

 void applyForce(PVector force) {
   force.div(mass);
   acceleration.add(force);
 }

Yet again, even though our code looks quite reasonable, we have a fairly major problem here.    Consider the 
following scenario with two Mover objects, both being blown away by a wind force.

Mover m1 = new Mover();
Mover m2 = new Mover();

PVector wind = new PVector(1,0);

m1.applyForce(wind);
m2.applyForce(wind);

Again, let’s be the computer.  Object m1 receives the wind force—(1,0)—divides it by mass (10) and adds it to 
acceleration.

m1:
Wind Force is equal to! (1,0)
divided by mass = 10:! (0.1,0)

OK, moving onto object m2.  It also receives the wind force—(1,0).  Wait.  Hold on a second.  What is the value of 
wind force?   Taking a closer look, the wind force is actually now—(0.1,0)!!   Do you remember this little tidbit about 
working with objects?  When you pass an object (in this case a PVector) into a function, you are passing a reference to 
that object.  It’s not a copy!  So if a function makes a change to that object (which, in this case, it does by dividing by 
mass) then that object is permanently changed!  But we don’t want m2 to receive a force divided by the mass of object 
m1. It wants to receive that force in its original state—(1,0).  And so we must protect ourselves and make a copy of the 
PVector f before dividing it by mass.    Fortunately, the PVector class has a convenient method for making a copy—
get().  get() returns a new PVector object with the same data.  And so we can revise applyForce() as follows:

void applyForce(PVector force) {
  PVector f = force.get();
  f.div(mass);
  acceleration.add(f);
}

There’s another way we could write the above function, using the static method div().   For help with this exercise, 
review static methods in Chapter 1 (see p. XXX).

!
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Exercise 2-x: Rewrite the applyForce method using the static method div() instead of get(). 

void applyForce(PVector force) {
  PVector f = _______.___(_____,____);
  acceleration.add(f);
}

Where do forces come from?

Let’s take a moment to remind ourselves where we are.  We know what a force is (a vector), we know how to apply a 
force to an object (divide it by mass, add it to the object’s acceleration vector).   What are we missing?  Well, we have 
yet to figure out how we get a force in the first place.  Where do forces come from?

In this chapter, we’ll look at two methods for creating forces in our Processing world.  

1. Make a force up!  After all, you are the programmer, the creator of your world. There’s no reason why 
you can’t just make up a force and apply it.

2. Model a force!  Yes, forces exist in the real world.  And physics textbooks often contain formulas for 
these forces.  We can take these formulas, translate them into source code, and model real-world forces in 
I.

Examples of forces—let’s make some up!

The easiest way to make up a force is just to just pick a number.  Let’s start with the idea of simulating wind.  How 
about a wind force that points to the right and is fairly weak?  Assuming a Mover object “m”, our code would look 
like:

  PVector wind = new PVector(0.001,0);
  m.applyForce(wind);

The result isn’t terribly interesting, but it is a good place to start.  We create a PVector object, initialize it, and pass it 
into an object (which in turn will apply it to its own acceleration).  

If we wanted to have two forces, perhaps wind and gravity (a bit stronger, pointing 
down), we might say:

  PVector wind = new PVector(0.001,0);
  PVector gravity = new PVector(0,0.1);
  m.applyForce(wind);

Now we have two forces, pointing in different directions with different magnitudes, 
both applied to object “m.”  We’re beginning to get somewhere.  We’ve now built a 
world for our objects in Processing, an environment to which they can actually 
respond.

Let’s look at how we could make this example a bit more exciting with many objects of 
varying mass.   To do this, we’ll need to do a quick review of object-oriented programming.  Again, we’re not 
covering all the basics of programming here (for that you can check out any of the intro Processing books listed in the 
introduction).  However, since the idea of creating a world filled with objects is pretty fundamental to all the 
examples in this book, it’s worth taking a moment to walk through the steps of going from one object to many.

This is where we are with the Mover class as a whole.  Notice how it is identical to the Mover class created in Chapter 
1, with two additions—mass and a new applyForce() function.

!
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class Mover {

  PVector location;
  PVector velocity;
  PVector acceleration;
  float mass;

  Mover() {
    mass = 1;
    location = new PVector(30,30);
    velocity = new PVector(0,0);
    acceleration = new PVector(0,0);
  }
  
  void applyForce(PVector force) {
    PVector f = PVector.div(force,mass);
    acceleration.add(f);
  }
  
  void update() {
    velocity.add(acceleration);
    location.add(velocity);
    acceleration.mult(0);
  }

  void display() {
    stroke(0);
    fill(175);
    ellipse(location.x,location.y,16,16);
  }

  void checkEdges() {

    if (location.x > width) {
      location.x = 0;
    } else if (location.x < 0) {
      location.x = width;
    }

    if (location.y > height) {
      velocity.y *= -1;
      location.y = height;
    }

  }

}

Now that our class is set, we can choose to create, say, one hundred Mover objects with an array.

Mover[] movers = new Mover[100];

And then we can initialize all of those Mover objects in setup() with a loop.

void setup() {
  for (int i = 0; i < movers.length; i++) {
    movers[i] = new Mover(); 
  }
}

But now we have a small issue.  If we refer back to the Mover object’s constructor. . .

  Mover() {
    mass = 1;
    location = new PVector(30,30);
    velocity = new PVector(0,0);
    acceleration = new PVector(0,0);
  }

!
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. . .we discover that every Mover object is made exactly the same way.  What we want are Mover objects of varying 
mass that start at varying locations.  Here is where we need to increase the sophistication of our constructor by 
adding arguments.

  Mover(float m, float x , float y) {
    mass = m;
    location = new PVector(x,y);
    velocity = new PVector(0,0);
    acceleration = new PVector(0,0);
  }

Notice how the mass and location are no longer set to hardcoded numbers, but rather initialized via arguments 
passed through the constructor.   This means we can create a variety of Mover objects: big ones, small ones, ones that 
start on the left side of the screen, ones that start on the right, etc.

Mover m1 = new Mover(10,0,height/2);      // A big Mover on the left side of the window
Mover m1 = new Mover(0.1,width,height/2); // A small Mover on the right side of the window

With an array, however, we want to initialize all of the objects with a loop.

void setup() {
  for (int i = 0; i < movers.length; i++) {
    movers[i] = new Mover(random(0.1,5),0,0); 
  }
} 

For each “Mover” created, the mass is set to a random value between 0.1 and 5, the starting x location is set to 0, and 
the starting y location is set to 0.  Certainly, there are all sorts of ways we might choose to initialize the objects, this is 
just a demonstration of one possibility.

Once the array of objects is declared, created, and initialized, the rest of the code is simple.  We run through every 
object, hand them each the forces in the environment, and enjoy the show.

void draw() {
  noStroke();
  fill(255,10);
  rect(0,0,width,height);

  PVector wind = new PVector(0.001,0);
  PVector gravity = new PVector(0,0.1);

  for (int i = 0; i < movers.length; i++) {
    movers[i].applyForce(wind);
    movers[i].applyForce(gravity);

    movers[i].update();
    movers[i].display();
    movers[i].checkEdges();
  }
}

Note how in the above image, the smaller circles reach the right of the window faster than the larger ones.  This is 
because of our formula: acceleration = force divided by mass.   The larger the mass, the smaller the acceleration.

!
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Exercise:  Create an example where instead of objects bouncing off the edge of the wall, an invisible force pushes back on the 
objects to keep them in the window.  Can you weight the force according to how far the object is from an edge, i.e. the closer it is, 
the stronger the force?  

Examples of forces—model a force!

Making up forces will actually get us quite far.  The world of Processing is a pretend world of pixels and you are its 
master.  So whatever you deem appropriate to be a force, well by golly, that’s the force it should be.  Nevertheless, 
there may come a time where you find yourself wondering: “But how does it really all work?”  

Open up any high school physics textbook and you will find some diagrams and formulas describing many different 
forces—gravity, electromagnetism, friction, tension, elasticity, etc.  In this chapter we’re going to look at two forces—
friction and gravity.  The point we’re making here is not that friction and gravity are fundamental forces that you 
always need to have in your Processing sketches.  Rather, we want to evaluate these two forces as case studies for the 
following process:

• Understand the concept behind a force
• Deconstruct the force’s formula into two parts:

• How do we compute the force’s direction?
• How do we compute the force’s magnitude?

• Translate that formula into Processing code that calculates a PVector to be sent through our Mover’s 
applyForce() function.

If we can follow the above steps with two forces, then hopefully when you find yourself at 3 a.m. googling “atomic 
nuclei weak nuclear force”, you will have the skills to take what you find and adapt it for Processing.

Friction

Let’s begin with friction and follow our steps:

What is friction?

Friction is a “dissipative” force.  A dissipative force is one where the total energy of a system decreases when an 
object is in motion.   Let’s say you are driving a car. When you press your foot down on the brake pedal, the car’s 
brakes use friction to slow down the motion of the tires.  Kinetic energy (motion) is converted into thermal energy 
(heat).   Whenever two surfaces come into contact, they experience friction.   A complete model of friction would 
include separate cases for static friction (a body at rest against a surface) and kinetic friction (a body in motion against 
a surface), but for our purposes, we are going to only look at the kinetic case.  

What is the formula for friction?

Ffriction = -1 * ! * N * ;

!
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It’s now up to us to separate this formula into two components that determine the direction of friction as well as the 
magnitude.  Based on the diagram above, we can see that friction points in the opposite direction of velocity.   In fact, 
that’s the part of the formula that says -1 *  or negative one times the velocity unit vector.  In Processing, this would 
mean taking the velocity vector, normalizing it, and multiplying by -1.  

PVector friction = velocity.get();
friction.normalize(); 
friction.mult(-1); 

Notice two additional steps here.  First, it’s important to make a copy of the velocity vector first as we don’t want to 
reverse the object’s direction by accident.  Second, we normalize the vector.  This is because the magnitude of friction 
is not associated with how fast it is moving, and we want to start with a friction vector of magnitude one so that it 
can easily be scaled.

According to the formula, the magnitude is ! * N.   ! is the Greek letter, Mu (pronounced “mew”).  It is used here to 
describe the “coefficient of friction.”   The coefficient of friction establishes the strength of a friction force for a 
particular surface.  The higher it is, the stronger the friction; the lower, the weaker.   A block of ice, for example, will 
have a much lower coefficient of friction than, say, sandpaper.   Since we’re in a pretend Processing world , we can 
arbitrarily set the coefficient based on how much friction we want to simulate.

float c = 0.01;

Now for the second part: N.  N refers to the “normal” force, the force perpendicular to the object’s motion along a 
surface.  Think of a vehicle driving along a road.   The vehicle pushes down against the road with gravity, and 
Newton’s third law tells us that the road in turn pushes back against the vehicle.  That’s the normal force.  The 
greater the gravitational force, the greater the normal force.   As we’ll see in the next section, gravity is associated 
with mass and so a lightweight sports car would experience less friction than a massive tractor trailer truck.   With 
the diagram above, however, where the object is moving along a surface at an angle, computing the normal force is a 
bit more complicated because it doesn’t point in the same direction as gravity.  We’ll need to know something about 
angles and trigonometry. 
  

All of  these specifics are important; however, in Processing, an “good enough” simulation can be achieved without 
them.  We can, for example, make friction work with the assumption that the normal force will always have a 
magnitude of 1.  When we get into trigonometry in the next chapter, we’ll remember to return to this question and 
make our friction example a bit more sophisticated.  Therefore:

float normal = 1;

Now that we have both the magnitude and direction for friction, we can put it all together:

float c = 0.01;
float normal = 1;
float frictionMag = c*normal;

PVector friction = velocity.get();
friction.mult(-1); 
friction.normalize();

friction.mult(frictionMag);

And add it to our “forces” example where many objects experience wind, gravity, and now friction:

void draw() {
  noStroke();
  fill(255,10);
  rect(0,0,width,height);

  PVector wind = new PVector(0.001,0);
  PVector gravity = new PVector(0,0.1);

!
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Let’s figure out the magnitude of friction 
(really just an arbitrary constant).

Let’s figure out the direction of the friction force (a unit 
vector in the opposite direction of velocity).

Take the unit vector and multiply it by 
magnitude and we have our force vector!



  for (int i = 0; i < movers.length; i++) {

    float c = 0.01;
    PVector friction = movers[i].velocity.get();
    friction.mult(-1); 
    friction.normalize();
    friction.mult(c);
    
    movers[i].applyForce(friction);
    movers[i].applyForce(wind);
    movers[i].applyForce(gravity);

    movers[i].update();
    movers[i].display();
    movers[i].checkEdges();
  }

}

  !
no friction! ! ! ! ! friction

Running this example, you’ll notice that the circles don’t even make it to the right side of the window.  Since friction 
continuously pushes against the object in the opposite direction of its movement, the object continuously slows 
down.  This can be a useful technique or a problem depending on the goals of your visualization.

Air and Fluid Resistance

Friction also occurs when a body passes through a liquid or gas.  This force has many different names, all really 
meaning the same thing: viscous force, drag force, fluid resistance.  While the result is ultimately the same as our 
prevous friction examples (the object slows down), the way we calculate a drag force will be slightly different.  Let’s 
look at the formula:

! ! ! ! !

OK, let’s break this down and see what we really need for an effective simulation in Processing, making ourselves a 
much simpler formula in the process.

• Fd  refers to “Drag Force”, the vector we ultimately want to compute and pass into our applyForce() function.

!
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Once we calculate the friction force, let’s 
apply it to the object.



• - 1/2 is a constant: -0.5!   This is fairly irrelevant in terms of our Processing world as we will be making up 
values for other constants anyway. 

•  is the Greek letter rho, and refers to the density of the liquid.  Something we don’t need to worry about.  We 
can simplify the problem and consider this to have a constant value of 1.

• v refers to the speed of the object moving.  OK, we’ve got this one!  The object’s speed is the magnitude of the 
velocity vector:  velocity.magnitude().  And v2 just means v squared or v * v.

• A refers to the frontal area of the object that is pushing through the liquid (or gas).  An aerodynamic 
Lamborghini, for example, will experience less air resistance than a boxy Volvo.   Nevertheless, for a basic 
simulation, we can consider our object to be spherical and ignore this element.

• Cd is the coefficient of drag, exactly the same as the coefficient of friction (!).  This is a constant we’ll 
determine based on whether we want the drag force to be strong or weak.

•   Look familiar?  It should.  This refers to the velocity unit vector, i.e. velocity.normalize().  Just like with 
friction, drag is a force that points in the opposite direction of velocity.

Now that we’ve analyzed each of these components and determined what we 
need for a simple simulation, we can reduce our formula to:

! ! ! ! Fd = -Cd * v2 * 

or:

float c = 0.1;
float speed = v.mag();
float dragMagnitude = -1 * c * speed * speed;

PVector drag = velocity.get();
drag.normalize();
drag.mult(dragMagnitude);

Let’s implement this force in our Mover example with one addition.   When we wrote our friction example, the force 
of friction was always present.  Whenever an object was moving, friction would slow it down.  Here, let’s introduce 
an element to the environment—a “liquid” that the Mover objects pass through.  The liquid object will be a rectangle 
and will know about its location, width, height, and “coefficient of drag.”  In addition, it should include a function to 
draw itself on the screen (and two more functions, which we’ll see in a moment.)

class Liquid {

  float x;
  float y;
  float w;
  float h;
  float c;

  Liquid(float x_, float y_, float w_, float h_, float c_) {
    x = x_;
    y = y_;
    w = w_;
    h = h_;
    c = c_;
  }

!
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Part 1 of our formula (magnitude):

-Cd * v2 

Part 2 of our formula (direction):

Magnitude and direction together!

The liquid object includes a variable defining its “coefficient of drag”: 
i.e., is it easy for objects to move through it (air) or difficult (molasses)?



  void display() {
    noStroke();
    fill(175);
    rect(x,y,w,h);
  }

}

The main program will now include a Liquid object reference as well as a line of code that initializes that object.

Liquid liquid;

void setup() {
  liquid = new Liquid(300,0,50,200,0.01);
}

Now comes an interesting question: how do we get the Mover object to talk to the Liquid object?  In other words, we 
want to execute the following:

When a Mover passes through a Liquid it experiences a Drag force.

or in object-oriented speak (assuming we are looping through an array of Mover objects with index i):

if (movers[i].isInside(liquid)) {
  movers[i].drag(liquid);
}

The above code tells us that we need to add two functions to the Mover class: (1) a function that determines if a 
Mover object is inside the liquid, and (2) a function that computes and applies a drag force on the Mover object.

The first is easy; we can simply use a conditional statement to determine if the location vector rests inside the 
rectangle defined by the liquid.

boolean isInside(Liquid l) {
  if (location.x > l.x && location.x < l.x + l.w && location.y > l.y && location.y < l.y + l.h) {
    return true;
  }  else {
    return false;
  }
}

The drag() function is a bit more complicated; however, we’ve written the code for it already.  This is simply an 
implementation of our formula.  The drag force is equal to the coefficient of drag multiplied by the speed of the Mover 
squared in the opposite direction of velocity!

Fd = -Cd * v2 * 

 void drag(Liquid l) {
    // Drag Magnitude
    float speed = velocity.mag();
    float dragMagnitude = -1 * l.c * speed * speed;

    // Drag direction
    PVector drag = velocity.get();
    drag.normalize();

    // Finalize force: magnitude and direction
    drag.mult(dragMagnitude);
    
    // Apply the force!
    applyForce(drag);
  }

!
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If a Mover is inside a Liquid, apply the drag force.

This conditional statement determines if the PVector 
location is inside the rectangle defined by the Liquid 
class.

 -Cd * v2

PVector “drag” now equals -Cd * v2 * 

Initialize a Liquid object.  Note how the coefficient 
value is low (0.01); otherwise, the object would 
come to a halt fairly quickly (which may someday 
be the effect you want).



And with these two functions added to the Mover class, we’re ready to put it all together in the main tab:

Mover[] movers = new Mover[100];

Liquid liquid;

void setup() {
  size(600,200);
  smooth();
  background(255);
  for (int i = 0; i < movers.length; i++) {
    movers[i] = new Mover(random(0.1,5),0,0); 
  }
  liquid = new Liquid(300,0,50,200,0.01);
}

void draw() {
  noStroke();
  fill(255,10);
  rect(0,0,width,height);

  liquid.display();

  PVector wind = new PVector(0.001,0);
  PVector gravity = new PVector(0,0.1);

  for (int i = 0; i < movers.length; i++) {

    if (movers[i].isInside(liquid)) {
      movers[i].drag(liquid);
    }

    movers[i].applyForce(wind);
    movers[i].applyForce(gravity);

    movers[i].update();
    movers[i].display();
    movers[i].checkEdges();
  }

}

  !
no drag ! ! ! ! ! drag from liquid       

Running the example, you should notice that the objects only slow down when crossing the black bar in the center of 
the screen (representing the liquid).  You’ll also notice that the smaller, faster objects slow down a great deal more 
than the larger, faster objects.   Let’s think about why:

1. Remember Newton’s second law?  A = F / M. Acceleration equals Force divided by mass.  A massive 
object will accelerate less.  A smaller object will accelerate more.  Think of how easy it is to throw a 
baseball versus a bowling ball.  

2. Let’s take a look at our formula for drag again.  DRAG FORCE = COEFFICIENT * SPEED * SPEED.  The 
faster an object moves, the greater the drag force against it.  In fact, an object not moving in water 
experiences no drag at all.

!
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Exercise:  Create pockets of air resistance / friction in a Processing sketch.  Try using circles instead of rectangles, i.e. pockets of 
mud (or ice).  What if you vary the strength (drag / friction coefficient) of each circle?   What if you make some of them the 
opposite of drag—i.e., when you enter a given pocket you actually speed up instead of slow down?

Gravitational Attraction

Probably the most famous force of all is gravity.   We humans on earth think of gravity as an apple hitting Isaac 
Newton on the head.    Gravity means that stuff falls down.  But this is only our experience of gravity.   In truth, just 
as the earth pulls the apple towards it due to a gravitational force, the apple pulls the earth as well.   The thing is, the 
earth is just so freaking big that it overwhelms all the other gravity interactions.  Every object with mass exerts a 
gravitational force on every other object.   And there is a formula for calculating the strengths of these forces:

! ! ! !

Let’s examine this formula a bit more closely:

• F refers to the gravitational force, the vector we ultimately want to compute and pass into our applyForce() 
function.

• G is the “Universal Gravitational Constant” and in our world equals 6.67428 x 10-11 meters cubed per kilogram 
per second squared.   This is a pretty important number, especially if your name is Isaac Newton or Albert 
Einstein.  It’s not an important number if you are a Processing programmer.  Again, it’s a constant that we can 
use to make the forces in our world weaker or stronger.  Just making it equal to one and ignoring it isn’t such a 
terrible choice either.

• m1 and m2 are the masses of objects 1 and 2.   As we saw with Newton’s second law (F = MA), mass is also 
something we could choose to ignore.  After all, shapes drawn on the screen don’t actually have a physical 
mass.  However, if we keep these values, we can create more interesting simulations where bigger (in pixel 
dimensions) objects exert a stronger gravitational force than smaller ones.

•  refers to the unit vector pointing from object 1 to object 2.  As we’ll see in a moment, we can compute this 
direction vector by subtracting the location of one object from the other.

• r2 refers to the distance between the two objects squared.  Let’s take a moment to think about this a bit more.  
With everything on the top of the formula—G, m1, m2—the bigger its value, the stronger the force.  Big mass, 
big force.  Big G, big force.  Now, when we divide by something we have the opposite.  The strength of the 
force is inversely proportional to the distance squared.  The further away an object is, the weaker the force; the 
closer, the stronger.   

[make sure i talk about somewhere that we’re just doing this to demo how to do it, but it’s potentially more 
interesting if you come up with your own rules / design your own force, distance makes it stronger, repel instead of 
attract, etc.]

Hopefully by now the formula makes some sense to us.  We’ve looked at a diagram and dissected the individual 
components of the formula.  Now it’s time to figure out how we translate the math into Processing code.  Let’s make 
the following assumptions.

!
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We have two objects and:

1. Each object has a location: PVector location1 and PVector location2.
2. Each object has a mass: float mass1 and float mass2.
3. There is a variable float G for the universal gravitational constant.

Given these assumptions, we want to compute PVector force, the force of gravity.  We’ll do it in two parts.  First, we’ll  

compute the direction of the force (  in the formula above).  Second, we’ll calculate the strength of the force 
according to the masses and distance.

Remember in Chapter 1, when we figured out how to have an object accelerate towards the mouse?  

A vector is the difference between two points. To make a vector that points from the circle to the mouse, we simply 
subtract one point from another:

PVector dir = PVector.sub(mouse,location);

In our case, the direction of the attraction force that object 1 exerts on object 2 is equal to:

PVector dir = PVector.sub(location1,location2);
dir.normalize();

Don’t forget that since we want a unit vector, a vector that tells us about direction only, we’ll need to normalize the 
vector after subtracting the locations.

OK, we’ve got the direction of the force.  Now we just need to compute the magnitude and scale the vector 
accordingly.  

float m = (G * mass1 * mass2) / (distance * distance);
dir.mult(m);

The only problem is that we don’t know the distance.  G, mass1, and mass2 were all givens, but we’ll need to actually 
compute distance before the above code will work.   Didn’t we just make a vector that points all the way from one 
location to another?   Wouldn’t the length of that vector be the distance between two objects?   

Well, if we add just one line of code and grab the magnitude of that vector before normalizing it, then we’ll have the 
distance.

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page  17



PVector force = PVector.sub(location1,location2);

float distance = force.magnitude();

float m = (G * mass1 * mass2) / (distance * distance);

force.normalize();
force.mult(m);

Note that I also renamed the PVector “dir” as “force.”   After all, when we’re finished with the calculations, the 
PVector we started with ends up being the actual force vector we wanted all along.  

Now that we’ve worked out the math and the code for calculating an attractive force (emulating gravity), we need to 
turn our attention to applying this technique in the context of an actual Processing sketch.   In Example 2.x, you may 
recall how we created a simple Mover object—a class with PVectors location, velocity, and acceleration as well as an 
applyForce().  Let’s take this exact class and put it in a sketch with:

• A single Mover object.
• A single Attractor object (a new class that will have a fixed location).

The Mover object will experience a gravitational pull towards the Attractor object, as illustrated below.

We can start by making the new Attractor class very simple—a location and a mass, along with a function to display 
itself (tying mass to size).

class Attractor {
  float mass;    
  PVector location;

  Attractor() {
    location = new PVector(width/2,height/2);
    mass = 20;
  }

  // Method to display
  void display() {
    stroke(0);
    fill(175,200);
    ellipse(location.x,location.y,mass*2,mass*2);
  }
}

And in our main program, we can add an instance of the Attractor class.

Mover m;
Attractor a;

void setup() {
  size(200,200);
  m = new Mover(); 

!
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The vector that points from one object to another

The length (magnitude) of that vector is the 
distance between the two objects.

Use the formula for gravity to compute 
the strength of the force.

Normalize and scale the force vector to 
the appropriate magnitude.

Our Attractor is a simple object that doesn’t move.  
We just need a mass and a location.



  a = new Attractor();
}

void draw() {
  background(255);

  a.display();

  m.update();
  m.display();
}

This is a good structure: a main program with a Mover and Attractor object, and a class to handle the variables and 
behaviors of Movers and Attractors.   The last piece of the puzzle is how to get one object to attract the other.  How do 
we get these two objects to talk to each other?

There are a number of ways we could do this.  Here are just a few possibilities:

1. A function that receives both an Attractor and a Mover: attraction(a,m);!

2. A function in the Attractor class that receives a Mover: a.attract(m);!

3. A function in the Mover class that receives an Attractor: m.attractedTo(a);

4. A function in the Attractor class that receives a Mover and 
returns a PVector, which is the attraction force.  That attraction 
force is then passed into the Mover’s applyForce() function:

PVector f = a.attract(m);
m.applyForce(f);

and so on. . .

It’s good to look at a range of options for making objects talk to each other, and you could probably make arguments 
for each of the above possibilities.  I’d like to at least discard the first one, since an object-oriented approach is really a 
much better choice over an arbitrary function not tied to either the Mover or Attractor class.   Whether you pick (2) or 
(3) is the difference between saying “The attractor attracts the mover” or “The mover is attracted to the attractor.”  
Number 4 is really my favorite, at least in terms of where we are in this book.  After all, we spent a lot of time 
working out the applyForce() function and I think our examples will be clearer if we continue with the same 
methodology.

[OK, IT’S SO INCONVENIENT FOR ME RIGHT NOW WHILE WRITING TO HAVE THESE CODE BUBBLES -- 
BOXES + ARROWS.  SO I’M GOING TO CONTINUE WITH HAVING JUST COMMENTS WRITTEN AS:

LINE OF CODE     $$ CONTENT FOR CODE BUBBLE POINTING HERE

WE’LL SORT IT OUT IN DESIGN LATER]

In other words, where we once had:

PVector f = new PVector(0.1,0); $$ Made up force
m.applyForce(f);

We now have:

PVector f = a.attract(m);       $$ Attraction force between two objects
m.applyForce(f);

And so our draw() function can now be written as:

!
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Initialize Attractor object.

Display Attractor object.



void draw() {
  background(255);

  PVector f = a.attract(m);       $$ Calculate attraction force and apply it
  m.applyForce(f);

  m.update();

  a.display();
  m.display();

}

We’re almost there.  Since we decided to put the attract() function inside of the Attractor class, we’ll need to actually 
write that function.   The function needs to receive a Mover object and return a PVector, i.e.:

PVector attract(Mover m) {

}

And what goes inside that function?  All of that nice math we worked out for gravitational attraction!

PVector attract(Mover m) {
  
  PVector force = PVector.sub(location,m.location);            $$ What’s the force’s direction?
  float distance = force.mag();                              
  force.normalize();                                      
  float strength = (G * mass * m.mass) / (distance * distance); $$ What’s the force’s magnitude?     
  force.mult(strength);                               
  
  return force;! ! $$ Return the force so that it can be applied!
}

And we’re done.  Sort of.  Almost.  There’s one small kink we need to work out.  Let’s look at the above code again.  
See that symbol for divide, the slash?  Whenever we have one of these, we need to ask ourselves the question:  What 
would happen if  the distance happened to be a really, really small number or (even worse!) zero??!  Well, we know 
we can’t divide a number by zero, and if we were to divide a number by something like 0.0001, that is the equivalent 
of multiplying that number by 10,000!   Yes, this is the real-world formula for the strength of gravity, but we don’t live 
in the real world.  We live in the Processing world.   And in the Processing world, the Mover could end up being very, 
very close to the Attractor and the force could become so strong the Mover would just fly way off the screen.   And so 
with this formula, it’s good for us to be practical and constrain the range of what distance can actually be.   Maybe, no 
matter where the Mover actually is, we should never consider it less than 5 pixels or more than 25 pixels away from 
the Attractor.

  distance = constrain(distance,5,25);

For the same reason we need to constrain tminimum distance, it’s useful for us to do the same with the maximum.  
After all, if the Mover were to be, say, 500 pixels from the Attractor (not unreasonable), we’d be dividing the force by 
250,000.  That force might end up being so weak that it’s almost as if we’re not applying it at all.

Now, it’s really up to you to decide what behaviors you want.  But in the case of, “I want reasonable looking 
attraction that is never absurdly weak or strong,” then constraining the distance is a good technique.

Our Mover class hasn’t changed at all, so let’s just look at the main program and Attractor class as a whole, adding a 
variable “g” for the universal gravitational constant.  (On the web site, you’ll find that this example also has code that 
allows you to move the Attractor object with the mouse):

!
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Example: Attraction

Mover m;
Attractor a;

void setup() {
  size(200,200);
  m = new Mover(); 
  a = new Attractor();
}

void draw() {
  background(255);

  PVector force = a.attract(m);
  m.applyForce(force);
  m.update();
 
  a.display();
  m.display();
}

class Attractor {
  float mass;         // Mass, tied to size
  PVector location;   // Location
  float g;

  Attractor() {
    location = new PVector(width/2,height/2);
    mass = 20;
    g = 0.4;
  }

  PVector attract(Mover m) {
    PVector force = PVector.sub(location,m.location);             
    float distance = force.mag();                                 
    distance = constrain(distance,5.0,25.0);        !! $$ Remember, we need to constrain the                     
    force.normalize();                                         the distance so that our circle 
! ! ! ! ! ! ! !    doesn’t spin out of control   
    float strength = (g * mass * m.mass) / (distance * distance); 
    force.mult(strength);                                         
    return force;
  }

  // Method to display
  void display() {
    stroke(0);
    fill(175,200);
    ellipse(location.x,location.y,mass*2,mass*2);
  }
}

And we could, of course, expand this example using an array to include many Mover objects, just as we did with 
friction and drag:

!
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Mover[] movers = new Mover[10];

Attractor a;

void setup() {
  size(400,400);
  for (int i = 0; i < movers.length; i++) {
    movers[i] = new Mover(random(0.1,2),random(width),random(height)); 
  }
  a = new Attractor();
}

void draw() {
  background(255);

  a.display();

  for (int i = 0; i < movers.length; i++) {
    PVector force = a.attract(movers[i]);
    movers[i].applyForce(force);

    movers[i].update();
    movers[i].display();
  }

}

Exercise:  In the example above, we have a system (i.e. array) of Mover objects and one Attractor object.  Build an example that 
has both systems of Movers and Attractors.  What if you make the Attractors invisible?  Can you create a pattern / design from 
the trails of objects moving around attractors?  (See the Metropop Denim project by Clayton Cubitt and Tom Carden: http://
processing.org/exhibition/works/metropop/) for an example.)  [INCLUDE AN IMAGE, ASK PERMISSION?]

Everything Attracts (or Repels) Everything

Hopefully, you found it helpful that we started with a simple scenario:  one object attracts another object, moving on to 
one object attracts many objects.  However, it’s likely that you are going to find yourself in a slightly more complex 
situation: many objects attract each other.  In other words, every object in a given system attracts every other object in 
that system (except for itself.)

We’ve really done almost all of the work for this already.  Let’s consider a Processing sketch with an array of Mover 
objects:

Mover[] movers = new Mover[10];

void setup() {
  size(400,400);
  for (int i = 0; i < movers.length; i++) {
    movers[i] = new Mover(random(0.1,2),random(width),random(height)); 
  }
}

void draw() {
  background(255);
  for (int i = 0; i < movers.length; i++) {
    movers[i].update();
    movers[i].display();
  }
}

!
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The draw() function is where we need to work some magic.  Currently, we’re saying: for every Mover i, update and 
display yourself.  Now what we need to say is: for every Mover i, be attracted to every other Mover j, and update and display 
yourself.

To do this, we need to nest a second loop.

 for (int i = 0; i < movers.length; i++) {
    for (int j = 0; j < movers.length; j++) {
      PVector force = movers[j].attract(movers[i]);
      movers[i].applyForce(force);
    }
    movers[i].update();
    movers[i].display();
  }

In the previous example, we had an Attractor object with a function named attract().  Now, since we have Movers 
attracting Movers, all we need to do is move the attract() function into the Mover class.

class Mover {

  // all the other stuff we had before plus. . .

  PVector attract(Mover m) {
    PVector force = PVector.sub(location,m.location);             
    float distance = force.mag();                                 
    distance = constrain(distance,5.0,25.0);                            
    force.normalize();                                           

    float strength = (g * mass * m.mass) / (distance * distance); 
    force.mult(strength); 
    return force;
  }
}

Of course, there’s one small problem. When we are looking at every Mover i and every Mover j, are we OK with the 
times that i equals j?  For example, should Mover #3 attract Mover #3?   The answer, of course, is no.   If there are 5 
objects, we only want Mover #3 to attract 0, 1, 2, and 4, skipping itself.   And so, we finish this example by adding a 
simple conditional statement to skip applying the force when i equals j.

Example 2.x
Mover[] movers = new Mover[20];

float g = 0.4;

void setup() {
  size(400,400);
  for (int i = 0; i < movers.length; i++) {
    movers[i] = new Mover(random(0.1,2),random(width),random(height)); 
  }
}

void draw() {
  background(255);

  for (int i = 0; i < movers.length; i++) {
    for (int j = 0; j < movers.length; j++) {
      if (i != j) {
        PVector force = movers[j].attract(movers[i]);
        movers[i].applyForce(force);
      }
    }
    movers[i].update();

!
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    movers[i].display();
  }

}

Exercise 2.x: Change the attraction force in Example 2.x to a repulsion force.  Can you create an example where all of the Mover 
objects are attracted to the mouse, but repel each other?  Think about how you need to balance the relative strength of the forces 
and how to most effectively use distance in your force calculations.

Chapter 2 Project Assignment. . . .

!
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Chapter 3.  Oscillation
“Trigonometry is a sine of the times.”
! -- Anonymous

In this Chapter:

• Angles: Degrees vs. Radians
• Angular velocity and acceleration
• Basic Trigonometry
• Pointing in the direction of motion
• Cartesian and Polar Coordinates
• Oscillating Motion
• Drawing a Wave pattern
• Applying Trigonometry to forces

• Pendulum
• Friction at an angle
• Spring force

In Chapters One and Two, we carefully worked out an object-oriented structure to make 
something move on the screen, using the concept of a vector to represent location, velocity, and 
acceleration driven by forces in the environment.   We could move straight from here into topics 
such as particle systems, steering forces, group behaviors, etc.  If we did that, however, we’d 
skip an important area of mathematics that we’re going to need—trigonometry: the mathematics 
of triangles, specifically right triangles.  

Trigonometry is going to give us a lot of tools.   We’ll get to think about angles and angular 
velocity and acceleration.  It’s going to teach us about the sine and cosine functions, which when 
used properly can yield an nice ease-in, ease-out wave pattern.   It’s going to allow us to 
calculate more complex forces in an environment that involves angles, such as a pendulum 
swinging or a box sliding down an incline.

So this chapter is a bit of a mishmash. We’ll start with the basics of angles in Processing and 
cover many trigonometric topics, tying it all into forces at the end.  And by taking this break 
now, we’ll also pave the way for more advanced examples that require trig later in this book.

[Some of this is adapted Learning Processing.  When all is said and done, I’ll need to take a 
look at this again] 

3.1  Angles

OK. Before we can do any of this stuff, we need to make sure we understand what it means to be 
an angle in Processing.   If you have experience with Processing, you’ve undoubtedly 
encountered this question while using the rotate() function to rotate and spin objects.



The first order of business is radians and degrees.  You’re probably familiar with the concept of 
an angle in degrees.  A full rotation goes from zero to 360 degrees.   90 degrees (a right angle) is 
1/4th  of 360, shown below as two perpendicular lines.

It’s fairly intuitive for us to think of angles of in terms of degrees.  
For example, the rectangle in Figure x.x is rotated 45 degrees around 
its center.

Processing, however, requires angles to be specified in radians.   A 
radian is a unit of measurement for angles defined by the ratio of the 
length of the arc of a circle to the radius of that circle.   One radian is 
the angle at which that ratio equals one (see figure x.x).  180 degrees 
= PI radians, 360 degrees = 2*PI radians, 90 degrees = PI/2 radians, 
etc.



The formula to convert from degrees to radians is:

radians = 2 * PI * (degrees / 360)

Fortunately for us, if we prefer to think in degrees but code with radians, Processing makes this 
easy.  The radians() function will automatically convert values from degrees to radians.  In 
addition, the constants PI and TWO_PI provide convenient access to these commonly used 
numbers (equivalent to 180 and 360 degrees, respectively).   The following code, for example, 
will rotate shapes by 60 degrees. (If you are not familiar with rotation in Processing, I would 
suggest reading Chapter X of Learning Processing or this online tutorial: http://
www.processing.org/learning/transform2d/).

float angle = radians(60);
rotate(angle);

PI, what is it?
The mathematical constant PI (or !) is a real number defined as the ratio of a circle's circumference (the distance 
around the perimeter) to its diameter (a straight line that passes through the circle center).  It is equal to 
approximately 3.14159. 

Exercise: Rotate a baton-like object (see screenshot below) around its center using translate() 
and rotate().

http://www.processing.org/learning/transform2d/
http://www.processing.org/learning/transform2d/
http://www.processing.org/learning/transform2d/
http://www.processing.org/learning/transform2d/


3.2  Angular motion

Remember all this stuff?  

location = location + velocity;
velocity = velocity + acceleration;

The stuff we dedicated almost all of Chapters 1 and 2 to?  Well, we can apply exactly the same 
logic to a rotating object.

angle = angle + angular velocity
angular velocity = angular velocity + angular acceleration

In fact, the above is actually simpler than what we started with because an angle is a scalar 
quantity, a single number, not a vector!

Using the answer from Exercise X.X, let’s say we were going to rotate a baton in Processing by 
some angle.  We would have code like:

  translate(width/2,height/2);
  rotate(angle);
  line(-50,0,50,0);
  ellipse(50,0,8,8);
  ellipse(-50,0,8,8);

Adding in our principles of motion, we’d have something like:

Example 3.x: Angular Motion using rotate()
float angle = 0;! ! ! $$ location
float aVelocity = 0;! ! ! $$ velocity
float aAcceleration = 0.0001;!! $$ acceleration

void setup() {
  size(200,200);
}

void draw() {
  background(255);

  fill(175);
  stroke(0);
  rectMode(CENTER);
  translate(width/2,height/2);
  rotate(angle);
  line(-50,0,50,0);
  ellipse(50,0,8,8);
  ellipse(-50,0,8,8);
  
  aVelocity += aAcceleration;!! $$ Angular equivalent of velocity.add(acceleration);
  angle += aVelocity;! ! ! $$ Angular equivalent of location.add(velocity);
}

The square starts onscreen with no rotation and then spins faster and faster and faster as the angle 
of rotation accelerates.  



This idea can be incorporated into our Mover object.  For example, we can add the variables 
related to angular motion to our Mover.

Example 3.x: Angular motion added to Mover object
class Mover {

  PVector location;
  PVector velocity;
  PVector acceleration;
  float mass;

  float angle = 0;
  float aVelocity = 0;
  float aAcceleration = 0;

And then in update(), we update both location and angle according to the same algorithm!

 void update() {

    velocity.add(acceleration);! $$ Regular old-fashion motion of cartesian location
    location.add(velocity);

    aVelocity += aAcceleration;! $$ New-fangled angular motion
    angle += aVelocity;

    acceleration.mult(0);
  }

Of course, for any of this to matter, we also would need to rotate the object when displaying it.

  void display() {
    stroke(0);
    fill(175,200);
    rectMode(CENTER);
    pushMatrix();! ! ! ! $$ pushMatrix() and popMatrix() are necessary so
! ! ! ! ! !    that the rotation of this shape doesn’t affect
! ! ! ! !           the rest of the world 
! ! ! ! ! !    
    translate(location.x,location.y);!! $$ Set the origin at the shape’s location
    rotate(angle);! ! ! ! $$ Rotate by the angle
    rect(0,0,mass*16,mass*16);
    popMatrix();
  }

Now, if we were to actually go ahead and run the above code, we wouldn’t see anything new.  
This is because angular acceleration (float aAcceleration = 0;) is initialized to zero.  For the 
object to rotate, we need to give it an acceleration!  Certainly, we could hard-code in a different 
number.

float aAcceleration = 0.001;

However, a more interesting result can be produced by dynamically assigning an angular 
acceleration according to the environment.   We could head far down this road, trying to model 
realistically the physics of angular acceleration (and we’ll see an example of this when we look 
at the pendulum later this chapter.)  However, a quick and dirty solution that produces reasonable 



results is to simply calculate angular acceleration as a function of the object’s acceleration vector.  
Here’s one such example:

    aAcceleration = acceleration.x;

Yes, this is completely arbitrary.  But it does do something.  If the object is accelerating right, its 
angular rotation accelerates in a clockwise direction;acceleration to the left results in a 
counterclockwise rotation.  Of course, it’s important to think about scale in this case. The x 
component of the acceleration vector might be a quantity that’s too large, causing the object to 
spin in way that looks ridiculous or unrealistic.  So dividing the x component by some value, or 
perhaps constraining the angular velocity to a reasonable range, could really 
help.  Here’s the entire update() function with these tweaks added:

  void update() {

    velocity.add(acceleration);
    location.add(velocity);

    aAcceleration = acceleration.x / 10.0;!    $$ calculate angular 
acceleration according to
! ! ! ! ! !       acceleration’s horizontal direction and
! ! ! ! ! !       magnitude
    aVelocity += aAcceleration;
    aVelocity = constrain(aVelocity,-0.1,0.1);  $$ Use constrain() to ensure that angular
! ! ! ! ! !       velocity doesn’t spin out of control
    angle += aVelocity;

    acceleration.mult(0);
  }

Exercise:  Step 1.  Create a simulation where objects are shot out of a cannon.  Each object 
should experience a sudden force when shot (just once) as well as gravity (always present).  Step 
2.  Add rotation to the object to model its spin as its shot from the cannon.  How realistic can you 
make it look?

3.3 Trigonometry

I think it may be time.  We’ve looked at angles, we’ve spun an object.  It’s time for: sohcahtoa.  
Yes, sohcahtoa.  Strangely enough, this seemingly nonsensical word is the foundation for a lot of 
computer graphics work.    Anytime you need to calculate an angle, determine the distance 
between points, deal with circles, arcs, lines, etc., you will find that a basic understanding of 
trigonometry is essential.  And sohcahtoa is a (albeit somewhat absurd) mnemonic device for 
remembering the definitions of the trigonometric functions, sine, cosine, and tangent. 



! soh: sine  = opposite / hypotenuse
! cah: cosine  = adjacent / hypotenuse
! toa: tangent  = opposite / adjacent

Take a look at the above diagram again.  There’s no need to memorize it, but make sure you feel 
comfortable with  it.  Draw it again yourself.    Now let’s draw it a slightly different way:

See how we create a right triangle out of a vector?  The vector arrow itself is the hypotenuse and 
the components of the vector (‘x’ and ‘y’) are the sides of the triangle.  The angle is an additional 
means for specifying the vector’s direction (or “heading”).

Because the trigonometric functions allow us to establish a relationship between the components 
of a vector and its direction+magnitude, they will prove very useful throughout this book.  Let’s 
begin by looking at an example that requires the tangent function.

3.4 Pointing in the direction of movement.

Let’s go all the way back to example 1.x, which features a “Mover” object 
accelerating towards the mouse.  You might notice that almost all of the shapes 
we’ve been drawing so far are circles.   This is convenient for a number of 
reasons, one of which is that we don’t have to consider the question of rotation.  
Rotate a circle and, well, it looks exactly the same.  However, there comes a 
time in all motion programmers’ lives when you want to draw something on the 
screen that points in the direction of movement. Perhaps you are drawing an 
ant, or a car, or a spaceship. And when we say point in the direction of 
movement, what we are really saying is “rotate according to the velocity vector.”  Velocity is a 



vector, with an x and y component, but to rotate in Processing we need an angle, in radians.   
Let’s draw our trigonometry diagram one more time, with an object’s velocity vector:

OK. We know that the definition of tangent is:

tangent(angle) = velocityy  / velocityx 

[NEED TO CLEAN-UP / MAKE CONSISTENT USE OF TERM THETA VS. ANGLE, OK 
TO USE BOTH JUST ESTABLISH WHAT I’M DOING?]

The problem with the above is that we know velocity, but we don’t know theta.  We have to 
solve for theta.   This is where a special function known as “inverse tangent” comes in, 
sometimes referred to as “arctangent.”  (There is also an “inverse sine” and an “inverse cosine”.)  

If the tangent of some value ‘a’ equals some value ‘b’, then the inverse tangent of ‘b’ equals ‘a’, 
i.e.

if: ! tangent(a) = b
then:  ! a = arctangent(b)

See how that is the inverse?   The above now allows us to solve for theta:

if: ! tangent(angle) = velocityy  / velocityx
then:  ! angle = arctangent(velocityy  / velocityx)

Now that we have the formula, let’s see where it should go in our Mover’s display() function.   
Notice how in Processing, the function for arctangent is called atan().

  void display() {! ! !
    float angle = atan(velocity.y/velocity.x);    $$ Solve for angle by using atan()
    
    stroke(0);
    fill(175);
    pushMatrix();
    rectMode(CENTER);
    translate(location.x,location.y);
    rotate(angle);! ! ! !      $$ Rotate according to that angle
    rect(0,0,30,10);
    popMatrix();
  }



Now the above code is pretty darn close, and almost works.   There’s a pretty big problem, 
though.  Let’s consider the following two velocity vectors:

V1 = (-4,3)  V2 = (4,-3)  

Though superficially similar, the above two vectors point in quite different directions, opposite in 
fact!  However, if we were to apply our formula to solve for theta to each vector...

V1 ==> angle = atan(-3/4) = atan(-0.75) =  -0.64350110
V2 ==> angle = atan(3/-4) = atan(-0.75) =  -0.64350110

We get the same angle for each vector!   It turns out that we have the correct answer for V1 and 
for V2, because the y component is negative (and not the x); we just need to add PI to the answer 
to get the correct angle.  The thing is, this is a pretty common problem in computer graphics. 
Rather than simply using atan() along with a bunch of conditional statements to account for 
positive / negative scenarios, Processing (and pretty much all programming environments) has a 
nice function called atan2() which does it for you.

  void display() {
    float angle = atan2(velocity.y,velocity.x);  $$ Using atan2() to account
! ! ! ! ! !        all possible directions
    
    stroke(0);
    fill(175);
    pushMatrix();
    rectMode(CENTER);
    translate(location.x,location.y);
    rotate(angle);
    rect(0,0,30,10);
    popMatrix();
  }

To simplify this even further, the PVector class itself provides a function heading2D(), which 
takes care of calling atan2() for you so you can get the direction angle, in radians, for any 
Processing PVector.

    float theta = velocity.heading2D();  $$ The easiest way to do this!



Exercise:  Create a simulation of a vehicle that you can drive around the screen using the arrow 
keys: left arrow accelerates the car to the left, right to the right.  The car should point in the 
direction it is currently moving.

3.5 Polar vs Cartesian coordinates

Any time we display a shape in Processing we have to specify a pixel location, a set of x and y 
coordinates.  These coordinates are known as Cartesian coordinates, named for the French 
mathematician René Descartes who developed the ideas behind Cartesian space.

Another useful coordinate system known as polar coordinates describes a point in space as an 
angle of rotation around the origin and a radius from the origin.   Thinking about this in terms of 
a vector:

Cartesian coordinate: !the x,y components of a vector
Polar coordinate: ! the magnitude (length) and direction (angle) of a vector

We can’t use polar coordinates as arguments for a drawing function in Processing, however.  
Whenever we want to display something in Processing we have to specify locations as x,y 
Cartesian coordinates.   However, sometimes it is a great deal more convenient for us to think in 
polar coordinates when designing.   Happily for us, with trigonometry we can convert back and 
forth between polar and Cartesian, which allows us to design with whatever coordinate system 
we have in mind but always draw with Cartesian coordinates.

sine(theta) = y / r      !"   y = r * sine(theta)
cosine(theta) = x / r   !"   x = r * cosine(theta)

For example, if r is 75 and theta is 45 degrees (or PI/4 radians), we can calculate x and y as 
follows.  The functions for sine and cosine in Processing are sin() and cos() respectively.  They 
each take one argument, a floating point angle measured in radians.



float r = 75;
float theta = PI / 4;   // We could also say: float theta = radians(45);
float x = r * cos(theta);
float y = r * sin(theta);

This type of conversion can be useful in certain applications.  For example, to move a shape 
along a circular path using Cartesian coordinates is not so easy.  With polar coordinates, on the 
other hand, it’s simple: increment the angle!

Here’s how it is done with global variables “r” and “theta.”

Example 3.x: Polar to Cartesian
// A Polar coordinate
float r = 75;
float theta = 0;

void setup() {
  size(200,200);
  background(255); 
  smooth();
}

void draw() {
  
  // Polar to Cartesian conversion
  float x = r * cos(theta);
  float y = r * sin(theta);

  // Draw an ellipse at x,y
  noStroke();
  fill(0);
  ellipse(x+width/2, y+height/2, 16, 16); // Adjust for center of window

  // Increment the angle
  theta += 0.01;
}

Exercise: Using the above example, draw a spiral path.  Start in the center and move outwards.  
Note that this can be done by only changing one line of code and adding one line of code!   [This 
is recycled from Learning Processing -- update/expand?]

Exercise: Simulate the spaceship in the game Asteroids.   In case you aren’t familiar with 
Asteroids, here is a brief description.   A spaceship (represented as a triangle) floats in two 
dimensional space.   The left arrow keys turns the spaceship counter-clockwise, the right clock-
wise.  The space bar applies a “thrust” force in the direction the spaceship is pointing.   See the 
screenshot below.

Polar coordinates (r,theta) are 
converted to Cartesian (x,y) for use in 
the ellipse() function.



3.6 Oscillation: Amplitude and Period

Are you amazed yet?  We’ve seen pretty great uses of tangent (for finding the angle of a vector) 
and sine and cosine (for converting from polar to Cartesian coordinates).   We could stop right 
here and be satisfied.  But we’re not going to.  This is only the beginning.  What sine and cosine 
can do for you goes beyond mathematical formulas and right triangles.

Let’s take a look at a graph of the sine function, where y = sin(x).

[REDRAW THIS]

You’ll notice that the output of the sine function is a smooth curve alternating between –1 and 1.  
This type of a behavior is known as oscillation, a periodic movement between two points.  Pluck 
a guitar string, swing a pendulum, bounce on a pogo stick—these are all examples of oscillating 
motion.

And so we happily discover that we can simulate oscillation in a Processing sketch by assigning 
the output of the sine function to an object’s location.  [REFERENCE PERLIN NOISE FROM 
YET TO BE WRITTEN PROLOGUE]

Let’s begin with a really basic scenario.  We want a circle to oscillate from the left side to the 
right side of a Processing window.   



   [a better illustration of oscillation]

This is what is known as simple harmonic motion (or to be fancier: “the periodic sinusoidal 
oscillation of an object”).   This is going to be a simple program to write, but before we get into 
the code, let’s familiarize ourselves with some of the terminology of oscillation (and waves).

Simple harmonic motion can be expressed as any location (in our case, the ‘x’ location) as a 
function of time, with the following two elements:

•Amplitude: the distance from the center of motion to either extreme.
•Period: the amount of time it takes for one complete cycle of motion

Looking at the graph of sine, we can see that the amplitude is 1 and the period is TWO PI; the 
output of sine never rises above 1 or below -1; and every TWO PI radians (or 360 degrees) the 
wave pattern repeats.

Now, in the world we live in, the Processing world, what is amplitude and what is period?  
Amplitude can be measured rather easily in pixels.   In the case of a window 200 pixels wide, we 
would oscillate from the center 100 pixels to the right and 100 pixels to the left. Therefore:

float amplitude = 100;  // Measured in pixels

Period is the amount of time it takes for one cycle.  What is time in our Processing world?  I 
mean, certainly we could say we want the circle to oscillate every 3 seconds.  And we could track 
the milliseconds—using millis()—in Processing and come up with an elaborate algorithm for 
oscillating an object according to real-world time.   But for us, real-world time doesn’t really 
matter. The real measure of time in Processing is in frames.  The oscillating motion should repeat 
every 30 frames, or 50 frames, or 1000 frames, etc.  

float period = 120;     // Measured in frames

Once we have the amplitude and period, it’s time to write a formula to calculate x as a function 
of time, which we now know is the current frame count.

  float x = amplitude * cos(TWO_PI * frameCount / period);

[CIRCLE AND ANNOTATE THE FORMULA??]

Let’s dissect the formula a bit more and try to understand each component.   The first is probably 
the easiest.   Whatever comes out of the cosine function we multiply by amplitude.   We know 



that cosine will oscillate between -1 and 1. If we take that value and multiply it by amplitude 
then we’ll get the desired result: a value oscillating between -amplitude and amplitude.   (Note 
this is also a place where we could use Processing’s map() function to map the output of cosine 
to a custom range).

Now, let’s look at what is inside the cosine function:

TWO_PI * frameCount / period

What’s going on here?   Let’s start with what we know.  We know that cosine will repeat every 
2PI radians—i.e., it will start at 0, repeat at 2PI, 4PI, 6PI, etc.   If the period is 120, then we want 
the oscillating motion to repeat when the frameCount is at 120 frames, 240 frames, 360 frames, 
etc.   frameCount is really the only variable; it starts at 0 and counts upward.   Let’s take a look at 
what the formula yields at those values:

frameCount frameCount / period TWO_PI * frameCount / period

0 0 0

60 0.5 PI

120 1 TWO_PI

240 2 2 * TWO_PI (or 4* PI)

etc.

Framecount divided by period tells us how many cycles we’ve completed—are we halfway 
through the first cycle?  Have we completed 2 cycles?  By multiplying that number by TWO_PI, 
we get the result we want, since TWO_PI is the number of radians required for one cosine (or 
sine) to complete one cycle.

Wrapping this all up, here’s a Processing example that oscillates the x location of a circle with an 
amplitude of 100 pixels and a period of 120 frames.

Example 3.x Simple Harmonic Motion
void setup() {
  size(200,200);
}

void draw() {
  background(255);

  float period = 120;
  float amplitude = 100;
  float x = amplitude * cos(TWO_PI * frameCount / period);   $$ Calculating horizontal location
                         ! ! ! ! ! ! ! according to formula for simple
! ! ! ! ! ! ! ! ! ! ! harmonic motion
  stroke(0);



  fill(175);
  translate(width/2,height/2);
  line(0,0,x,0);
  ellipse(x,0,20,20);
}

It’s also worth mentioning the term frequency: the number of cycles per time unit.  Frequency is 
equal to 1 divided by period.  If the period is 120 frames, then only 1/120th of a cycle is 
completed in one frame and so frequency = 1/120.   In the above example, we simply chose to 
define the rate of oscillation in terms of “period” and therefore did not need a variable for 
frequency.

Exercise: Create a simulation of a weight (sometimes referred to as a “bob”) hanging from the 
top of the window by a spring using the sine function.  Use the map() function to calculate the 
vertical location of the bob.  Later this chapter, we’ll see how to recreate this same simulation by 
modeling the forces of a spring according to Hooke’s law.

3.6 Oscillation: Angular Velocity

Understanding the concepts of oscillation, amplitude, frequency/period is important and often 
required in the course of simulating “real-world” behaviors.  However, there is a slightly easier 
way to rewrite the above example with the same result.  Let’s take one more look at our 
oscillation formula:

float x = amplitude * cos(TWO_PI * frameCount / period); 

And let’s rewrite it a slightly different way:

float x = amplitude * cos ( some value that increments slowly )

If we care about precisely defining the period of oscillation in terms of frames of animation, we 
might need the formula the way we first wrote it, but we can just as easily rewrite our example 
using the concept of angular velocity (and acceleration) from Section 3.x.  Assuming:

float angle = 0;
float aVelocity = 0.05;

In draw(), we can simply say:

angle += aVelocity;
float x = amplitude * cos(angle);

angle is our “some value that increments slowly.”

Example 3.x Simple Harmonic Motion II
float angle = 0;
float aVelocity = 0.05;

void setup() {



  size(200,200);
}

void draw() {
  background(255);
  
  float amplitude = 100;
  float x = amplitude * cos(angle);
  angle += aVelocity;! ! ! ! $$ Using the concept of angular velocity to increment
! ! ! ! ! ! !    an angle variable
  
  ellipseMode(CENTER);
  stroke(0);
  fill(175);
  translate(width/2,height/2);
  line(0,0,x,0);
  ellipse(x,0,20,20);
}

Just because we’re not referencing it directly doesn’t mean that we’ve eliminated the concept of 
period.  After all, the greater the angular velocity, the faster the circle will oscillate (therefore 
lowering the period).   In fact, the number of times it takes to add up the angular velocity to get 
to TWO_PI is the period or: period = TWO_PI / angular velocity.

Let’s expand this example a bit more and create an “Oscillator” class.  And let’s assume we want 
the oscillation to happen along both the x-axis (as above) and the y-axis.  To do this, we’ll need 
two angles, two angular velocities, and two amplitudes (one for each axis).   Another perfect 
opportunity for PVector!

Example 3.x: Oscillator objects   
class Oscillator  {   

  PVector angle;
  PVector velocity;
  PVector amplitude;

  Oscillator()  {   
    angle = new PVector();
    velocity = new PVector(random(-0.05,0.05),random(-0.05,0.05));
    amplitude = new PVector(random(width/2),random(height/2));    
  }   

  void oscillate()  {
    angle.add(velocity);
  }   

  void display()  {   
    
    float x = sin(angle.x)*amplitude.x;
    float y = sin(angle.y)*amplitude.y;
    
    pushMatrix();
    translate(width/2,height/2);
    stroke(0);
    fill(175);
    // draw circle and line
    line(0,0,x,y);  
    ellipse(x,y,16,16);  



    popMatrix();
  }
}   

[NOT INCLUDING THE MAIN PROGRAM, TOO MUCH UNNECESSARY CODE.  This is 
maybe something I need to discuss in intro and have an icon or something which reminds 
users to see the complete example online]

Exercise: Try initializing each Oscillator object with velocities and amplitudes that are not 
random to create some sort of regular pattern.

Exercise: Incorporate angular acceleration into the Oscillator object.

Exercise: Rewrite the above Oscillator class so that each object doesn’t simply oscillate around 
the middle of the Processing window (width/2,height/2), but around a moving point.  In other 
words, design a creature that moves around the screen according to location, velocity, and 
acceleration.  But that creature isn’t just a static shape, it’s an oscillating body.  Consider tying 
the speed of oscillation to the speed of motion.  Think of a butterfly’s flapping wings or the legs 
of an insect.  Can you make it appear that the creature’s internal mechanics (oscillation) drive its 
locomotion?   [In theory, I’d love to include an example of this in the book itself, but for now 
it’s an exercise and example solutions will be online. Also, this is probably better moved to end 
of Chapter as a “project”]

3.7 Waves

If you’re asking yourself, “Um, this is all great and everything, but what I really want is to just 
draw a wave onscreen,” well then, the time has come.   The thing is, we’re about 90% there.  
When we oscillate a single circle up and down according to the sine function, what we are doing 
is looking at a single point along the x-axis of a wave pattern.  With a little panache and a for 
loop, we can place a whole bunch of these oscillating circles next to each other.

This wavy pattern could be used in the design of the body or appendages of a creature, as well as 
to simulate a soft surface (such as water).  

Here, we’re going to encounter the same questions of amplitude (height of pattern) and period.  
Instead of period referring to time, however, since we’re looking at the full wave, we can talk 
about period as the width (in pixels) of a full wave cycle.    And just as with simple oscillation, 



we have the option of computing the wave pattern according to a precise period or simply 
following the model of angular velocity. 

Let’s go with the simpler case, angular velocity.   We know we need to start with an angle, an 
angular velocity, and an amplitude:

float theta = 0;
float thetaVel = 0.2;
float amplitude = 100;

Then we’re going to loop through all of the x values where we want to draw a point of the wave.  
Let’s say every 10 pixels for now.  In that loop, we’re going to want to do three things:

1) Calculate the y location according to amplitude and sine of the angle.
2) Draw a circle at the (x,y) location
3) Increment the angle according to angular velocity.

  for (int x = 0; x <= width; x += 10) {
    float y = amplitude*sin(theta);! ! // 1  (make these point to each other)
    ellipse(x,y+height/2,16,16);! ! // 2
    theta += thetaVel;!! ! ! // 3
  } 

Let’s look at the results with different values for thetaVel:

      
thetaVel = 0.05! ! thetaVel = 0.2!! ! thetaVel = 0.4

Notice how, although we’re not precisely computing the period of the wave, the higher the 
angular velocity, the shorter the period.  It’s also worth noting that as the period becomes shorter, 
it becomes more and more difficult to make out the wave itself as the distance between the 
individual points increases.  One option we have is to use beginShape() and endShape() to 
connect the points with a line.

float theta = 0;
float thetaVel = 0.2;
float amplitude = 100;

size(400,200);
background(255);
smooth();

stroke(0);
strokeWeight(2);
noFill();



beginShape();
for (int x = 0; x <= width; x += 5) {
  float y = map(sin(theta),-1,1,0,height);     $$ Here’s an example of using the map() function
! ! ! ! ! !      instead.
  vertex(x,y);!! ! ! !   $$ With beginShape() and endShape() you call
! ! ! ! ! !      vertex() to set all the vertices of your shape.
  theta +=thetaVel;
} 
endShape();

You may have noticed that the above example is static.  The wave never changes, never 
undulates.   This additional step is a bit tricky.  Your first instinct might be to say: “Hey, no 
problem, we’ll just let theta be a global variable and let it increment from one cycle through 
draw() to another.”

While it’s a nice thought, it doesn’t work.   If you look at the wave, the righthand edge doesn’t 
match the lefthand; where it ends in one cycle of draw() can’t be where it starts in the next.  
Instead, what we need to do is have a variable dedicated entirely to tracking what value of theta 
the wave should start with.   This theta (which we’ll call “startTheta”) increments with its own 
angular velocity.

float startTheta = 0;
float thetaVel = 0.1;
float amplitude = 100;

void setup() {
  size(400,200);
}

void draw() {
  background(255);

  startTheta += 0.02;
  float theta = startTheta;! ! ! ! $$ In order to move the wave, we start at a
! ! ! ! ! ! !    different theta value each frame

  for (int x = 0; x <= width; x += 5) {
    float y = map(sin(theta),-1,1,0,height);
    stroke(0);
    fill(0,50);
    ellipse(x,y,10,10);
    theta += thetaVel;
  } 
}

Exercise 3.x: Try using the Perlin noise function instead of sine or cosine.

Exercise 3.x: Encapsulate the above examples into a Wave class and create a sketch that displays 
two saves (with different amplitudes / periods) as in the screenshot below.  (Move beyond plain 
circles and lines and try visualizing the wave in a more creative way.)



Exercise 3.x: More complex waves can be produced by the values of multiple waves together.  
Create a sketch that implements this, as in the screenshot below.

 

3.8 Trigonometry and Forces: The Pendulum

Do you miss Newton’s laws of motion?  I know I sure do.  Well, lucky for you, it’s time to bring 
it all back home.  After all, it’s been nice learning about triangles and tangents and waves, but the 
core of this book is really simulating the physics of moving bodies.  Let’s take a look at how 
trigonometry can help us with this pursuit.   

A pendulum is a bob suspended from a pivot.  Obviously a real-world pendulum would live in a 
3D space, but we’re going to look at a simpler scenario, a pendulum in a 2D space—a Processing 
window.

In Chapter 2, we learned how a force (such as the force of gravity in the diagram above) causes 
an object to accelerate.    F = M * A or A = F / M.  In this case, however, the pendulum bob 
doesn’t simply fall to the ground because it is attached by an arm to the pivot point.  And so, in 



order to determine its acceleration, we not only need to look at the force of gravity, but also at 
the angle of the pendulum’s arm (relative to a pendulum at rest with an angle of zero).

And this is why we’re here in this chapter.   In the above case, since the pendulum’s arm is of 
fixed length, the only variable in the scenario is the angle.  We are going to simulate the 
pendulum’s motion through the use of angular velocity and acceleration.   The angular 
acceleration will be calculated using Newton’s second law with a little trigonometry twist.

Let’s zoom in on the right triangle from the pendulum diagram.

We know the force of the pendulum (Fp) should point perpendicular to the arm of the pendulum 
in the direction that the pendulum is swinging.  The force of gravity (Fg) points downward.  By 
making a right triangle out of these two vectors, we’ve accomplished something quite 
magnificent.  We’ve made the force of gravity the hypotenuse of a right triangle and separated 
the vector into two components, one of which represents the force of the pendulum.  
[MENTION TENSION HERE?]  Since sine equals opposite over hypotenuse, we have:

sine(!) = Fp / Fg    

therefore:

Fp  = Fg * sine(!)



From Chapter Two we know that the force of gravity is equal to (G * m1 * m2 / distance 
squared), where G is the universal gravitational constant, m1 is the mass of the pendulum’s bob, 
m2 is the mass of the earth and distance is how far the pendulum is from the center of the earth.  
This is a good time to remind ourselves that we’re Processing programmers and not physicists.  
Clearly, we’re not going to be using the actual mass of the earth in our code.  For our purposes, 
let’s consider G, m2, and the distance to all be a single constant (let’s call it ‘G’), and we’ll scale 
the value according to something that makes sense for pixels.  So now we have:

Fp  = Fg * sine(!)  and  Fg  = G * m

where m is the pendulum bob’s mass.  Therefore:

Fp  = G * m * sine(!)

Lest we forget, we’ve been doing all of this with a single question in mind:  What is the angular 
acceleration of the pendulum?    Now we can apply our rules of motion to find the new angle for 
the pendulum.

angular velocity = angular velocity + angular acceleration
angle = angle + angular velocity

Newton’s second law is:  F = M * A.   Applying it here we have:

Fp  = m * angular acceleration

or

angular acceleration = Fp / m

or

angular acceleration = G * m * sine(!) / m

or

angular acceleration = G * sine(!)

Amazing.  After all that, the formula is so simple.  You might be wondering, why bother going 
through the derivation at all?  I mean, learning is great and all, but we could have easily just said: 
Hey, the angular acceleration of a pendulum is some constant times the sine of the angle.   This is 
just another moment to remind ourselves that the purpose of the book is not to learn how 
pendulums swing or gravity works.  The point is to think creatively about how things can move 

[NOTE: maybe the 
way we continually 
substitute one 
formula into another 
isnʼt going to obvious 
to all readers. Cover 
this somewhere or 
diagram/notate this 
better]



about the screen in an interactive computer graphics system.  The pendulum is just a case study.   
If you can understand the approach to programming a pendulum, then however you choose to 
design your onscreen world, you can apply the same techniques.

Of course, we’re not finished yet.  We may be happy with our simple, elegant formula, but we 
still have to apply it in code.   This is most definitely a good time to practice our object-oriented 
programming skills and create a Pendulum class.  Let’s think about all the properties we’ve 
encountered in our pendulum discussion that the class will need:

• arm length
• angle
• angular velocity
• angular acceleration

class Pendulum  {

  float r;             // Length of arm
  float angle;         // Pendulum arm angle
  float aVelocity;     // Angular velocity
  float aAcceleration; // Angular acceleration

We’ll also need to write a function update() to update the pendulum’s angle according to our 
formula. . .

  // Function to update location
  void update() {
    float G = 0.4;                         // Arbitrary universal gravitational constant
    aAcceleration = -1 * G * sin(angle);   // Calculate acceleration
    aVelocity += aAcceleration;            // Increment velocity
    angle += aVelocity;                    // Increment angle
  }
  
. . .as well as a function display() to draw the pendulum in the window, which begs the question: 
“Um, where do we draw the pendulum?”  We know the angle and the arm length, but how do we 
know the x,y (Cartesian!) coordinates for both the pendulum’s pivot point (let’s call it “origin”) 
and bob location (let’s call it location)?  This may be getting a little tiring, but the answer, yet 
again, is trigonometry.



The origin is just something we make up, as is the arm length.  Let’s say:

PVector origin = new PVector(100,10);
float r = 125;

We’ve got the current angle stored in our variable “angle”.   So relative to the origin, the 
pendulum’s location is a polar coordinate: (r,angle).  And we need it to be Cartesian.  Luckily for 
us, we just spent some time (Section 3.x) deriving the formula for converting from polar to 
Cartesian.  And so:

PVector location = new PVector(r*sin(angle),r*cos(angle));    

Since the location is relative to wherever the origin happens to be, we can just add origin to the 
location PVector:

location.add(origin);

And all that remains is the little matter of drawing a line and ellipse (you should be more 
creative, of course).

stroke(0);
fill(175);
line(origin.x,origin.y,location.x,location.y);
ellipse(location.x,location.y,16,16);

Before we put everything together, there’s one last little detail I neglected to mention.  Let’s 
think about the pendulum arm for a moment.  Is it a metal rod?  A string?  A rubber band?  How 
is it attached to the pivot point?  What is its mass?  Is it a windy day?  There are a lot of 
questions that we could continue to ask that would affect the simulation.  We’re living, of course, 
in a fantasy world, one where the pendulum’s arm is some idealized rod that never bends and has  
no mass.   Nevertheless, even though we don’t want to worry ourselves with all of the questions, 
it would be useful to consider one additional force: tension.  Tension can be described as a 
pulling force (from a string, chain, rod, etc.) on an object.   [WHOOPS THIS IS WRONG 
WHAT I’M REALLY TALKING ABOUT IS: http://calculuslab.deltacollege.edu/ODE/7-A-2/7-
A-2-h.html NEED TO FIX THIS EXPLANATION WHICH RESULTS IN]:

http://calculuslab.deltacollege.edu/ODE/7-A-2/7-A-2-h.html
http://calculuslab.deltacollege.edu/ODE/7-A-2/7-A-2-h.html
http://calculuslab.deltacollege.edu/ODE/7-A-2/7-A-2-h.html
http://calculuslab.deltacollege.edu/ODE/7-A-2/7-A-2-h.html


aAcceleration = (-1 * G * sin(angle)) / r;   

Finally, a real world pendulum is going to experience some amount of friction (at the pivot point) 
and air resistance.   With our code as is, the pendulum would swing forever, so to make it more 
realistic we can use a “damping” trick.  I say “trick” because rather than model the resistance 
forces with some degree of accuracy (as we looked at in Chapter 2), we can achieve a similar 
result by simply reducing the angular velocity during each cycle.  The following code reduces 
the velocity by 1% (or multiplies it by 99%) during each frame of animation:

aVelocity *= 0.99;
    
Putting everything together, we have the following example (with the pendulum beginning at a 
45 degree angle).

[NEED TO PULL OUT SOME COMMENTS TO BE NICER CODE BUBBLES]
Example 3.x: Swinging Pendulum
Pendulum p;

void setup() {
  size(200,200);
  smooth();
  // Make a new Pendulum with an origin location and armlength
  p = new Pendulum(new PVector(width/2,10),125);
}

void draw() {
  background(255);
  p.go();
}

class Pendulum  {

  PVector location;    // Location of pendulum ball
  PVector origin;      // Location of arm origin
  float r;             // Length of arm
  float angle;         // Pendulum arm angle
  float aVelocity;     // Angle velocity
  float aAcceleration; // Angle acceleration
  float damping;       // Arbitrary damping amount

  Pendulum(PVector origin_, float r_) {
    // Fill all variables
    origin = origin_.get();
    location = new PVector();
    r = r_;
    angle = PI/4;

    aVelocity = 0.0;
    aAcceleration = 0.0;
    damping = 0.995;   // Arbitrary damping
  }

  void go() {
    update();
    display();
  }



  // Function to update location
  void update() {
    float G = 0.4;                              // Arbitrary universal gravitational constant
    aAcceleration = (-1 * G / r) * sin(angle);  // Calculate acceleration
    aVelocity += aAcceleration;                 // Increment velocity
    aVelocity *= damping;                       // Arbitrary damping
    angle += aVelocity;                         // Increment angle
  }

  void display() {
    location.set(r*sin(angle),r*cos(angle),0);  // Polar to Cartesian conversion
    location.add(origin);                       // Location is relative to the pendulum's origin

    stroke(0);
    // Draw the arm
    line(origin.x,origin.y,location.x,location.y);
    ellipseMode(CENTER);
    fill(175);
    // Draw the ball
    ellipse(location.x,location.y,16,16);
  }
}

(Note that the version of the example posted on the web site has additional code to allow the user 
to grab the pendulum and swing it with the mouse.)

Exercise: String together a series of pendulums so that the endpoint of one is the origin point of 
another.

Exercise: Examine the following diagram [NOTE REDO DIAGRAM, NOT ACTUAL 
DIAGRAM].  

Using trigonometry, what is the magnitude of the“normal” force (the force perpendicular to the 
incline on which the box rests)?   Note that, as indicated, the “normal” force is a component of 
the force of gravity.  

Exercise part 2:  Create an example that simulates the box sliding down the incline with friction.  
Note that the magnitude of the friction force is equal to the normal force. 

3.10 Spring Forces



In Section 3.x, we looked at modeling simple harmonic motion by mapping the sine wave to a 
pixel range. Exercise 3.x asked you to use this technique to create a simulation of a spring 
hanging from a bob.  While using the sin() function is a quick-and-dirty, one-line-of-code way of 
getting something up and running, it won’t do if what we really want is to have a bob hanging 
from a spring in a two-dimensional space that responds to other forces in the environment (wind, 
gravity, etc.)  To accomplish a simulation like this (one that is identical to the pendulum example, 
only now the arm is a springy connection), we need to model the forces of a spring using 
PVector.

The force of a spring is calculated according to Hooke’s law, named for Robert Hooke, a British 
physicist who developed the formula in 1660.  Hooke originally stated the law in Latin:  “Ut 
tensio, sic vis” or “As the extension, so the force” [from wikipedia].    Let’s think of it this way:

The force of the spring is directly proportional to the extension of the spring.

In other words, if you pull on the bob a lot, the force will be small; if you pull on the bob a little, 
the force will be weak.  Mathematically, the law is stated as follows:

Fspring = - k * x

• k is constant and its value will ultimately scale the force.  Is the spring highly elastic or 
quite rigid?

• x refers to the displacement of the spring, i.e. the difference between the current length and 
the rest length.  The rest length is defined as the length of the spring in a state of 
equilibrium.



  

Now, remember, force is a vector so we need to calculate both magnitude and direction.  Let’s 
look at one more diagram of the spring and label all the givens we might have in a Processing 
sketch.

Let’s establish the following three variables as related to the diagram above.

PVector anchor;
PVector location;
float restLength;

First, let’s use Hooke’s law to calculate the magnitude of the force.  We need to know k and x.  k 
is easy; it’s just a constant, so let’s make something up.

float k = 0.1;

x is perhaps a bit more difficult.  We need to know the “difference between the current length and 
the rest length.”  The rest length is defined as the variable “restLength.”  What’s the current 
length?  The distance between the anchor and the bob.  And how can we calculate that distance?    
How about the magnitude of a vector that points from the anchor to the bob?  (Note this is 
exactly the same process we employed when calculating distance in Example 2.x: gravitational 
attraction.)

PVector dir = PVector.sub(bob,anchor);
float currentLength = dir.mag();
float x = restLength - currentLength;

Now that we’ve sorted out the elements necessary for the magnitude of the force (-1 * k * x), we 
need to figure out the direction, a unit vector pointing in the direction of the force.  The good 
news is that we already have this vector.  Right?  Just a moment ago we said: “How we can 



calculate that distance?  How about the magnitude of a vector that points from the anchor to the 
bob?”  Well, that is the direction of the force, it’s a vector that points from the anchor to the bob!  

In the above diagram, we can see that if we stretch the spring beyond its rest length, there should 
be a force pulling it back towards the anchor.  And if it shrinks below its rest length, the force 
should push it away from the anchor.   This reversal of direction is accounted for in the formula 
with the -1.  And so all we need is to normalize the PVector we used for the distance calculation!  
Let’s take a look at the code, and rename that PVector variable to “force.”

float k = 0.1;!! ! !      $$ Magnitude of spring force according to Hooke’s law
PVector force = PVector.sub(bob,anchor);
float currentLength = dir.mag();
float x = restLength - currentLength;

force.normalize();! ! !      $$ Direction of spring force (unit vector)

force.mult(-1 * k * x);! !      $$ Putting it together, direction and magnitude!

Now that we have the algorithm worked out for computing the spring force vector, the question 
remains: what object-oriented programming structure should we use?   This, again, is one of 
those situations where there is no “correct” answer.  There are several possibilities and which one 
we choose depends on the program’s goals and one’s own personal coding style.   Still, since 
we’ve been working all along with a Mover class, let’s keep going with this same framework.    
Let’s think of our Mover class as the spring’s “bob.”  The bob needs location, velocity, and 
acceleration vectors to move about the screen.  Perfect—we’ve got that already!  And perhaps 
the bob experiences a gravity force via the applyForce() function.    Just one more step: we need 
to apply the spring force:

Bob bob;

void setup() {
  bob = new Bob(); 
}

void draw()  {
  PVector gravity = new PVector(0,1);!! $$ Our chapter 2 “make-up-a-gravity-force”
  bob.applyForce(gravity);



  PVector springForce = _______________???? !$$ We need to also calculate and apply a spring
! ! ! ! ! !    force!
  bob.applyForce(spring);  
  
  bob.update();! ! ! ! $ Our standard update() and display() functions
  bob.display(); 
}

One option would be to write out all of the spring force code in the main draw() loop.  But 
thinking ahead to when you might have multiple bobs and multiple spring connections, it makes 
a good deal of sense to write an additional class, a Spring class.  The Bob object keeps track of 
the movements of the Bob; the Spring class keeps track of the Spring’s anchor and its rest length 
and calculates the Spring force on the Bob.

Our goal here is to write a nice-looking main program as follows:

Bob bob;
Spring spring;!! ! $$ Adding a Spring object

void setup() {
  bob = new Bob(); 
  spring = new Spring();
}

void draw()  {
  PVector gravity = new PVector(0,1);!!  
  bob.applyForce(gravity);

  spring.connect(bob);  ! $$ This new function in the Spring class will take care of
! ! ! !    computing the force of the spring on the bob  
  bob.update();! ! ! !
  bob.display(); 
  spring.display();
}

You may notice here that this is quite similar to what we did in Example 2.x, the Attractor.   
There, we said something like:



  PVector force = attractor.attract(mover);
  mover.applyForce(force);

The analogous situation here with a spring would be:

  PVector force = spring.connect(bob);
  bob.applyForce(force);

Nevertheless, in this example all we said was:

  spring.connect(bob);

What gives?   Why don’t we need to call applyForce() on the bob?  The answer is, of course, that  
we do need to call applyForce() on the bob.  Only instead of doing it in draw(), we’re just 
demonstrating that a perfectly reasonable (and sometimes preferable) alternative is to ask the 
connect() function to internally handle calling applyForce() on the bob:

  void connect(Bob b) {
    PVector force = some fancy calculations

    b.applyForce(force);! $$ The function connect() takes care of calling applyForce
! ! ! !    and therefore doesn’t have to return a vector to the calling
! ! ! !    area.
  }

Why do it one way with the Attractor and another way with the Spring?    When we were first 
learning about forces, it was a bit clearer to show all the forces being applied in the main draw() 
loop, and hopefully this helped you learn about force accumulation.  Now that we’re more 
comfortable with that, perhaps it’s simpler to embed some of the details inside the objects 
themselves.

Let’s take a look at the rest of the elements in the Spring class.

Example 3.x: a Spring connection
class Spring { 

  PVector anchor;! ! $$ We need to keep track of the spring’s anchor location

  float len;! ! ! $$ Rest length and spring constant variables
  float k = 0.1;
  



  // Constructor
  Spring(float x, float y, int l) {       $$ The constructor initializes the anchor point 
! ! ! ! !         and rest length
    anchor = new PVector(x,y);
    len = l;
  } 

  // Calculate spring force
  void connect(Bob b) {    ! ! ! ! $$ Here is our implementation of Hooke’s Law
    PVector force = PVector.sub(b.location,anchor);! $$ Get a vector pointing from anchor to Bob
! ! ! ! ! ! !    location
    float d = force.mag();                            
    float stretch = d - len;! ! ! ! $$ Calculate the displacement between
  ! ! ! ! !                   distance and rest length
    
    force.normalize();!! ! ! ! $$ Direction and magnitude together!
    force.mult(-1 * k * stretch);
    
    b.applyForce(force);! ! ! ! $$ call applyForce() right here!
  }

  void display() { ! ! ! ! ! $$ Draw the anchor
    fill(100);
    rectMode(CENTER);
    rect(anchor.x,anchor.y,10,10);
  }
  
  void displayLine(Bob b) {! ! ! ! $$ Draw the spring connection between Bob
! ! ! ! ! ! !    location and anchor
    stroke(255);
    line(b.location.x,b.location.y,anchor.x,anchor.y);
  }
  
}

The full code for this example is included on the book web site, and the web version also 
incorporates two additional features: (1) Bob includes functions for mouse interactivity tso that it 
can be dragged around the window.  (2) The Spring object includes a function to constrain the 
connection’s length between a minimum and a maximum.



Exercise: Before running to see the example online, take a look at this constrain function and see 
if you can fill in the blanks.

void constrainLength(Bob b, float minlen, float maxlen) {
  PVector dir = PVector.sub(__________,__________);
  float d = dir.mag();
  
  if (d < minlen) {
    dir.normalize();
    dir.mult(________);
    b.location = PVector.add(__________,__________);
    b.velocity.mult(0);
  } else if (____________) {
    dir.normalize();
    dir.mult(_________);
    b.location = PVector.add(__________,__________);
    b.velocity.mult(0);
  }
}

Exercise: Create a system of multiple bobs and spring connections.  How would you have a Bob 
connected to a Bob with no fixed anchor?

Chapter 3 project ?? (i’m going to put all of these in once I have all the chapters??)

Is it too short?

Is it too long?
Keep location within 
constraint

Vector pointing from 
Bob to anchor.



Chapter 4.  Particle Systems

“That is wise. Were I to invoke logic, however, logic clearly dictates that the needs of the many outweigh the needs of 
the few.” 
! -- Spock

In this Chapter:

• What is a Particle System?
• Why Particle Systems for us?
• The Particle class
• The ArrayList
• The ParticleSystem class
• Adding behaviors / forces
• Inheritance / polymorphism

4.1 What is a Particle System?

In 1982, William T. Reeves, a researcher at Lucasfilm Ltd. was working on the film “Star Trek 
II: The Wrath of Khan.”   Much of the movie revolves around the Genesis Device, a torpedo that 
when shot at a barren, lifeless planet has the ability to reorganize matter and create a habitable 
world for colonization.   The term “particle system,” an incredibly common and useful technique 
in computer graphics, was coined for the creation of this very Genesis Demo scene and was the 
model for a wall of fire on the planet being “terraformed.”  

“A particle system is a collection of many many minute particles that together represent a fuzzy 
object. Over a period of time, particles are generated into a system, move and change from 
within the system, and die from the system.”

Particle Systems—a Technique for Modeling a Class of Fuzzy Objects, author: William 
Reeves, ACM Transactions on Graphics, Vol. 2, No. 2, April 1983.  

Since the early 1980s, particle systems have been used in countless video games, animations, 
digital art pieces, installations, etc. to model various irregular types of natural phenomena, such 
as explosions, fire, smoke, sparks, waterfalls, clouds, fog, petals, grass, bubbles, and so on.   

This chapter will be dedicated to looking at implementation strategies for coding a particle 
system. How do we organize our code? Where do we store information related to individual 
particles vs. information related to the system as a whole?  The examples we’ll look at focus on 
managing the data associated with a particle system. The examples will use simple shapes for the 
particles and apply only the most basic behaviors (gravity, etc.). However, by using this 
framework and building in more interesting ways to render the particles and compute behaviors, 
you can achieve a variety of effects.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 1
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4.2 Why Particle Systems for us?

We’ve defined a particle system to be a collection of independent objects, often represented by a 
simple shape or dot.  Why does this matter?    Certainly, the prospect of modeling some of the 
phenomena we listed (explosions, etc.) is attractive and potentially useful.  But really, there’s an 
even better reason for us to concern ourselves with particle systems.  If we want to get anywhere 
in this nature of code life, we’re going to need to work with systems of many things.   We’re 
going to want to look at balls bouncing, birds flocking, ecosystems evolving, all sorts of things in 
plural. 

Just about every chapter after this one is going to need to deal with a list of objects.  Yes, we’ve 
done this with an array in some of our first vector and forces examples.   But we need to take this  
beyond just using an array.  

First, we’re going to want to deal with flexible quantities of elements.  Sometimes we’ll have 
zero things, sometimes one thing, sometimes ten things, and sometimes ten thousand things. 
Second, we’re going to want to take a more sophisticated object-oriented approach.  Instead of 
simply writing a class to describe a single Particle, we’re also going to want to write a class that 
describes the collection of particles, the Particle System itself.   The goal here is to be able to 
write a main program that looks like the following:

ParticleSystem ps;! ! ! $$ Ah, isn’t this main program so simple and lovely?

void setup() {
  size(200,200);
  ps = new ParticleSystem();
}

void draw() {
  background(255);
  ps.run();
}

No single Particle is ever referenced in the above code, yet the result will be full of particles 
flying all over the screen.   Getting used to writing Processing sketches with multiple classes and 
classes that keep lists of instances of other classes will prove very useful as we get to more 
advanced chapters in this book.

Finally, working with Particle Systems is also a good excuse for us to tackle two other advanced 
object-oriented programming techniques: inheritance and polymorphism.   With the examples 
we’ve seen up until now, we’ve always had an array of a single type of object: “Movers” or 
“Oscillators.”  With inheritance (and polymorphism), we’ll see a convenient way that we can 
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store a single list that contains objects of different types.  This way a Particle System need not 
only be a system of a single type of particle.

Though it may seem obvious to you, I’d also like to point out that there are typical 
implementations of particle systems, and that’s where we will begin in this chapter.   However, 
the fact that the particles in this chapter look or behave a certain way should not limit your 
imagination.   Just because particle systems tend to look sparkly, fly forward, and fall with 
gravity doesn’t meant that’s how you should make yours.  

The focus here is really just how to keep track of a system of many elements.  What those 
elements do and how those elements look is up to you.

4.3  A Single Particle

Before we can get rolling on the system itself, we’ve got to work on writing the class to describe 
a single Particle.  The good news: we’ve done this already.    Our “Mover” class from Chapter 2 
serves as the perfect template.  For us, a particle is an independent body that moves about the 
screen.  It has location, velocity, and acceleration, a constructor to initialize those variables, and 
functions to display() itself and update() its location.

class Particle {
  PVector location;! ! ! $$ A “Particle” object is just another name for our “Mover”
! ! ! ! ! !    It has location, velocity, and acceleration
  PVector velocity;
  PVector acceleration;

  Particle(PVector l) {
    location = l.get();
    acceleration = new PVector();
    velocity = new PVector();
  }

  void update() {
    velocity.add(acceleration);
    location.add(velocity);
  }

  void display() {
    stroke(0);
    fill(175);
    ellipse(location.x,location.y,8,8);
  }  
}

This is about as simple as a particle can get.  From here, we could take our particle in several 
directions.  We could add an applyForce() function to affect the particle’s behavior (we’ll do 
precisely this in a future example).  We could add variables to describe color and shape, or 
reference a PImage to draw the particle.   For now, however, let’s focus on adding just one 
additional detail: lifespan.
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Typical particle systems involve something called an emitter.  The emitter is the source of the 
particles and controls the initial settings for the particles, location, velocity, etc.  An emitter 
might emit a single burst of particles, or a continuous stream of particles, or both.  The point is 
that for a typical implementation such as this, a particle is born at the emitter but does not live 
forever.  If it were to live forever, our Processing sketch would eventually grind to a halt as the 
number of particles increases to an unwieldy number over time.   As new particles are born, we 
need old particles to die.  This creates the illusion of an infinite stream of particles, and the 
performance of our program does not suffer.   There are many different ways we could decide 
when a particle dies.  For example, it could come into contact with another object, or it could 
simply leave the screen.   For our first Particle class, however, we’re simply going to add a 
“lifespan” variable.   The timer will start at 255 and count down to 0, when the particle will be 
considered “dead.”  And so we expand the Particle class as follows:

class Particle {
  PVector location;
  PVector velocity;
  PVector acceleration;
  float lifespan;!! ! $$ A new variable to keep track of how long the particle 
! ! ! !          has been “alive”

  Particle(PVector l) {
    location = l.get();
    acceleration = new PVector();
    velocity = new PVector();
    lifespan = 255;! ! $$ We start at 255 and count down for convenience
  }

  void update() {
    velocity.add(acceleration);
    location.add(velocity);
    lifespan -= 2.0;! ! $$ Lifespan decreases
  }

  void display() {
    stroke(0,lifespan);!! $$ Since our life ranges from 255 to 0 we can use it for alpha
    fill(175,lifespan);
    ellipse(location.x,location.y,8,8);
  }  
}

The reason we chose to start the lifespan at 255 and count down to 0 is for convenience.  With 
those values, we can assign lifespan to act as the alpha transparency for the ellipse as well.   
When the particle is “dead” it will also have faded away onscreen.

With the addition of the lifespan variable, we’ll also need one additional function -- a function 
that can be queried (for a true or false answer) as to whether the particle is alive or dead.  This 
will come in handy when we are writing the ParticleSystem class whose task will be to manage 
the list of particles themselves.  Writing this function is pretty easy; we just need to check and 
see if the value of lifespan is less than zero.  If it is we return true, if not return false.

  boolean isDead() {
    if (lifespan < 0.0) {
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      return true;
    } else {
      return false;
    }
  } 

Before we get to the next step of making many particles, it’s worth taking a moment to make 
sure our Particle works correctly and create a sketch with one single Particle object.  Here is the 
full code below, with two small additions.  We add a convenience function called run() that 
simply calls both update() and display() for us.  In addition, we give the Particle a random initial 
velocity as well as an downward acceleration (to simulate gravity).

Example 4.x: A Single Particle
Particle p;

void setup() {
  size(200,200);
  p = new Particle(new PVector(width/2,10));
  smooth();
}

void draw() {
  background(255);
  p.run();! ! ! ! $$ Operating the single Particle
  if (p.isDead()) {
    println("Particle dead!"); 
  }
}

class Particle {
  PVector location;
  PVector velocity;
  PVector acceleration;
  float lifespan;

  Particle(PVector l) {
    acceleration = new PVector(0,0.05);! ! ! ! $$ For demonstration purposes we assign
    velocity = new PVector(random(-1,1),random(-2,0));!    the Particle an initial velocity and 
    location = l.get();!! ! ! ! ! !    constant acceleration
    lifespan = 255.0;
  }

  void run() {! ! ! ! $$ Sometimes it’s convenient to have a “run” function that
    update();! ! ! !    calls all the other functions we need
    display();
  }

  // Method to update location
  void update() {
    velocity.add(acceleration);
    location.add(velocity);
    lifespan -= 2.0;
  }

  // Method to display
  void display() {
    stroke(0,lifespan);
    fill(0,lifespan);
    ellipse(location.x,location.y,8,8);
  }
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  // Is the particle still useful?
  boolean isDead() {
    if (lifespan < 0.0) {
      return true;
    } else {
      return false;
    }
  }
}

Exercise: Rewrite the example so that the Particle can respond to force vectors via an 
applyForce() function.

Exercise: Add angular velocity (rotation) to the Particle.  Create your own non-circle Particle 
design.

Now that we have a class to describe a single Particle, we’re ready for the next big step.  How do 
we keep track of many particles, when we can’t ensure exactly how many particles we might 
have at any given time?

4.4  The ArrayList

In truth, we could use a simple array to manage our Particle objects.  Some particle systems 
might have a fixed number of particles, and arrays are magnificently efficient in those instances.  
Processing also offers expand(), contract(), subset(), splice() and other methods for resizing 
arrays.   However, for these examples, the Java class ArrayList (found in the java.util package: 
http://download.oracle.com/javase/6/docs/api/java/util/ArrayList.html) will prove to be the best 
solution.

Using an ArrayList is conceptually similar to a standard array, but the syntax is different. Here is 
some code (that assumes the existence of a generic Particle class) demonstrating identical results: 
first with an array, and second with an ArrayList.    

// THE STANDARD ARRAY WAY
int total = 10;
//declaring the array
Particle[] parray = new Particle[total];

// Initialize the array in setup
void setup() {
  for (int i = 0; i < parray.length; i++) {
    parray[i] = new Particle();
  }
}

// Loop through the array to call methods in draw
void draw() {
  for (int i = 0; i < parray.length; i++) {
    Particle p = parray[i];
    p.run();
  }
}

// THE NEWFANGLED ARRAYLIST WAY
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int total = 10;
// Declaring and creating the ArrayList instance
ArrayList<Particle> plist = new ArrayList<Particle>(); 

void setup() {
  for (int i = 0; i < total; i++) {
    plist.add(new Particle());
  }
}

void draw() {
  for (int i = 0; i < plist.size(); i++) {
    Particle p = plist.get(i);
    p.run();
  }
}

This last for loop looks pretty similar to our code that looped through a “regular” array.  We 
initialize a variable called “i” to zero and count up by one accessing each element of the 
ArrayList until we get to the end.    However, if you use generics, i.e.

ArrayList<Particle> plist = new ArrayList<Particle>();

you can write something called an “enhanced for loop.”  It looks like this:

for (Particle p: particles) {
  p.run();
}

Let’s translate that.  Say “for each” instead of “for” and say “in” instead of “:”.  Now you have:

“For each Particle p in particles, run that Particle p!”

I know.  You cannot contain your excitement.  I can’t.  I know it’s not necessary, but I just have 
to type that again.

for (Particle p: particles) {
  p.run();
}

Simple, elegant, concise, lovely.   Take a moment.   Breathe.   I have some bad news.  Yes, we 
love that enhanced loop and we will get to use it.  But not right now.  Our Particle System 
examples will require a feature that makes using that loop impossible.  Let’s continue.

The code we’ve written above doesn’t take advantage of the ArrayList’s resizability, and it uses a 
fixed size of 10.   We need to design an example that fits with our Particle System scenario, 
where we emit a continuous stream of Particle objects, adding one new particle with each cycle 
through draw().   We’ll skip rehashing the Particle class code here, as it doesn’t need to change.
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Example 4.x: ArrayList of particles
ArrayList particles;

void setup() {
  size(200,200);
  particles = new ArrayList();
}

void draw() {
  background(255);

  particles.add(new Particle(new PVector(width/2,50)));

  for (int i = 0; i < particles.size(); i++) {
    Particle p = (Particle) particles.get(i);
    p.run();
  }
}

Run the above code for a few minutes and you’ll start to see the frame rate slow down and down 
and down until the program grinds to a halt (my tests yielded horrific performance after 15 
minutes.)  The issue of course is that we are creating more and more and more particles without 
removing any.   

Fortunately, the ArrayList class has a convenient remove() function that allows us to delete a 
Particle (by referencing its index).    This is why we cannot use the new enhanced for loop we 
just learned; the enhanced loop provides no means for deleting elements while iterating.  Here, 
we want to call remove() when the Particle’s isDead() function returns true.

  for (int i = 0; i < particles.size(); i++) {
    Particle p = particles.get(i);
    p.run();
    if (p.isDead()) {! ! $$ If the Particle is “dead” we can go ahead and delete it from
      particles.remove(i); !    the list.
    }
  }

Although the above code will run just fine (and the program will never grind to a halt), we have 
opened up a medium-sized can of worms.  Whenever we manipulate the contents of a list while 
iterating through that very list we those worms pop out.    Take, for example, the following code.

  for (int i = 0; i < particles.size(); i++) {
    Particle p = particles.get(i);
    p.run();
    particles.add(new Particle(new PVector(width/2,50)));  $$ Adding a new Particle to the list
  }! ! ! ! ! ! ! !   while iterating?

This is a somewhat extreme example (with flawed logic), but it proves the point.  In the above 
case, for each Particle in the list, we add a new Particle to the list (manipulating the size() of the 
ArrayList).  This will result in an infinite loop as i can never increment past the size of the 
ArrayList.  

While removing elements from the ArrayList during a loop doesn’t cause the program to crash 
(as it does with adding), the problem is almost more insidious in that it leaves no evidence.  To 
discover the problem we must first establish an important fact.  When an object is removed from 
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the ArrayList, all elements are shifted one spot to the left.  Note the diagram below where 
Particle “C” (index 2) is removed.  Particles A and B keep the same index, while Particles D and 
E shift from 3 and 4 respectively to 2 and 3.

Let’s pretend we are i  looping through the ArrayList.

when i = 0 --> Check Particle A --> Do not delete
when i = 1  --> Check Particle B --> Do not delete
when i = 2  --> Check Particle C --> Delete!  Slide Particles D and E back from slots 3,4 to 2,3
when i = 3  --> Check Particle E --> Do not delete

Notice the problem?  We never checked Particle D!  When C was deleted from slot #2, D moved 
into slot #2, but i already moved on to equal 3.  This is not a disaster given that the next time 
around, Particle D will get checked. Still, the expectation is that we are writing code to iterate 
through every single element of the ArrayList.   Skipping an element is unacceptable.

There are two solutions to this problem.   The first solution is to simply iterate through the 
ArrayList backwards.  If you are sliding elements from right to left as elements are removed, it’s 
impossible to skip an element by accident.  Here’s how the code would look:

 for (int i = particles.size()-1; i >= 0; i--) {
    Particle p = (Particle) particles.get(i);
    p.run();
    if (p.isDead()) {
      particles.remove(i); 
    }
  }

This is a perfectly fine solution in 99 cases out of 100.  But sometimes, the order that the 
elements are drawn could be important and you may not want to iterate backwards.  Java 
provides a special class—Iterator—that takes care of all of the details of iteration for you.  You 
get to say:
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Hey, I’d like to iterate through this ArrayList.  Could you continue to give me the next element in 
the list one at a time until we get to the end?  And if I remove elements or move them around in 
the list while we’re iterating, will you make sure I don’t look at any elements twice or skip any by 
accident?  

An ArrayList can produce an Iterator object for you.

Iterator<Particle> it = particles.iterator();! $$ Note that with the Iterator object, we can also
! ! ! ! ! ! ! !    use the new <ClassName> generics syntax and
 ! ! ! ! ! ! ! !    specify the type that the Iterator will
! ! ! ! ! ! ! !    reference

Once you’ve got the Iterator, the hasNext() function will tell us whether there is a Particle for us 
to run and the next() function will grab that Particle object itself.  

  while (it.hasNext()) {
    Particle p = it.next();
    p.run();
  }

And if you call the remove() function on the Iterator object during the loop, it will delete the 
current Particle object (and not skip ahead past the next one as we saw with counting forward 
through the ArrayList).

   if (p.isDead()) {
     it.remove();  
   }

Putting it all together, we have:

Example 4.x: ArrayList of Particles with Iterator
ArrayList particles;

void setup() {
  size(200,200);
  particles = new ArrayList();
}

void draw() {
  background(255);

  particles.add(new Particle(new PVector(width/2,50)));
 
  Iterator it = particles.iterator();! !
  while (it.hasNext()) {! ! ! $$ Using an Iterator object
    Particle p = it.next();! ! !    instead of counting with int i
    p.run();
    if (p.isDead()) {
       it.remove();  
    }
  }
}

4.5 The Particle System class
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OK, let’s review where we are.  We’ve done two things.  One, we’ve written a class to describe 
an individual Particle object.  Two, we’ve conquered the ArrayList and used it to manage a list 
of many Particle objects (with the ability to add and delete at will).  

We could stop here. However, one additional step we can and should take is to write a class to 
describe the list of Particle objects itself—the ParticleSystem class.  This will allow us to 
remove the bulky logic of looping through all particles from the main tab, as well as open up the 
possibility of having more than one particle system.  A system of systems!

If you recall the goal we set at the beginning of this chapter, we wanted our main tab to look like:

Example 4.x: A single simple Particle System
ParticleSystem ps;

void setup() {
  size(200,200);
  ps = new ParticleSystem();
}

void draw() {
  background(255);
  ps.run();
}

Let’s take the code from Example 4.x and review a bit of object-oriented programming, looking 
at how each piece from the main tab can fit into the ParticleSystem class.

ArrayList in the main tab ArrayList in the ParticleSystem class

ArrayList<Particle> particles;

void setup() {
  size(200,200);
  particles = new ArrayList<Particle>();
}

void draw() {
  background(255);

  particles.add(new Particle());
 
  

  Iterator<Particle> it = particles.iterator();
  while (it.hasNext()) {
    Particle p = it.next();
    p.run();
    if (p.isDead()) {
      it.remove(); 
    }
  }
}

class ParticleSystem {
  ArrayList<Particle> particles;

  
  ParticleSystem() {
    particles = new ArrayList<Particle>();
  }

  

  void addParticle() {
    particles.add(new Particle());
  }

  void run() {
    Iterator<Particle> it = particles.iterator();
    while (it.hasNext()) {
      Particle p = it.next();
      p.run();
      if (p.isDead()) {
        it.remove(); 
      }
    }
  }
}

[DIAGRAM HOW THE PARTS FEED FROM ONE TO THE OTHER, MENTION CONSTRUCTOR IS 
LIKE OBJECT’S “SETUP”]
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We could also add some new features to the particle system itself.  For example, it might be 
useful for the ParticleSystem class to keep track of an origin point where particles are made.  
This fits in with the idea of a particle system being an “emitter”, a place where particles are born 
and sent out into the world.    The origin point should be initialized in the constructor:

class ParticleSystem {
  ArrayList particles;
  PVector origin;! ! ! ! $$ This particular ParticleSystem implementation
! ! ! ! ! !    includes an origin point where each Particle
  ParticleSystem(PVector location) {! !    begins.
    origin = location.get();
    particles = new ArrayList();
  }

  void addParticle() {
    particles.add(new Particle(origin));! $$ The origin is passed to each Particle when it
  }! ! ! ! ! !    is added.

Exercise:  Make the origin point move dynamically.  Have the particles emit from the mouse 
location or use the concepts of velocity and acceleration to make the system move autonomously.

Exercise:  Building off Chapter 3’s “Asteroids” example, use a Particle system to emit particles 
from the ship’s “thrusters” whenever a thrust force is applied.  The particles’ initial velocity 
should be related to the ship’s current direction. 

4.6 A System of Systems

Let’s review for a moment where we are.  We know how to talk about an individual Particle 
object.  We also know how to talk about a system of Particle objects, and this we call a “Particle 
System.”    And we’ve defined a Particle System as a collection of independent objects.  But isn’t 
a Particle System itself an object?   If that’s the case (which it is), there’s no reason why we 
couldn’t also have a collection of many Particle Systems, i.e. a system of systems.

This line of thinking could of course take us even further, and you might lock yourself in a 
basement for days sketching out a diagram of a system of systems of systems of systems of 
systems of systems.  Of systems.   After all, this is how the world works.  An organ is a system of 
cells, a human body is a system of organs, a neighborhood is a system of human bodies, a city is 
a system of neighborhoods, and so on and so forth.   While this is an interesting road to travel 
down, it’s a bit beyond where we need to be right now.   It is, however, quite useful to know how 
to write a Processing sketch that keeps track of many Particle Systems, each of which keep track 
of many Particles.  Let’s take the following scenario.

You start with a blank screen.
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You click the mouse and generate a Particle System at the mouse’s location.

Each time you click the mouse a new Particle System is created at the mouse’s location.

In Example 4.x, we stored a single reference to a Particle System object in the variable “ps.”

ParticleSystem ps;

void setup() {
  size(200,200);
  ps = new ParticleSystem(1,new PVector(width/2,50));
}

void draw() {
  background(255);
  ps.run();
  ps.addParticle();
}

For this new example, what we want to do instead is create an ArrayList to keep track of 
multiple instances of Particle Systems.  When the program starts (i.e. in setup()), the ArrayList is 
empty.

ArrayList<ParticleSystem> systems;!! ! $$ This time the type of thing we are putting 
! ! ! ! ! ! !          in the ArrayList is a ParticleSystem itself!
void setup() {
  size(600,200);
  systems = new ArrayList<ParticleSystem>();
}
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Whenever the mouse is pressed, a new ParticleSystem object is created and placed into the 
ArrayList.

void mousePressed() {
  systems.add(new ParticleSystem(1,new PVector(mouseX,mouseY)));
}

And in draw(), instead of referencing a single ParticleSystem, we now look through all the 
systems in the ArrayList and call run() on each of them.

void draw() {
  background(255);
  for (ParticleSystem ps: systems) {! $$ Since we aren’t deleting elements we 
    ps.run();! ! ! ! !    can use our enhanced loop!
    ps.addParticle(); 
  }
}

Exercise:  Rewrite example 4.x so that each ParticleSystem doesn’t live forever.  When a 
ParticleSystem is empty (i.e. has no Particles left in its ArrayList) remove it from the ArrayList 
systems.

Exercise:  Create a simulation of an object shattering into many pieces. How can you turn one 
large shape into many small particles? What if there are several large shapes on the screen and 
they shatter when you click on them?

4.7 Particle Systems: why we need inheritance and polymorphism

You may have encountered the terms inheritance and polymorphism in your programming life 
before this book.  After all, they are two of the three fundamental principles behind the theory of 
object-oriented programming (the other being encapsulation).   If you’ve read other Processing 
or Java programming books, chances are it’s been covered.   My beginner text, Learning 
Processing, has close to an entire chapter (#22) dedicated to these two topics.  

Still, perhaps you’ve only learned about it in the abstract sense and never had a reason to really 
use inheritance and polymorphism.  If this is true, you’ve come to the right place.  Without these 
two topics, your ability to program a variety of Particles and Particle Systems is extremely 
limited.   [REFERENCE SOMETHING IN A LATER CHAPTER TOO]

Imagine the following.   It’s a Saturday morning, you’ve just gone out for a lovely jog, had a 
delicious bowl of cereal, and are sitting quietly at your computer with a cup of warm chamomile 
tea.  It’s your old friend so and so’s birthday and you’ve decided you’d like to make a greeting 
card in Processing.  How about some confetti for a birthday?  Purple confetti, pink confetti, star-
shaped confetti, square confetti, fast confetti, fluttery confetti, etc.  All of these pieces of confetti 
with different appearances and different behaviors explode onto the screen at once.
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What we’ve got here is clearly a Particle System—a collection of individual pieces of confetti 
(i.e. particles).  We might be able to cleverly design our Particle class to have variables that store 
its color, shape, behavior, etc.  And perhaps we initialize the values of these variables randomly.   
But what if your particles are drastically different? This could become very messy, having all 
sorts of code for different ways of being a Particle in the same class.  Well, you might consider 
doing the following:

class HappyConfetti {
  // etc.
}

class FunConfetti {
  // etc.
}

class WackyConfetti {
  // etc.
}

This is a nice solution: we have three different classes to describe the different kinds of pieces of 
confetti that could be part of our Particle System.   The ParticleSystem constructor could then 
have some code to pick randomly from the three classes when filling the ArrayList. 
[REFERENCE PROLOGUE WHERE WE DISCUSS PROBABILITY].

class ParticleSystem {
  ParticleSystem(int num) {
    particles = new ArrayList();             
    for (int i = 0; i < num; i++) {
      float r = random(1);
      if      (r < 0.33) particles.add(new HappyConfetti());
      else if (r < 0.67) particles.add(new FunConfetti());
      else               particles.add(new WackyConfetti());
    }
  }

OK, we now need to pause for a moment.   We’ve done nothing wrong.   All we wanted to do 
was wish our friend a happy birthday and enjoy writing some code.  But while the reasoning 
behind the above approach is quite sound, we’ve opened up two major problems.

#1:  Aren’t we going to be copying/pasting a lot of code between the different “confetti” 
classes?   

Yes.  Even though our different kinds of particles are different enough to merit us breaking them 
out into separate classes, there is still a ton of code that they will likely share.   They’ll all have 
PVectors to keep track of location, velocity, and acceleration; an update() function that 
implements our motion algorithm, etc.  

This is where inheritance comes in.  Inheritance allows us to write a class that inherits variables 
and functions from another class, all the while implementing its own custom features.
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#2:  How will the ArrayList know which objects are which type?  

This is a pretty serious problem.  Remember, we were using generics to tell the ArrayList what 
type of objects we’re going to put inside it.  Are we suddenly going to need three different 
ArrayLists?

ArrayList<HappyConfetti> a1 = new ArrayList<HappyConfetti>();
ArrayList<FunConfetti>   a2 = new ArrayList<FunConfetti>();
ArrayList<WackyConfetti> a3 = new ArrayList<WackyConfetti>();

This seems awfully inconvenient, given that we really just want one list to keep track of all the 
stuff in the ParticleSystem.  This is not necessary because of polymorphism.  

Polymorphism will allow us to consider objects of different types as the same type and store 
them in a single ArrayList..

Now that we understand the problem, let’s look at these two concepts with a bit more detail and 
then create a Particle System example that implements both inheritance and polymorphism.

4.8 Inheritance basics

[THIS SECTION IS ADAPTED FROM LEARNING PROCESSING]

Inheritance allows us to create new classes that are based on existing classes.  

Let’s take a different example, the world of animals: dogs, cats, monkeys, pandas, wombats, and 
sea nettles.   Arbitrarily, let’s begin by programming a Dog class.   A Dog object will have an age 
variable (an integer), as well as eat(), sleep(), and bark() functions. 

class Dog {
  int age;

  Dog() {
    age = 0;
  } 

  void eat() {
    // eating code goes here
  }

  void sleep() {
    // sleeping code goes here
  }

  void bark() {
    println("WOOF!");
  }
}

Finishing with dogs, we can now move on to cats.  
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class Cat {
  int age;

  Cat() {
    age = 0;
  } 

  void eat() {
    // eating code goes here
  }

  void sleep() {
    // sleeping code goes here
  }

  void meow() {
    println("MEOW!");
  }
}

As we move onto fish, horses, koala bears, and lemurs, this process will become rather tedious as 
we rewrite the same code over and over again.  What if, instead, we could develop a generic 
Animal class to describe any type of animal?  After all, all animals eat and sleep.  We could then 
say the following:

• A dog is an animal and has all the properties of animals and can do all the things animals 
do. Also, a dog can bark.

• A cat is an animal and has all the properties of animals and can do all the things animals 
do. Also, a cat can meow.

Inheritance allows us to program just this.  With inheritance, classes can inherit properties 
(variables) and functionality (methods) from other classes.  A Dog class is a child (aka subclass) 
of an Animal class.  Children inherit all variables and functions automatically from their parent 
(aka superclass).  Children can also include additional variables and functions not found in the 
parent.    Inheritance follows a tree-structure (much like a phylogenetic “tree of life”.)    Dogs 
can inherit from Canines which inherit from Mammals which inherit from Animals, etc. 
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Here is how the syntax works with inheritance.

class Animal {
  int age;

  Animal() {
    age = 0;
  } 

  void eat() {
    // eating code goes here
  }

  void sleep() {
    // sleeping code goes here
  }
}

class Dog extends Animal {
   Dog() {
     super();
   } 
   void bark() {
    println("WOOF!");
  }
}

class Cat extends Animal {
   Cat() {
     super();
   } 
   void meow() {
    println("MEOW!");
  }

} 

The following new terms have been introduced:
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• extends – this keyword is used to indicate a parent class for the class being defined.  Note 
that classes can only extend one class.   However, classes can extend classes that extend 
other classes, i.e.  Dog extends Animal, Terrier extends Dog.  Everything is inherited all 
the way down the line.

• super() – super calls the Constructor in the parent class.   In other words, whatever you 
do in the parent constructor, do so in the child constructor as well.  This is not required, 
but is fairly common (assuming you want child objects to be created in the same manner 
as their parents.)  Other code can be written into the constructor in addition to super().

A subclass can be expanded to include additional functions and properties beyond what is 
contained in the superclass.  For example, let’s assume that a Dog object has a hair color variable 
in addition to age, which is set randomly in the constructor.  The class would now look like this:

class Dog extends Animal {
   color haircolor;
   
   Dog() {
     super();
     haircolor = color(random(255));
   } 
   
   void bark() {
    println("WOOF!");
  }
}

Note how the parent constructor is called via super(), setting the age to 0, but the hair color is set 
inside the Dog constructor itself.    Suppose a Dog object eats differently than how the generic 
Animal does.  Parent functions can be overridden by rewriting the function inside the sub class.
class Dog extends Animal {
   color haircolor;
   
   Dog() {
     super();
     haircolor = color(random(255));
   } 
   
   void eat() {
     // Code for how a dog specifically eats
   }
   
   void bark() {
    println("WOOF!");
  }
}

But what if a Dog should eat the same way an Animal does, but with some additional 
functionality?  A subclass can both run the code from a parent class and incorporate some custom 
code.

class Dog extends Animal {
   color haircolor;
   
   Dog() {
     super();
     haircolor = color(random(255));
   } 
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   void eat() {
     // Call eat() from Animal
     super.eat();
     // Add some additional code 
     // for how a dog specifically eats
     println(“Yum!!!”);
   }

   void bark() {
    println("WOOF!");
  }
}

4.9  Particle example with inheritance

Now that we’ve had an introduction to the theory of inheritance and its syntax, we can develop a 
working example in Processing based on our Particle class.  

Let’s review a simple Particle implementation (further simplified from example 4.x):

class Particle {
  PVector location;
  PVector velocity;
  PVector acceleration;

  Particle(PVector l) {
    acceleration = new PVector(0,0.05);
    velocity = new PVector(random(-1,1),random(-2,0));
    location = l.get();
  }

  void run() {
    update();
    display();
  }

  // Method to update location
  void update() {
    velocity.add(acceleration);
    location.add(velocity);
  }

  // Method to display
  void display() {
    fill(0);
    ellipse(location.x,location.y,8,8);
  }
}

Next, we create a subclass from Particle (let’s call it “Confetti”). It will inherit all the instance 
variables and methods from Particle. We write a new constructor with the name “Confetti” and 
execute the code from the parent class by calling super().

class Confetti extends Particle {

  // We could add variables for only Confetti here if we so

  Confetti(PVector l) {
    super(l);
  }

  // Inherits update() from parent
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  // Override the display method
  void display() {
    rectMode(CENTER);
    fill(175);
    stroke(0);
    rect(location.x,location.y,8,8);
  }
}

Let’s make this a bit more sophisticated.  Let’s say we want to have the “Confetti” particle rotate 
as it flies through the air.  We could, of course, model angular velocity and acceleration as we did 
in Chapter 3.  Instead, we’ll try a quick and dirty solution.

We know a particle has an x location somewhere between zero and the width of the window.   
What if we said: when the particle’s x location is zero, its rotation should be zero and when its x 
location is equal to the width, its rotation should be equal to two PI?  Does this ring a bell?  
Whenever we have a value with one range that we want to map to another range, we can use 
Processing’s map() function!  [REFERENCE WHERE I TALK ABOUT THIS IN THE 
PROLOGUE]

float angle = map(location.x,0,width,0,TWO_PI);

And just to give it a bit more spin, we can actually map the angle’s range from 0 to TWO_PI*2.  
Let’s look at how this code fits into the display() function.
  void display() {
    rectMode(CENTER);
    fill(0,lifespan);
    stroke(0,lifespan);
    pushMatrix();    $$ If we rotate() a shape in Processing we need to
    translate(location.x,location.y);     familiarize ourselves with transformations.  For 
         more, visit: 
         http://processing.org/learning/transform2d/
    float theta = map(location.x,0,width,0,TWO_PI*2);
    rotate(theta);
    rect(0,0,8,8);
    popMatrix();
  }

Exercise: Instead of using map() to calculate theta, how would you model angular velocity and 
acceleration?  

Now that we have a “Confetti” particle that extends our “base” Particle class, we need to figure 
out how our Particle System class can manage particles of different types within the same 
system.  To accomplish this goal, let’s return to the animal kingdom inheritance example and see 
how the concept extends into the world of polymorphism.

4.10 Polymorphism basics

[AGAIN THIS SECTION IS ADAPTED FROM LEARNING PROCESSING]
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Now that we have the concept of inheritance down, we can imagine how we would program a 
diverse animal kingdom using ArrayLists—an array of dogs, an array of cats, array of turtles, of 
kiwis, etc. frolicking about.

ArrayList<Dog> dogs = new ArrayList<Dog>();  
ArrayList<Cat> cats = new ArrayList<Cat>();  
ArrayList<Turtle> turtles = new ArrayList<Turtle>();  
ArrayList<Kiwi> kiwis = new ArrayList<Kiwi>();  

for (int i = 0; i < 10; i++) {
  dogs.add(new Dog());
}
for (int i = 0; i < 15; i++) {
  cats.add(new Cat());
}
for (int i = 0; i < 6; i++) {
  turtles.add(new Turtle());
}
for (int i = 0; i < 98; i++) {
  kiwis.add(new Kiwi());
}

As the day begins, the animals are all pretty hungry and are looking to eat.  So it’s off to looping 
time (enhanced looping time!). . .. . .

for (Dog d: dogs) {
  d.eat();
}
for (Cat c: cats) {
  c.eat();
}
for (Turtle t: turtles) {
  t.eat();
}
for (Kiwi k: kiwis) {
  k.eat();
}

This works great, but as our world expands to include many more animal species, we’re going to 
get stuck writing a lot of individual loops.  Isn’t this unnecessary?  After all, the creatures are all 
animals, and they all like to eat.  Why not just have one ArrayList of “Animal” objects and fill it 
with all different kinds of Animals?

ArrayList<Animal> kingdom = new ArrayList<Animal>(); 

for (int i = 0; i < 1000; i++) {
  if (i < 100) kingdom.add(new Dog());
  else if (i < 400) kingdom.add(new Cat());
  else if (i < 900) kingdom.add(new Turtle());
  else kingdom.add(new Kiwi());
}

for (Animal a: kingdom) {
  a.eat();
}

The ability to treat a Dog object as either a member of the Dog class or the Animal class (its 
parent) is known as polymorphism, the third tenet of object-oriented programming. 
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Polymorphism (from the Greek polymorphos, meaning many forms) refers to the treatment of a 
single object instance in multiple forms.    A Dog is certainly a Dog, but since Dog extends 
Animal, it can also be considered an Animal.  In code, we can refer to it both ways.

Dog rover = new Dog();
Animal spot = new Dog();

Although the second line of code might initially seem to violate syntax rules, both ways of 
declaring a Dog object are legal.  Even though we declare spot as a Animal, we’re really making 
a Dog object and storing it in the spot variable.  And we can safely call all of the Animal methods 
on spot because the rules of inheritance dictate that a Dog can do anything an Animal can.   

What if the Dog class, however, overrides the eat() function in the Animal class?  Even if spot is 
declared as an Animal, Java will determine that its true identity is that of a Dog and run the 
appropriate version of the eat() function.

This is particularly useful when we have an array or ArrayList.   

4.11  Particle System with polymorphism

Let’s pretend for a moment that polymorphism doesn’t exist and rewrite a Particle System class 
to include many Particle objects and many Confetti objects.

class ParticleSystem {
  ArrayList<Particle> particles; $$ We’re stuck doing everything twice with two lists!
  ArrayList<Confetti> confetti;
  PVector origin;

  ParticleSystem(PVector location) {
    origin = location.get();
    particles = new ArrayList<Particle>();
    confetti = new ArrayList<Confetti>();
  }

  void addParticle() {
    particles.add(new Particle(origin));
    particles.add(new Confetti(origin));
  }

  void run() {
    Iterator it = particles.iterator();
    while (it.hasNext()) {
      Particle p = it.next();
      p.run();
      if (p.isDead()) {
        it.remove();
      }
    }
    it = confetti.iterator();
    while (it.hasNext()) {
      Confetti c = it.next();
      c.run();
      if (c.isDead()) {
        it.remove();
      }
    }

  }
}

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 23

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project


Notice how we have two separate lists, one for Particle objects and one for Confetti objects.  
Every action we want to perform we have to do twice!   Polymorphism allows us to simplify the 
above by just making one ArrayList of Particle objects that contains both standard Particle 
objects as well as Confetti objects.  We don’t have to worry about which are which; this will all 
be taken care of for us!  (Also, note that the code for the main program and the classes has not 
changed so we aren’t including it here.  See website for full example.)
Example 4.x: Polymorphism

class ParticleSystem {
  ArrayList<Particle> particles; $$ One list, for anything that is
        a Particle or extends Particle
  PVector origin;

  ParticleSystem(PVector location) {
    origin = location.get();
    particles = new ArrayList<Particle>();
  }

  void addParticle() {
    float r = random(1);
    if (r < 0.5) {     $$ We have a 50% chance of 
         adding each kind of Particle
      particles.add(new Particle(origin));
    } else {
      particles.add(new Confetti(origin));
    }
  }

  void run() {
    Iterator it = particles.iterator();
    while (it.hasNext()) {
      Particle p = it.next();  $$ Polymorphism allows us to treat everything as a Particle 
              whether it is a Particle or Confetti
      p.run();
      if (p.isDead()) {
        it.remove();
      }
    }
  }
}

Exercise:  ??????

4.8 Particle System with forces

So far this chapter, we’ve been focusing on structuring our code in an object-oriented way to 
manage a collection of Particle objects.   Maybe you noticed, or maybe you didn’t, but during 
this process we unwittingly took a couple steps backward from where we were in previous 
chapters.  Let’s examine the constructor of our simple Particle class.

  Particle(PVector l) {
    acceleration = new PVector(0,0.05);! $$ We’re setting acceleration to a constant value!
    velocity = new PVector(random(-1,1),random(-2,0));
    location = l.get();
    lifespan = 255.0;
  }
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And now let’s look at the update() function.

  void update() {
    velocity.add(acceleration);
    location.add(velocity);
! ! ! ! ! ! $$ Where is the line of code to clear acceleration?
    lifespan -= 2.0;
  }

Our Particle class is structured to have a constant acceleration, one that never changes.  A much 
better framework would be to follow Newton’s second law (F = M* A) and incorporate the force 
accumulation algorithm we worked so hard on in Chapter 2 (see p. XXX).  

Step 1 would be to add in the applyForce() function (remember, we need to make a copy of the 
PVector before we divide it by mass).

  void applyForce(PVector force) {
    PVector f = force.get();
    f.div(mass);   
    acceleration.add(f);
  }

Once we have this, we can add in one more line of code to clear the acceleration at the end of 
update().

 void update() {
   velocity.add(acceleration);
   location.add(velocity);
   acceleration.mult(0); ! ! ! $$ There it is!
   lifespan -= 2.0;
  }

And our Particle class is complete!

class Particle {
  PVector location;
  PVector velocity;
  PVector acceleration;
  float lifespan;
  
  float mass = 1; ! ! $$ We could vary mass for more interesting results

  Particle(PVector l) {
    acceleration = new PVector(0,0);! ! $$ We now start with acceleration of 0
    velocity = new PVector(random(-1,1),random(-2,0));
    location = l.get();
    lifespan = 255.0;
  }

  void run() {
    update();
    display();
  }

  void applyForce(PVector force) {!! ! $$ Newton’s second law & force accumulation
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    PVector f = force.get();
    f.div(mass);   
    acceleration.add(f);! ! ! !
  }

  // Method to update location
  void update() {
    velocity.add(acceleration);
    location.add(velocity);
    acceleration.mult(0);
    lifespan -= 2.0;
  }

  // Method to display
  void display() {
    stroke(255,lifespan);
    fill(255,lifespan);
    ellipse(location.x,location.y,8,8);
  }

  // Is the particle still useful?
  boolean isDead() {
    if (lifespan < 0.0) {
      return true;
    } else {
      return false;
    }
  }
}

Now that the Particle class is completed, we have a very important question to ask.  Where do we 
call the applyForce() function?  Where in the code is it appropriate to apply a force to a particle?   
The truth of the matter is that there’s no right or wrong answer; it really depends on the exact 
functionality and goals of a particle Processing sketch.  Still, we can create a generic situation 
that would likely apply to most cases and create a model for applying forces to individual 
particles in a system.

Let’s consider the following goal:

Apply a force globally every time through draw() to all particles.

Let’s just pick an easy one: a force pointing down, like gravity.

PVector gravity = new PVector(0,0.1);

 
We said it should always be applied, i.e. in draw(), so let’s take a look at our draw() function as it 
stands.

void draw() {
  background(100);
  ps.addParticle();
  ps.run();
}
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Well, it seems that we have a small problem.  applyForce() is a method written inside the 
Particle class, but we don’t have any reference to the individual particles themselves, only the 
ParticleSystem object: i.e. the variable “ps”.

Since we want all particles to receive the force, however, we can decide to apply the force to the 
Particle System and let it manage applying the force to all the individual particles:

void draw() {
  background(100);
  
  PVector gravity = new PVector(0,0.1); !$$ Applying a force to the system as a whole
  ps.applyForce(gravity);
  
  ps.addParticle();
  ps.run();
}

Of course, if we call a new function in the ParticleSystem from draw(), well, we have to write 
that function in the ParticleSystem class.   Let’s describe the job that function needs to perform:

Receive a force as a PVector and apply that force to all the Particles.

Now in code:

  void applyForce(PVector f) {
    for (Particle p: particles) {    
      p.applyForce(f);
    }
  }  

It almost seems silly to write this function.   What we’re saying is “apply a force to a particle 
system so that the system can apply that force to all of the individual particles.”   Nevertheless, 
it’s really quite reasonable.  After all, the ParticleSystem object is in charge of managing the 
particles, so if we want to talk to the particles, we’ve got to talk to them through their manager.  
(Also, here’s a chance for the enhanced loop since we aren’t deleting particles!)

Here is the full example (assuming the existence of the Particle class written above; no need to 
include it again since nothing has changed):

Example 4.x: Particle System with Forces
ParticleSystem ps;

void setup() {
  size(200,200);
  smooth();
  ps = new ParticleSystem(new PVector(width/2,50));
}

void draw() {
  background(100);
  
  PVector gravity = new PVector(0,0.1);! ! $$ Apply a force to all
  ps.applyForce(gravity);! ! ! !    particles.
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  ps.addParticle();
  ps.run();
}

class ParticleSystem {
  ArrayList<Particle> particles;
  PVector origin;

  ParticleSystem(PVector location) {
    origin = location.get();
    particles = new ArrayList<Particle>();
  }

  void addParticle() {
    particles.add(new Particle(origin));
  }

  // A function to apply a force to all Particles
  void applyForce(PVector f) {! ! ! ! $$ Using an enhanced loop to apply the 
    for (Particle p: particles) {! ! ! !    force to all particles
      p.applyForce(f);
    }
  }

  void run() {
    Iterator it = particles.iterator();! ! ! $$ Can’t use the enhanced loop because
    while (it.hasNext()) {! ! ! ! !    we want to check for particles to delete
      Particle p = (Particle) it.next();
      p.run();
      if (p.isDead()) {
        it.remove();
      }
    }
  }
}

What if we wanted to take this example one step further and add a “Repeller” object (see inverse 
of Attractor object, Chapter 2, p. XXX) that pushes any particles away that get close?  This 
requires a bit more sophistication because, unlike the gravity force, each force the Repeller exerts 
on each particle must be custom calculated for each Particle.  
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Let’s start solving this problem by examining how we would incorporate a new Repeller object 
into our simple particle system plus forces example.  We’re going to need two major additions to 
our code:

1) A Repeller object (declared, initialized, and displayed).
2) A function that passes the Repeller object into the ParticleSystem so that it can apply a force 

to each particle object.

ParticleSystem ps;
Repeller repeller;! $$ New thing #1, we need a Repeller class

void setup() {
  size(200,200);
  smooth();
  ps = new ParticleSystem(new PVector(width/2,50));
  repeller = new Repeller(width/2-20,height/2);   $$ New thing #1: we need a Repeller class
}

void draw() {
  background(100);
  ps.addParticle();
  
  // Apply gravity force to all Particles
  PVector gravity = new PVector(0,0.1);
  ps.applyForce(gravity);
  
  ps.applyRepeller(repeller);!! $$ New thing #2: we need a function to apply a force
! ! ! ! ! !    from a repeller
  
  ps.run();
  repeller.display();     $$ New thing #1: we need a Repeller class
}

Making a Repeller object is quite easy; it’s a duplicate of the Attractor class from chapter 2 
(example 2.x).

class Repeller {
  PVector location;! ! $$ A Repeller doesn’t move so just location and size
  float r = 10;

  Repeller(float x, float y)  {
    location = new PVector(x,y);
  }

  void display() {
    stroke(255);
    fill(255);
    ellipse(location.x,location.y,r*2,r*2);
  }
}

The more difficult question is, how do we write the applyRepeller() function?  Instead of passing 
a PVector into a function like we do with applyForce(), we’re going to instead pass a Repeller 
object into applyRepeller() and ask that function to do the work of calculating the force between 
the Repeller and all particles.  Let’s look at both of these functions side by side.
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applyForce() applyRepeller()

void applyForce(PVector f) {
  for (Particle p: particles) {
    p.applyForce(f);
  }
}

void applyRepeller(Repeller r) {
  for (Particle p: particles) {
    PVector repel = r.pushParticle(p);        
    p.applyForce(repel);
  }
}

The functions are almost identical.  There are only two differences. One we mentioned before—a 
Repeller object is the argument, not a PVector.  Two is the important one.   We must calculate a 
custom PVector force for each and every Particle and apply that force.  How is that force 
calculated?   In a function called repel(), which is the inverse of the attract() function we wrote 
for the Attractor class.

  PVector repel(Particle p) {!! ! ! !
    PVector dir = PVector.sub(location,p.location);  
    float d = dir.mag();                             
    dir.normalize();                                  
    d = constrain(d,5,100);                    
    float force = -1 * G / (d * d);            
    dir.mult(force);                           
    return dir;
  }   

Notice how throughout this entire process of adding a Repeller to the environment, we’ve never 
once considered editing the Particle class itself.   A Particle doesn’t actually have to know 
anything about the details of its environment; it simply needs to manage its location, velocity, 
and acceleration, as well as have the ability to receive an external force and act on it.

So we can now look at this example in its entirety, again leaving out the Particle class, which 
hasn’t changed.

Example 4.x: ParticleSystem with Repeller
[NEED CODE BUBBLES FOR THIS EXAMPLE]
ParticleSystem ps;
Repeller repeller;

void setup() {
  size(200,200);
  smooth();
  ps = new ParticleSystem(new PVector(width/2,50));
  repeller = new Repeller(width/2-20,height/2);
}

void draw() {
  background(100);
  ps.addParticle();
  
  // Apply gravity force to all Particles
  PVector gravity = new PVector(0,0.1);
  ps.applyForce(gravity);
  

All the same steps we had to calculate an attractive 
force, only pointing the opposite direction.

• Get force direction
• Get distance (constrain distance)
• Calculate magnitude
• Make a vector out of direction and magnitude
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  ps.applyRepeller(repeller);
  
  ps.run();
  repeller.display();
}

class ParticleSystem {
  ArrayList<Particle> particles;
  PVector origin;

  ParticleSystem(PVector location) {
    origin = location.get();
    particles = new ArrayList<Particle>();
  }

  void addParticle() {
    particles.add(new Particle(origin));
  }

  // A function to apply a force to all Particles
  void applyForce(PVector f) {
    for (Particle p: particles) {
      p.applyForce(f);
    }
  }

  void applyRepeller(Repeller r) {
    for (Particle p: particles) {
      PVector repel = r.pushParticle(p);        
      p.applyForce(repel);
    }
  }

  void run() {
    Iterator it = particles.iterator();
    while (it.hasNext()) {
      Particle p = (Particle) it.next();
      p.run();
      if (p.isDead()) {
        it.remove();
      }
    }
  }
}

class Repeller {
  
  // Gravitational Constant
  float G = 100;
  // Location
  PVector location;
  float r = 10;

  Repeller(float x, float y)  {
    location = new PVector(x,y);
  }

  void display() {
    stroke(255);
    fill(255);
    ellipse(location.x,location.y,r*2,r*2);
  }
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  // Calculate a force to push particle away from repeller
  PVector repel(Particle p) {
    PVector dir = PVector.sub(location,p.location); // Calculate direction of force
    float d = dir.mag();                            // Distance between objects
    dir.normalize();                                // Normalize vector 
    d = constrain(d,5,100);                         // Keep distance within a reasonable range
    float force = -1 * G / (d * d);                 // Repelling force magnitude
    dir.mult(force);                                // Get force vector --> magnitude * direction
    return dir;
  }  
}

Exercise: Expand the above example to include many Repellers (using an array or ArrayList).

Exercise: Create a particle system in which each particle responds to every other particle.  (Note 
we’ll be doing this in detail in Chapter 6.)

4.9 Particle System with image textures / additive blending

Even though this book is really about behaviors and algorithms rather than computer graphics 
and design, I think we wouldn’t be able to live with ourselves if we went through a discussion of 
particle systems and never once looked at an example that involves texturing each particle with 
an image.  The way you choose to draw a particle is a big part of the puzzle in terms of designing  
certain types of visual effects.   Let’s try to create a smoke simulation in Processing.  Take a look 
at the following two images:

        
            A: white circles       B: fuzzy images with transparency

Both of these images were generated from identical algorithms. The only difference is that a 
white circle is drawn in image A for each particle and a “fuzzy” blob is drawn for each in B.
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The nice news here is that you get a lot of bang for very little buck.   Before you write any code, 
however, you’ve got to make your image texture!  I recommend using PNG format, as 
Processing will retain the alpha channel (i.e. transparency) when drawing the image, which is 
needed for blending the texture as particles layer on top of each other.  Once you’ve made your 
PNG and deposited it in your sketch’s “data” folder, you are on your way with just a few lines of 
code.

First, we’ll need to declare a PImage object.

Example 4.x: Image Texture Particle System
PImage img;

Load the image in setup().

void setup() {
  img = loadImage("texture.png");
}

And when it comes time to draw the particle, we’ll use the image reference instead of drawing an 
ellipse or rectangle.

  void render() {
    imageMode(CENTER);
    tint(255,lifespan);        $$ Note how tint() is the image equivalent of shape’s fill()
    image(img,loc.x,loc.y);
  }

Incidentally, this smoke example is a nice excuse to revisit a Gaussian number distribution (see 
prologue, p.x).  To make the smoke appear a bit more realistic, we don’t want to launch all the 
particles in a purely random direction.  Instead, by creating initial velocity vectors mostly around 
a mean value (with a lower probability of outliers), we’ll get an effect that appears less fountain-
like and more like smoke (or fire).  

Assuming a Random object called “generator”, we could create initial velocities as follows:

    float vx = (float) generator.nextGaussian()*0.3;
    float vy = (float) generator.nextGaussian()*0.3 - 1.0;
    vel = new PVector(vx,vy);
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Finally, in this example, a wind force is applied to the smoke mapped from the mouse’s 
horizontal location.

void draw() {
  background(0);
  
  float dx = map(mouseX,0,width,-0.2,0.2);
  PVector wind = new PVector(dx,0);          $$ Wind force points towards mouseX
  ps.applyForce(wind);
  ps.run();
  for (int i = 0; i < 2; i++) {              $$ Two particles are added each cycle through draw
    ps.addParticle();
  }
}

Exercise: Try creating your own textures for different types of effects.  Can you make it look like 
fire, instead of smoke? 

Exercise: Use an array of images and assign each Particle object a different image.  Even 
though single images are drawn by multiple particles, make sure you don’t call loadImage() any 
more than you need to, i.e once for each image file.

Finally, it’s worth noting that there are many different algorithms for blending colors in computer 
graphics. These are often referred to as “blend modes.”  By default, when we draw something on 
top of something else in Processing, we only see the top layer—this is commonly referred to as a 
“normal” blend mode.  When the pixels have alpha transparency (as they do in the smoke 
example), Processing uses an alpha compositing algorithm that combines a percentage of the 
background pixels with the new foreground pixels based on the alpha values.

However, it’s possible to draw using other blend modes, and a much loved blend mode for 
particle systems is “additive.”  Additive blending in Processing was pioneered by Robert Hodgin 
(flight404.com) in his famous particle system and forces exploration, magnetosphere (which 
later became the iTunes visualizer).  (For more see: http://roberthodgin.com/magnetosphere-
part-2/) 

Additive blending is in fact one of the simplest blend algorithms and involves adding the pixel 
values of one layer with another (capping all values at 255 of course).  This results in a space-age 
glow effect due to the colors getting brighter and brighter with more layers.
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[Make nicer image]

To achieve additive blending in Processing, you’ll need to work in OPENGL mode, i.e.

Example 4.x: Additive Blending
void setup() {
  size(200,200,OPENGL);
}

You’ll also need to set some OpenGL settings that are part of the JOGL API (the openGL engine 
that Processing uses).  To do this, you need access to the “GL” object, i.e. the main renderer.

PGraphicsOpenGL pgl;
GL gl;

void setup() {
  size(200,200,OPENGL);
  pgl = (PGraphicsOpenGL) g;
  gl = pgl.gl;
}

Then, before you go to draw anything, you can say:

void draw() {

  pgl.beginGL();
  gl.glDisable(GL.GL_DEPTH_TEST);        $$ only necessary if objects actually move in 3D space
  gl.glEnable(GL.GL_BLEND);! ! ! ! $$ Enables blending
  gl.glBlendFunc(GL.GL_SRC_ALPHA,GL.GL_ONE);   $$ Sets the blend mode to additive
  pgl.endGL();

  // All your other particle stuff would go here
}

(Thanks again to Robert Hodgin for writing a tutorial about this in March 2007: http://
www.flight404.com/blog/?p=71)

Exercise: Use tint() in combination with additive blending to create a rainbow effect.

Chapter 4 Project?
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Chapter 5.  Physics Libraries

“A library implies an act of faith/Which generations still in darkness hid/Sign in their night in witness of the dawn.” 
! -- Victor Hugo

In this Chapter:

• To library or not to library
• A Box2D world

• Bodies, Shapes, Joints
• ContactListener
• Interaction

• Toxiclibs
• Verlet Physics
• Connected Systems
• “Behaviors”

5.1 To library or not to library?

Let’s revisit some of the things we’ve done in the first four chapters.

1) Learn about concepts from the world of physics — What is a vector? What is a force? What is 
a wave? etc.

2) Understand the math and algorithms behind such concepts.

3) Implement the algorithms in Processing with an object-oriented approach.

These activities have yielded a set of motion simulation examples, allowing us to creatively 
define the physics of the worlds we build (whether realistic or fantastical).  Of course, we aren’t 
the first to try this. The world of computer graphics and programming is full of source code 
dedicated to simulation. Just try Googling “open-source physics engine” and you could spend the 
rest of your day pouring through rich and complex code.    And so we must ask the question: If a 
code library will take care of physics simulation, why should we bother learning how to write 
any of the algorithms ourselves?   

Here is where the philosophy behind this book comes into play.  While many of the libraries out 
there give us physics (and super awesome advanced physics at that) for free, there are significant 
reasons for learning the fundamentals from scratch before diving into libraries. First, without an 
understanding of vectors, forces, and trigonometry, we’d be completely lost just reading the 
documentation of a library.   Second, even though a library may take care of the math for us, it 
won’t necessarily simplify our code.  As we’ll see in a moment, there can be a great deal of 
overhead in simply understanding how a library works and what it expects from you code-wise.  
Finally, as wonderful as a physics engine might be, if you look deep down into your hearts, it’s 
likely that you seek to create worlds and visualizations that stretch the limits of imagination. A 
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library is great, but it provides a limited set of features. It’s important to know both when to live 
within limitations in the pursuit of a Processing project and when those limits prove to be 
confining.

This chapter is dedicated to examining two open-source physics libraries—Box2D and toxiclibs 
s VerletPhysics engine.   With each library, we’ll evaluate its pros and cons and look at reasons 
why you might choose one of these libraries for a given project.

5.2  What is Box2D and when might I use it?

Box2D began as a set of physics tutorials written in C++ by Erin Catto for the Game Developer’s 
Conference in 2006. Over the last five years it has evolved into an elaborate and rich open-
source physics engine.   It’s been used for countless projects, most notably highly successful 
games such as the award-winning puzzle game Crayon Physics and the runaway mobile and 
tablet hit Angry Birds.  

One of the key things to realize about Box2D is that it is a true physics engine.  Box2D knows 
nothing about computer graphics and the world of pixels; it is simply a library that takes in 
numbers and spits out more numbers. And what are those numbers?  Meters, kilograms, seconds, 
etc.  All of Box2D’s measurements and calculations are for real-world measurements, only its 
“world” is a two-dimensional plane with a top, bottom, left and right edge.  You tell it things like: 
“The world has a gravitational force of 9.5 Newtons, and a circle with a radius of four meters and 
a mass of fifty kilograms is located ten meters above the world’s bottom.”   Box2D will then tell 
you things like “One second later, the rectangle is at nine meters from the bottom; two seconds 
later, it is seven meters” etc. [MAYBE I SHOULD USE THE ACTUAL CALCULATED 
VALUES HERE?]  While this provides for an amazing and realistic physics engine, it also 
necessitates lots of complicated code in order to translate back and forth between the physics 
“world” (a key term in Box2D) and the world we want to draw on —the “pixel” world of 
Processing. 

So when is it worth it to have this additional overhead?  If I just want to simulate a circle falling 
down a Processing window with gravity, do I really need to write all the extra Box2D code just 
to get that effect?  Certainly, the answer is no.  We saw how to do this rather easily in just the 
first chapter of this book.    Let’s consider another scenario.  What if I want to have a hundred of 
those circles falling?  And what if those circles aren’t circles at all—rather, irregularly shaped 
polygons?  And what if I want these polygons to bounce off each other in a realistic manner 
when they collide?

You may have noticed that the first four chapters of this book, while covering motion and forces 
in detail, has skipped over a rather important aspect of physics simulation—collisions.   Let’s 
pretend for a moment that you aren’t reading a chapter about libraries and that we decided right 
now to cover how to handle collisions in a particle system.   We’d have to evaluate and learn two 
distinct algorithms that address these questions:
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1. How do I determine if two shapes are colliding (i.e. intersecting)?
2. How do I determine the shapes’ velocity after the collision?

If we’re thinking about shapes like rectangles or circles, question #1 isn’t too tough.  You’ve 
likely encountered this before.  For example, we know two circles are intersecting if the distance 
between them is less than the sum of their radii.

172 Learning Processing

           // Move and display balls  
           ball1.move();  
           ball2.move();  
           ball1.display();  
           ball2.display();  
     }   

   Now that we have set up our system for having two circles moving around the screen, we need to develop 
an algorithm for determining if the circles intersect. In  Processing , we know we can calculate the distance 
between two points using the   dist( )   function (see Chapter   7). We also have access to the radius of each 
circle (the variable  r  inside each object). ! e diagram in  Figure 10.3    shows how we can compare the 
distance between the circles and the sum of the radii to determine if the circles overlap. 

R 1

R 2

DIST

DIST > (R1 + R2)
NOT INTERSECTING

DIST < (R1 + R2)
INTERSECTING

R 1

R 2

DIST

 fi g. 10.3            

   OK, so assuming the following: 
     •       x 1, y 1: coordinates of circle one  
     •       x 2, y 2: coordinates of circle two  
     •       r 1: radius of circle one  
     •       r 2: radius of circle two    

   We have the statement: 

       If the distance between (x1,y1 ) and (x2 ,y2 ) is less than the sum of r1 and r2, circle one intersects 
circle two.      

   Our job now is to write a function that returns true or false based on the above statement. 

     // A function that returns true or false based on whether two circles intersect   
     // If distance is less than the sum of radii the circles touch   
     boolean intersect(float x1, float y1, float x2, float y2, float r1, float r2)  {    
            float distance      =      dist(x1,y2,x2,y2); // Calculate distance   
            if (distance < r1 + r2)  {                       // Compare distance to r1      +      r2   
                   return true;   
             }  else  {    
                   return false;   
             }    
      }      
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OK. Now that we know how to determine if two circles are colliding, how do we calculate their 
velocities after the collision?   This is where we’re going to stop our discussion.   Why, you ask?  
It’s not that understanding the math behind collisions isn’t important or valuable (and because of 
this I’m including additional examples on the web site related to collisions without a physics 
library.)  The reason for stopping is that life is short (let this also be a reason for you to consider 
going outside and frolicking instead of programming altogether).  We can’t expect to master 
every detail of physics simulation.  And while we could continue this discussion for circles, it’s 
only going to lead us to wanting to work with rectangles.  And strangely shaped polygons.  And 
curved surfaces.  And swinging pendulums colliding with springy springs.  And and and and and.   

If we really want to work with collisions in our Processing sketch and still have time to see our 
friends and family, then we’ve found the reason for this chapter.   If Erin Catto spent years 
developing solutions to these problems, perhaps this is a place where we don’t need to develop 
them ourselves. 

In conclusion, if you find yourself describing a Processing sketch that you intend to write and the 
word “collisions” comes up, then likely it’s time to learn Box2D.   (We’ll also encounter other 
words that might lead you down this path to Box2D, such as joint, hinge, pulley, motor, etc.)

5.3  How do I get Box2D in Processing?

So, if Box2D is a physics engine that knows nothing about pixel-based computer graphics and is 
written in C++, how are we supposed to use it in Processing?
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The good news is that Box2D is such an amazing and useful library that everyone wants to use it
—Flash, Javascript, Python, Ruby programmers.  Oh, and Java programmers.  There is 
something called JBox2D, a Java port of Box2D.  And because Processing is built on top of Java, 
JBox2D can be used directly in Processing!

So here’s where we are so far.

Box2D site for reference: http://www.box2d.org/
JBox2D site for Processing compatibility: http://www.jbox2d.org/

This is all you need to get started writing Box2D code in Processing.  However, as we are going 
to see in a moment, there are several pieces of functionality we’ll repeatedly need in our 
Processing code, and so it’s worth having one additional layer between our sketches and 
JBox2D.   I’m calling this PBox2D—a Processing Box2d “helper” library included as part of this 
book’s code example downloads.

PBox2D: https://github.com/shiffman/PBox2D (temporary URL until book web site exists)

It’s important to realize that PBox2D is not a Processing wrapper for all of Box2D.   After all, 
Box2D is a thoughtfully organized and well-structured API and there’s no reason to take it apart 
and re-implement.  However, it’s useful to have a small set of functions that help you get your 
Box2D world set up as well as help you to figure out where to draw your Box2D shapes.  And 
this is what PBox2D will provide.

5.4 Box2D Basics—Process

Do not despair! We really are going to get to the code very soon and in some ways blow the lid 
off our previous work.  But before we’re ready to do that, it’s important to walk through the 
overall process of using Box2D in Processing.   Let’s begin by writing a pseudo-code 
generalization of all of our examples in chapters one through four.

SETUP: 
1) Create all the objects in our world. 

DRAW:
2) Calculate all the forces in our world.
3) Apply all the forces to our objects (F = M * A).
4) Update the locations of all the objects based on their acceleration.
5) Draw all of our objects.

Great.  Let’s rewrite this pseudo-code as it will appear in our Box2D examples.
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SETUP: 
1) Create all the objects in our world. 

DRAW:
2) Draw all of our objects.

This, of course, is the fantasy of Box2D.  We’ve eliminated 
all of those painful steps of figuring out how the objects are 
moving according to velocity and acceleration.  Box2D is 
going to take care of this for us!   The good news is that this 
does accurately reflect the overall process.  Let’s imagine 
Box2D as a magic box.

In setup(), we’re going to say to Box2D: “Hello there. Here 
are all of the things I want in my world.”  In draw(), we’re 
going to politely ask Box2D: “Oh, hello again. If it’s not too 
much trouble, I’d like to draw all of those things in my 
world.  Could you tell me where they are?”

The bad news: it’s not as simple as the above methodology would lead you to believe.   For one, 
making the stuff that goes in the Box2D world involves wading through the documentation for 
how different kinds of shapes are built and configured.  Second, we have to remember we can’t 
tell Box2D anything about pixels, as it will simply get confused and fall apart.  Before we tell 
Box2D what we want in our world, we have to convert our pixel units to Box2D “world” units.  
And the same is true when it comes time to draw our stuff. Box2D is going to tell us the location 
of the things in its world, which we then have to translate for the pixel world. 
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SETUP: 
1) Create everything that lives in our pixel world.
2) Translate the pixel world into the Box2D world.

DRAW:
3) Ask Box2D where everything is.
4) Translate Box2D’s answer into the pixel world.
5) Draw everything.

5.5 Box2D Basics—Core Elements

Now that we understand that anything we create in 
our Processing sketch has to be placed into the 
Box2D world, let’s look at an overview of the 
elements that make up that world.   

Core Elements of a Box2D World:

1. World: The Box2D “World” manages the physics simulation.  It knows everything 
about the overall coordinate space as well as stores lists of every element in the world 
(see 2-4 below).

2. Body: A Box2D “Body” is the primary element in the Box2D world. It has a location. 
It has a velocity. Sound familiar? The Body is essentially the class we’ve been writing 
on our own in our vectors and forces examples.

3. Shape:  A Box2D “Shape” keeps track of all the necessary collision geometry attached 
to a Body.

4. Joint: A Box2D “Joint” is a connection between two bodies (or between one body and 
the world itself).  

In the next four sections, we are going to walk through each of the above elements in detail, 
building several examples along the way.   But before we are ready to do so there is one other 
important element we should briefly discuss.

5. Vec2: A Box2D “Vec2” describes a vector in the Box2D world.

And so here we are, arriving with trepidation at an unfortunate truth in the world of using physics 
libraries.   Any physics simulation is going to involve the concept of a vector.  This is the good 
part.  After all, we just spent several chapters familiarizing ourselves with what it means to 
describe motion and forces with vectors.   We don’t have to learn anything new conceptually.

Now the part that makes the single tear fall from my eye: we don’t get to use PVector. It’s nice 
that Processing has PVector for us, but anytime you use a physics library you will probably 
discover that the library includes its own vector implementation.  This makes sense, after all; 
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why should Box2D be expected to know about PVector?   And in many cases, the physics engine 
will want to implement a vector class it in a specific way so that it is especially compatible with 
the rest of the library’s code.   So while we don’t have to learn anything new conceptually, we do 
have to get used to some new naming conventions and syntax.  Let’s quickly demonstrate a few 
of the basics in Vec2 as compared to those in PVector.

Let’s say we want to add two vectors together. 

PVector Vec2

  PVector a = new PVector(1,-1);
  PVector b = new PVector(3,4);
  a.add(b);

  Vec2 a = new Vec2(1,-1);
  Vec2 b = new Vec2(3,4);
  a.addLocal(b);

  PVector a = new PVector(1,-1);
  PVector b = new PVector(3,4);
  PVector c = PVector.add(a,b);

  Vec2 a = new Vec2(1,-1);
  Vec2 b = new Vec2(3,4);
  Vec2 c = a.add(b);

How about multiply/scale?

PVector Vec2

  PVector a = new PVector(1,-1);
  float n = 5;
  a.mult(n);

  Vec2 a = new Vec2(1,-1);
  float n = 5;
  a.mulLocal(n);

  PVector a = new PVector(1,-1);
  float n = 5;
  PVector c = PVector.mult(a,n);

  Vec2 a = new Vec2(1,-1);
  float n = 5;
  Vec2 c = a.mul(n);

Magnitude and normalize?

PVector Vec2

  PVector a = new PVector(1,-1);
  float m = a.mag();
  a.normalize();

  Vec2 a = new Vec2(1,-1);
  float m = a.length();
  a.normalize();

As you can see, the concepts are the same, but the function names and the arguments are slightly 
different.  For example, instead of static and non-static add() and mult(), if a Vec2 is altered, the 
word “local” is included in the function name—addLocal(), multLocal().

Full documentation of Vec2 can be found in the javadoc [ONLY SEEMS TO BE PART OF 
SOURCE CHECKOUT, NEED TO GET ONLINE VERSION WITH LINK HERE?]

5.6 Living in a Box2D World
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The Box2D “World” object is in charge of everything. It manages the coordinate space of the 
world, all of the stuff that lives in the world, and decides when time moves forward in the world.

In order to have Box2D as part of our Processing sketches, the “World” is the very first thing that 
needs to be set up.  Here is where PBox2D comes in handy and takes care of making the world 
for us.

PBox2D box2d;

void setup() {
  box2d = new PBox2D(this);
  box2d.createWorld();!! ! $$ Initializes a Box2D world with default settings
}

Even though this is all you need to get started, it’s useful to take a look at what happens in the 
createWorld() function in case you need to customize your world at some point.

When creating a world, you need three parameters:

• AABB or the “axis-aligned bounding box” — This is really just a fancy term for the box 
that defines the edges of your universe. It’s important because Box2D will ignore anything 
that exists outside this bounding box.

• Gravity — When you make a world, you must define a gravity vector—how strong is 
gravity and what is gravity’s direction? Gravity doesn’t have to be fixed; you can adjust the 
gravity vector while your program is running.  Gravity can be turned off by setting it to a 
(0,0) vector.

• doSleep — This is a boolean argument you must pass when creating a world. If you set it 
to true, it tells the world to allow bodies to sleep when they come to rest. It’s pretty 
standard to leave this on, but sometimes you’ll need to “wake up” your objects.

And so if we looked under the hood of createWorld(), we’d see some code that looks like:

AABB worldAABB = new AABB();!! ! $$ Creating the AABB
worldAABB.lowerBound.set(-100,-100);
worldAABB.upperBound.set(100,100);!!

Vec2 gravity = new Vec2(0, -10);!       $$ Setting some default gravity

boolean doSleep = true;!! ! ! $$ Objects can sleep if they aren’t being used

World world = new World(worldAABB, gravity, doSleep);

Which reminds us of one of the most important details of using Box2D: the Box2D coordinate 
system is not your pixel coordinate system!!   Let’s look at how Box2D and a Processing 
window think differently of their worlds.
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[FIX DIAGRAM TO EXPLAIN AABB BETTER]

Notice how in Box2D (0,0) is in the center and up is the positive direction along the y-axis!   
Box2D’s coordinate system is just like that lovely old-fashioned Cartesian coordinate system you 
might have learned about in a high school geometry class.  Processing, on the other hand, uses a 
traditional computer graphics coordinate system where (0,0) is in the top left corner and down is 
the positive direction along the y-axis.  This is why if we want gravity to point down, we need to 
give Box2D a vector with a negative y-value.

Vec2 gravity = new Vec2(0, -10);

Luckily for us, if we prefer to think in terms of pixel coordinates (which as Processing 
programmers, we are likely to do), PBox2D offers a series of helper functions that convert 
between pixel space and Box2D space.  Before we move onto the next section and  look at 
creating Box2D bodies, let’s take a look at how these helper functions work.

Let’s say we want to tell Box2D where the mouse is in its world.  We know the mouse is located 
at (mouseX,mouseY) in Processing.  To convert it we say we want to convert a “coordinate” 
from “pixels” to “world”—coordPixelsToWorld().  Or:

Vec2 mouseWorld = box2d.coordPixelsToWorld(mouseX,mouseY);  $$ Convert mouseX,mouseY to
 ! ! ! ! ! ! ! ! ! !   coordinate in Box2D world

What if we had a Box2D world coordinate and wanted to translate it to our pixel space?

Vec2 worldPosition = new Vec2(-10,25);! $$ To demonstrate, let’s just make up a
! ! ! ! ! ! !    world position

Vec2 screenPosition = box2d.coordWorldToPixels(worldPosition); $$ Convert to pixel space
ellipse(screenPosition.x,screenPosition.y,16,16);   !This is necessary because ultimately we
 ! ! ! ! ! ! ! ! ! are going to want to draw the elements in
! ! ! ! ! ! ! ! ! our window
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PBox2D has a set of functions to take care of translating back and forth between the Box2D 
world and pixels.  It’s probably easier to learn about all of these functions during the course of 
actually implementing our examples, but let’s quickly look over the list of the possibilities.

TASK FUNCTION

Convert location from World to Pixels Vec2 coordWorldToPixels(Vec2 world) 

Convert location from World to Pixels Vec2 coordWorldToPixels(float worldX, float worldY) 

Convert location from Pixels to World Vec2 coordPixelsToWorld(Vec2 screen) 

Convert location from Pixels to World Vec2 coordPixelsToWorld(float pixelX, float pixelY) 

Scale a dimension (such as height, width, or 
radius) from Pixels to World

float scalarPixelsToWorld(float val) 

Scale a dimension from World to Pixels float scalarWorldToPixels(float val) 

Scale a vector from Pixels To World Vec2 vectorPixelsToWorld(Vec2 v) 

Scale a vector from World To Pixels Vec2 vectorWorldToPixels(Vec2 v) 

There are also additional functions that allow you to pass or receive a PVector when translating 
back and forth, but since we are only working with Box2D in the examples in this chapter, it’s 
easiest to stick with the Vec2 class for all vectors.

Once the world is initialized, we are ready to actually put stuff in the world—Box2D bodies.

5.6 Building a Box2D Body.

A Box2D body is the primary element in the Box2D world.  It’s the equivalent to the “Mover” 
class we built on our own in previous chapters, it is the thing that moves around the space and 
experiences forces. It can also be static (meaning fixed and not moving). It’s important to note, 
however, that a Body has no geometry, it isn’t anything physically.   Rather, bodies have Box2D 
Shapes attached to them (this way a Body can be a single rectangle or a rectangle attached to a 
circle, etc.) We’ll look at Shapes in a moment, for now let’s see how we first build a Body.

Step 1.  Define a Body.

The first thing we have to do is create a “Body Definition.” This will let us define the properties 
of the Body we intend to make.  This may seem a bit awkward at first, but this is how Box2D is 
structured.  Anytime you want to make a “thing” you have to make a “thing definition” first.  
This will hold true for bodies, shapes, and joints.

BodyDef bd = new BodyDef();! $$ Make a Body Definition before making a Body

Step 2.  Configure the Body Definition.
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The Body Definition is where we can set specific properties or attributes of the Body we intend 
to make.  One attribute of a Body, for example, is its starting location.  Let’s say we want to 
position the Body in the center of the Processing window. 

Vec2 center = new Vec2(width/2,height/2); $$ A Vec2 in the center of the Processing window

Danger, danger!  I’m not going to address this with every single example, but it’s important to at 
least point out the perilous path we are taking with the above line of code.  Remember, if we are 
going to tell Box2D where we want the Body to start, we must give Box2D a world coordinate!  
Yes, we want to think of its location in terms of pixels, but Box2D doesn’t care.  And so before 
we pass that position to the Body Definition, we must make sure to use one of our helper 
conversion functions.

Vec2 center = box2d.coordPixelsToWorld(width/2,height/2)); $$ A Vec2 in the center of the
! ! ! ! ! ! ! ! ! !  Processing window converted to Box2D
! ! ! ! ! ! ! !             World coordinates!
bd.position.set(center);  $$ Setting the position attribute of the Box2D Body Definition

[CONSIDER MENTION OF OTHER PROPERTIES -- linear damping, angular damping, 
isBullet, etc.]

Step 3.  Create the Body

Once we’re done with the definition (BodyDef), we can create the Body object itself.  PBox2D 
provides a helper function for this—createBody().

Body body = box2d.createBody(bd);! $$ The Body object is created by passing in the Body
! ! ! ! ! !    Definition. (This allows for making multiple bodies from
 ! ! ! ! ! !    one definition).

Step 4.  Set any other conditions for the Body’s starting state

Finally, though not required, if you want to set any other initial conditions for the Body, such as 
linear or angular velocity, you can do so with the newly created Body object.

body.setLinearVelocity(new Vec2(0,3));! $$ Setting an arbitrary initial velocity
body.setAngularVelocity(1.2);!! ! $$ Setting an arbitrary initial angular velocity

   

5.7 Attaching a Box2D Shape to a Body.

A Body on its own doesn’t physically exist in the world. It’s like a soul with no human form to 
inhabit. For a Body to have mass, we must first define a Shape and attach that Shape to the Body. 

The job of a Box2D Shape is to keep track of all the necessary collision geometry attached to a 
Body.  A Shape also has several important properties that affect the Body’s motion.  There is 
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density, which ultimately determines that Body’s mass.  Shapes also have friction and restitution 
(“bounciness”). One of the nice things about Box2D’s methodology, which separates the 
concepts of Bodies and Shapes into two separate objects, is that you can attach multiple shapes 
to a single Body in order to create more complex forms.  We’ll see this in a future example.

Much like with a Body, to create a Shape, we need to first create a Shape Definition.  For most 
non-circular shapes, a PolygonDef will work just fine. For example, let’s look at how we define a 
rectangle.

Step 1.  Define a Shape.

PolygonDef sd = new PolygonDef();  $$ Define the shape: a polygon

Next up, we have to define the width and height of the rectangle. Let’s say we want our rectangle 
to be 150!100 pixels. Remember, pixel units are no good for Box2D shapes! So we have to use 
our helper functions to convert them first.

float box2Dw = box2d.scalarPixelsToWorld(150);  $$ Scale dimensions from pixels to Box2D world
float box2Dh = box2d.scalarPixelsToWorld(100);

sd.setAsBox(box2Dw, box2Dh);!        $$ Use setAsBox() function to define shape as a rectangle

Step 2.  Configure the Shape’s attributes.

Once we have the Shape Definition, we can access and set the appropriate parameters that affect 
the physics.

sd.friction = 0.3;    $$ The coefficient of friction for the shape, typically between 0 and 1
sd.restitution = 0.5; $$ The Shape’s restitution (i.e. elasticity), typically between 0 and 1
sd.density = 1.0;     $$ The Shape’s density, measured in kilograms per meter squared.

Step 3.  Attach the Shape to the Body.

Once the Shape is defined, all we have left to do is attach the Shape to the Body using the 
createShape() function.

body.createShape(sd);! $$ Creates the Shape object and attaches it to the Body object

Step 4.  Finalize the Body.

Before we can start the physics simulation, however, we need to tell Box2D that we are finished 
attaching Shapes to the Body. Then Box2D can actually go ahead and determine the bodies’ mass 
(based on the attached shapes and their densities).  This is done with setMassFromShapes().

body.setMassFromShapes();
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While most of our examples will call this function only once when the Body is first built, this is 
not a limitation of Box2D.   Box2D allows for Shapes to be created and destroyed on the fly, and 
this would require calling setMassFromShapes() again to adjust the mass accordingly.  Finally, 
if you don’t want Box2D to calculate the mass for you based on the Shape’s density, you can use 
setMass() instead.

Exercise:  Knowing what you know about Box2D so far, fill in the blank in the code below that 
demonstrates how to make a circular shape in Box2D.

CircleDef cd = new CircleDef();
float radius = 10;

cd.radius = _____________________;
cd.density = 1.0;
cd.friction = 0.1;
cd.restitution = 0.3;
body.createShape(cd);
body.setMassFromShapes();

5.8  Bodies and Shapes, together at last

Before we put any of this code we’ve been writing into a Processing sketch, let’s review all the 
steps we took to construct a Body.

1. Define a Body using BodyDef (set any properties, such as location).
2. Create the Body from the Body Definition.
3. Define a Shape using PolygonDef, CircleDef, or any other Shape definition class (set 

any properties, such as friction, density, and restitution).
4. Attach the Shape to the Body
5. Update the Body’s mass

BodyDef bd = new BodyDef();! ! ! ! ! ! ! $$ STEP 1. Define the Body.
bd.position.set(box2d.coordPixelsToWorld(width/2,height/2));

Body body = box2d.createBody(bd);! ! ! ! ! $$ Step 2. Create the Body.

PolygonDef sd = new PolygonDef();! ! ! ! ! $$ Step 3. Define the Shape.
float w = box2d.scalarPixelsToWorld(150);
float h = box2d.scalarPixelsToWorld(100);
sd.setAsBox(w, h);
sd.density = 1.0;
sd.friction = 0.3;
sd.restitution = 0.5;

body.createShape(sd);! ! ! ! ! ! ! $$ Step 4. Attach Shape to Body

body.setMassFromShapes();! ! ! ! ! ! $$ Step 5. Update Body’s mass

5.8  Box2D and Processing, reunited and it feels so good.
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Once a Body is made it lives in the Box2D physics world. Box2D will always know it’s there, 
check it for collisions, move it appropriately according to the forces, etc. It’ll do all that for you 
without you having to lift a finger! What it won’t do, however, is display the Body for you. This 
is a good thing. This is your time to shine. When working with Box2D what we’re essentially 
saying is, “I want to be the designer of my world, and I want you, Box2D, to compute all the 
physics.”

Now, Box2D will keep a list of all the Bodies that exist in the world. This can be accessed by 
calling the World object’s getBodyList() function. Nevertheless, what I’m going to demonstrate 
here is a technique for keeping your own Body lists. Yes, this may be a bit redundant and we 
perhaps sacrifice a bit of efficiency. But we more than make up for that with ease of use. This 
methodology will allow us to program like we’re used to in Processing, and we can easily keep 
track of which Bodies are which and render them appropriately. Let’s consider the structure of 
the following Processing sketch:

This looks like any ol’ Processing sketch. We have a main tab called “Boxes” and a “Boundary” 
and “Box” tab. Let’s think about the Box tab for a moment. The Box tab is where we will write a 
class to describe a Box object, a simple class to describe a rectangular body in our world.

class Box  {

  float x,y;! ! ! $$ Our Box object has an x,y location and a width and a height
  float w,h;

  Box() {
    x = mouseX;! ! ! $$ Our Box object starts at the mouse location
    y = mouseY;
    w = 16;
    h = 16;
  }

  void display() {! ! $$ We draw the Box object using Processing’s rect() function
    fill(175);
    stroke(0);
    rectMode(CENTER);
    rect(x,y,w,h);
  }
}

Let’s write a main tab that creates a new Box whenever the mouse is pressed and stores all the 
Box objects in an ArrayList.  (This is very similar to our approach in the Particle System 
examples from Chapter 4.)
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Example: A comfotable and cozy Processing sketch that needs a little 
Box2D

ArrayList<Box> boxes;! ! $$ A list to store all Box objects

void setup() {
  size(400,300);
  boxes = new ArrayList<Box>();
}

void draw() {
  background(255);

  if (mousePressed) {! ! ! ! $$ When the mouse is pressed, add a new Box object
    Box p = new Box(mouseX,mouseY);
    boxes.add(p);
  }

  for (Box b: boxes) {!! ! ! $$ Display all the Box objects
    b.display();
  }
}

Now, here’s our assignment. Take the above example verbatim, but instead of drawing fixed 
boxes on the screen, draw boxes that experience physics (via Box2D) as soon as they appear. 

We’ll need two major steps to accomplish our goal.

Step 1. Add Box2D to our main program (i.e. setup() and draw())

This part is not too tough.  We saw this already in our discussion of building a Box2D world.  
This is taken care of for us by the PBox2D helper class.  We can create a PBox2D object and 
initialize it in setup().

PBox2D box2d;! !

void setup() {
  box2d = new PBox2D(this);! $$ Initialize and create the Box2D world
  box2d.createWorld();
}

Then in draw(), we need to make sure we call one very important function: step(). Without this 
function, nothing would ever happen! step() advances the Box2D world a step further in time. 
Internally, Box2D sweeps through and looks at all of the Bodies and figures out what to do with 
them. Just calling step() on its own moves the Box2D world forward with default settings; 
however, it is customizable (and this is documented in the PBox2D source).

void draw() {
  box2d.step();    $$ We must always step through time!
}

Step 2. Link every Processing Box object with a Box2D Body object
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As of this moment, the Box class includes variables for location and width and height.  What we 
now want to say is: 

“I hereby relinquish the command of this object’s position to Box2D.  I no longer need to keep 
track of anything related to location, velocity, and acceleration.  Instead, I only need to keep 
track of a Box2D body and have faith that Box2D will do the rest.”

class Box  {

  Body body;      $$ Instead of any of the usual variables, 
! ! !    we will store a reference to a Box2D Body

  float w;!
  float h;

 
We don’t need (x,y) anymore since, as we’ll see, the Body itself will keep track of its location.   
The Body technically could also keep track of the width and height for us, but since Box2D isn’t 
going to do anything to alter those values over the life of the Box object, we might as well just 
hold onto them ourselves until it’s time to draw the Box.

Then, in our constructor, in addition to initializing the width and height, we can go ahead and 
include all of the Body and Shape code we learned in the previous two sections!

  Box() {
    w = 16;
    h = 16;

    BodyDef bd = new BodyDef();! ! ! ! $$ Build Body
    bd.position.set(box2d.coordPixelsToWorld(mouseX,mouseY));
    body = box2d.createBody(bd);

    PolygonDef sd = new PolygonDef();! ! ! $$ Build Shape
    float box2dW = box2d.scalarPixelsToWorld(w/2);
    float box2dH = box2d.scalarPixelsToWorld(h/2);! $$ Box2D considers the width and height of a
    sd.setAsBox(box2dW, box2dH);! ! ! !    rectangle to be the distance from the
    sd.density = 1.0;! ! ! ! ! !    center to the edge (so half of what we
    sd.friction = 0.3;!! ! ! ! !    normally think of as width or height.) 

    sd.restitution = 0.5; ! ! ! ! ! ! ! ! ! !    
    body.createShape(sd);! ! ! ! ! $$ Attach Shape to Body
    body.setMassFromShapes();
 }

 
Ok, we’re almost there. Before we introduced Box2D, it was easy to draw the Box. The object’s 
location was stored in variables x and y.

  void display() {! ! ! $$ Drawing the object using rect()
    fill(175);
    stroke(0);
    rectMode(CENTER);
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    rect(x,y,w,h);
  }

 
But now Box2D manages the object’s motion. So we can no longer use our own variables to 
display the shape. But not to fear! Our Box object has a reference to the Box2D Body associated 
with it. So all we need to do is politely ask the Body,“Pardon me, where are you located?” Since 
this is a task we’ll need to do quite often, PBox2D includes a helper function: 
getBodyPixelCoord().

Vec2 pos = box2d.getBodyPixelCoord(body);

Just knowing the location of a Body isn’t enough; we also need to know its angle of rotation.

float a = body.getAngle();

Once we have the location and angle, it’s easy to display the object using translate and rotate.  
Note, however, that the Box2D coordinate system considers rotation in the opposite direction 
from Processing, so we need to multiply the angle by -1.

  void display() {
    Vec2 pos = box2d.getBodyPixelCoord(body);! ! $$ We need the Body’s location and angle
    float a = body.getAngle();

    pushMatrix();
    translate(pos.x,pos.y);! ! $$ Using the Vec2 position and float angle to
    rotate(-a);! ! !          translate and rotate the rectangle
    fill(175);
    stroke(0);
    rectMode(CENTER);
    rect(0,0,w,h);
    popMatrix();
  }

In case we want to have objects that can be removed from the Box2D world, it’s also useful to 
include a function to destroy a Body, such as:

  // This function removes the particle from the box2d world
  void killBody() {
    box2d.destroyBody(body);

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 17

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project


  }

Exercise: In the code downloads for this chapter, find the sketch 
named “box2d_exercise.”  Using the methodology outlined in 
this chapter, add the necessary code to the main and Box tabs to 
implement Box2D physics.  The result should appear as in the 
screenshot to the left.   Be more creative in how you render the 
boxes.

5.9  Fixed Box2D objects

In the example we just created, the Box objects appear at the mouse location and fall downwards 
due to Box2D’s default gravity force.  What if we wanted to install some immovable boundaries 
in the Box2D world that would block the path of the Box objects (as in the illustration below)?

Box2D makes this easy for us by providing a means to lock a 
Shape and its associated Body in place.  Shapes with a density 
of zero cannot be moved.

 PolygonDef sd = new PolygonDef();
 sd.setAsBox(box2dW, box2dH);
 sd.density = 0; !! ! $$ When density = 0, the Body is
! ! ! !          locked in place

We can add this feature to our Boxes example by writing a class 
called “Boundary” and having each Boundary object create a 
fixed Box2D body.

Example: Falling Boxes Hitting Boundaries
class Boundary {

  float x,y;! ! ! $$ A boundary is a simple rectangle with x,y,width,and height
  float w,h;
  Body b;

  Boundary(float x_,float y_, float w_, float h_) {
    x = x_;
    y = y_;
    w = w_;
    h = h_;

    BodyDef bd = new BodyDef();! ! ! ! $$ Build the Box2D Body and Shape
    bd.position.set(box2d.coordPixelsToWorld(x,y));
    b = box2d.createBody(bd);

    float box2dW = box2d.scalarPixelsToWorld(w/2);
    float box2dH = box2d.scalarPixelsToWorld(h/2);

    PolygonDef sd = new PolygonDef();
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    sd.setAsBox(box2dW, box2dH);
    sd.density = 0;     ! ! ! $$ Make it fixed by setting density to 0!
    sd.friction = 0.3;

    b.createShape(sd);
  }

  void display() {! ! ! ! $$ Since we know it can never move, we can just draw it
    fill(0);! ! ! ! !    the old-fashioned way, using our original variables
    stroke(0);! ! ! ! !    No need to query Box2D.
    rectMode(CENTER);
    rect(x,y,w,h);
  }

}

5.9  A Curvy Boundary

If you want a fixed boundary that is a curved surface (as opposed to a polygon), this can be 
 achieved with the Shape definition EdgeChainDef.

The EdgeChainDef is just like any other Shape, so to include one in our system, we follow the 
same steps.

1. Define a Body

BodyDef bd = new BodyDef();! ! ! ! $$ The Body does not need a position; the 
Body body = box2d.world.createBody(bd);! !    EdgeChainDef will take care of that for us.

2. Define the Shape

EdgeChainDef edges = new EdgeChainDef();

3. Configure the Shape

The EdgeChainDef is a series of connected vertices.  We can add points to the chain with the  
addVertex() function.  For example, if we wanted a straight line from the left-hand side of our 
window to the right-hand side, we would just need two vertices: (0,150) and (width,150).

! ! ! $$ Adding a vertex on the right side of window

edges.addVertex(box2d.coordPixelsToWorld(width,150));
edges.addVertex(box2d.coordPixelsToWorld(0,150));

   $$ Adding a vertex on the left side of window

It’s no accident that in the above code, we added the vertices 
from right to left.  An EdgeChain only provides a boundary in 
one direction, so the order in which the vertices are added 
indicate which side of the EdgeChain we want to act as a 
boundary.  Try swapping the order of the above two lines of code and see what happens.

An EdgeChainDef also has friction and restitution.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 19

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project


edges.friction = 2.0;    // How much friction
edges.restitution = 0.3; // How bouncy

You can set a boolean flag if you want the first vertex to connect to the last vertex in a loop.  In 
our case, we don’t want this to happen, so we set it to false.

 edges.setIsLoop(false);   // We could make the edge a full loop with “true”

4. Attach the Shape to the Body

A Shape is not part of Box2D unless it is attached to a Body.  Even if it is a fixed boundary and 
never moves, it must still be attached.

body.createShape(edges);

Now, if we want to include an EdgeChain in our sketch, we can follow the same strategy as we 
did with a fixed boundary.  Let’s write a class called Surface:

Example: EdgeChainDef with three hard-coded vertices
class Surface {
  ArrayList<Vec2> surface;

  Surface() {
    surface = new ArrayList<Vec2>();

    EdgeChainDef edges = new EdgeChainDef();

    Vec2 v1 = new Vec2(width,height/2);
    Vec2 v2 = new Vec2(width/2,height/2+50);
    Vec2 v3 = new Vec2(0,height/2+50);
    
    edges.addVertex(box2d.coordPixelsToWorld(v1));
    edges.addVertex(box2d.coordPixelsToWorld(v2));
    edges.addVertex(box2d.coordPixelsToWorld(v3));
    
    surface.add(v1);
    surface.add(v2);
    surface.add(v3);

    edges.setIsLoop(false);   // We could make the edge a full loop
    edges.friction = 2.0;    // How much friction
    edges.restitution = 0.3; // How bouncy

    // The edge chain is now a body!
    BodyDef bd = new BodyDef();
    Body body = box2d.world.createBody(bd);
    body.createShape(edges);
  }

Notice how the above class includes an ArrayList to store a series of Vec2 objects.   Even though 
we fully intend to store the coordinates of the EdgeChain in the EdgeChain Shape itself, we are 
choosing the ease of redundancy and keeping our own list of those points as well.  Later, when 
we go to draw the EdgeChain, we don’t have to ask Box2D for the locations of the vertices.

  void display() {
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    strokeWeight(1);
    stroke(0);
    noFill();
    beginShape();
    for (Vec2 v: surface) {
      vertex(v.x,v.y);
    }
    endShape();
  }
}

What we need in the main tab for our Surface object is quite simple, given that Box2D takes care 
of all of the physics for us.

PBox2D box2d;

Surface surface;

void setup() {
  size(500,300);
  box2d = new PBox2D(this);
  box2d.createWorld();

  surface = new Surface();
}

void draw() {
  box2d.step();

  background(255);
  surface.display();
}

Exercise: Review how we learned to draw a wave pattern in Chapter 3.  Create an EdgeChain 
out of a sine wave.  Try using Perlin noise (see Prologue) as well.

   
Sine Wave      Perlin Noise

5.10   Complex Forms
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Now that we’ve seen how easy it is to make simple geometric forms in Box2D, let’s imagine that 
you want to have a more complex form, such as a little alien stick 
figure.  

There are two strategies in Box2D for making forms that are more 
advanced than a basic circle or square.   One is to use the Polygon 
Definition in a different way.  In our previous examples, we used 
PolygonDef to generate a rectangular shape with the setAsBox() 
function.

    PolygonDef sd = new PolygonDef();
    sd.setAsBox(box2dW, box2dH);

This was a good way to start because of the inherent simplicity of working with rectangles.  
However, PolygonDef also has a function called addVertex(), which allows you to build a 
completely custom shape as a series of connected vertices.

Example: Polygon Shapes
PolygonDef sd = new PolygonDef();
sd.addVertex(box2d.vectorPixelsToWorld(new Vec2(-15,25)));
sd.addVertex(box2d.vectorPixelsToWorld(new Vec2(10,5)));
sd.addVertex(box2d.vectorPixelsToWorld(new Vec2(15,0)));
sd.addVertex(box2d.vectorPixelsToWorld(new Vec2(20,-15)));
sd.addVertex(box2d.vectorPixelsToWorld(new Vec2(-10,-10)));

When building your own polygon in Box2D, you must 
remember two important details.  

1. Order of vertices!  If you are thinking in terms of 
pixels (as above) the vertices should be defined in 
counter-clockwise order.  (When they are translated to 
Box2D world vectors, they will actually be in 
clockwise order since the vertical axis is flipped.)  

2. Convex shapes only!  A concave shape is one 
where the surface curves inward. Convex is the 
opposite (see illustration below).  Note how in a 

concave shape every internal angle must be 180 degrees or less.  Box2D is not capable of 
handling collisions for “concave” shapes.  If you need a concave shape, you will have to build 
one out of multiple convex shapes (more about that in a moment).
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Now, when it comes time to display the shape in Processing, we can no longer just use rect() or 
ellipse().  Since the shape is built out of custom vertices, we’ll want to use Processing’s 
beginShape(), endShape(), and vertex() functions.   As we saw with the EdgeChainDef, we 
could choose to store the pixel locations of the vertices in our own ArrayList for drawing.  
However, it’s also useful to see how we can ask Box2D to report back to use the vertex locations.

  void display() {
    Vec2 pos = box2d.getBodyPixelCoord(body);
    float a = body.getAngle();

    PolygonShape ps = (PolygonShape) body.getShapeList();  $$ Get the Shape attached to the Body

    Vec2[] vertices = ps.m_vertices;    $$ The Shape keeps track of its array of vertices

    rectMode(CENTER);
    pushMatrix();
    translate(pos.x,pos.y);
    rotate(-a);
    fill(175);
    stroke(0);
    beginShape();
    for (int i = 0; i < vertices.length; i++) {! ! $$ We can loop through that array and
      Vec2 v = box2d.vectorWorldToPixels(vertices[i]); !    convert each vertex from Box2D 
! vertex(v.x,v.y);! ! ! ! ! ! !    space to pixels.
    }
    endShape(CLOSE);
    popMatrix();
  }

Exercise: Using PolygonDef, create your own Polygon design (remember, it must be concave).  
Some possibilities below.

[ILLUSTRATE SOME OTHER POLYGON EXAMPLES]
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A polygon shape will get us pretty far in Box2D.  Nevertheless, the convex 
shape requirement will severely limit the range of possibilities.  The good 
news is that we can completely eliminate this limit by creating a single 
Box2D body out of multiple shapes!  Let’s return to our little alien creature 
and simplify the shape to be a thin rectangle with a circle on top.  

How can we build a single Body with two Shapes?  Let’s first review how 
we built a single Body with one Shape.

Step 1.  Define the Body
Step 2. Create the Body
Step 3. Define the Shape
Step 4. Attach the Shape to the Body
Step 5. Finalize the Body’s mass

Attaching more than one Shape to a Body is as simple as repeating steps 3 and 4 over and over 
again.  

Step 3a. Define  Shape 1
Step 4a. Attach Shape 1 to the Body
Step 3b. Define  Shape 2
Step 4b. Attach Shape 2 to the Body
etc. etc. etc.

Let’s see what this would look like with actual Box2D code.

BodyDef bd = new BodyDef();! ! ! ! ! $$ Making the Body
bd.position.set(box2d.coordPixelsToWorld(center));
body = box2d.createBody(bd);

PolygonDef sd = new PolygonDef();! ! ! ! $$ Making Shape 1 (the rectangle)
float box2dW = box2d.scalarPixelsToWorld(w/2);
float box2dH = box2d.scalarPixelsToWorld(h/2);
sd.setAsBox(box2dW, box2dH);
sd.density = 1.0;
sd.friction = 0.3;
sd.restitution = 0.5;

CircleDef cd = new CircleDef();! ! ! ! $$ Making Shape 2 (the circle)
cd.radius = box2d.scalarPixelsToWorld(h/2);
cd.density = 1.0;
cd.friction = 0.3;! ! $$ These values could be different if we want!!
cd.restitution = 0.5;

body.createShape(sd);! ! ! ! ! ! $$ Attach both Shapes!
body.createShape(cd);

body.setMassFromShapes();! ! ! ! ! $$ Finalize Body

The above looks pretty good, but sadly, if we run it, we’ll get the following result:
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When you attach a Shape to a Body, by default, the center of the Shape will be located at the 
center of the Body.  But in our case, if we take the center of the rectangle to be the center of the 
Body, we want the center of the circle to be offset along the y-axis from the Body’s center.

This is achieved by using the localPosition property of a Shape Definition.  

    Vec2 offset = new Vec2(0,-h);! $$ Our offset in pixels
    cd.localPosition = box2d.vectorPixelsToWorld(offset);  $$ Converting the vector to Box2D
! ! ! ! ! ! ! ! ! !  world and setting the local position

Then when we go to draw the Body, we use both rect() and ellipse() with the circle offset the 
same way.

  Example: Multiple Shapes on one Body
  void display() {
    Vec2 pos = box2d.getBodyPixelCoord(body);
    float a = body.getAngle();

    rectMode(CENTER);
    pushMatrix();
    translate(pos.x,pos.y);
    rotate(-a);
    fill(175);
    stroke(0);
    rect(0,0,w,h);! ! $$ First the rectangle at (0,0)
    ellipse(0,-h,h,h);!! $$ Then the ellipse offset at (0,-h)
    popMatrix();
  }
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Finishing off this section, I want to stress the following: the stuff you draw in your Processing 
window doesn’t magically experience physics simply because we created some Box2D Bodies 
and Shapes.  These examples work because we very carefully matched how we draw our 
elements with how we defined the Bodies and Shapes we put into the Box2D world.   If you 
accidentally draw your shape differently,you won’t get an error, not from Processing or from 
Box2D.  However, your sketch will look odd and the physics won’t work correctly.  For 
example, what if we had written:

Vec2 offset = new Vec2(0,-h);!

when we created the Shape, but:

ellipse(0,h,h,h);

when it came time to display the Shape?  The results would look 
like the image to the right, where clearly, the collisions are not 
functioning as expected.  This is not because the physics is 
broken; it’s because we did not communicate properly with 
Box2D either when we put stuff in the magic world or queried 
the world for locations.

Exercise: Make your own little alien being using multiple Shapes attached to a single Body.  Try 
using more than one Polygon to make a concave shape.   Remember, you aren’t limited to using 
the shape drawing functions in Processing; you can use images, colors, add hair with lines, etc.  
Think of the Box2D shapes as only a skeleton for your creative and fantastical design!

5.11 Feeling Attached—Box2D Joints

Box2D joints allow you to connect one Body to another, enabling more advanced simulations of 
swinging pendulums, elastic bridges, squishy characters, wheels spinning on an axle, etc.  There 
are many different kinds of Box2D joints. In this chapter we’re going to look at three:  distance 
joints, revolute joints, and “mouse” joints.

Let’s begin with a distance joint, a joint that connects two Bodies with 
a fixed length.  The joint is attached to each Body at a specified 
anchor point (a point relative to the Body’s center.)  For any Box2D 
joint, we need to follow these steps.  This, of course, is similar to the 
methodology we used to build Bodies and Shapes, with some quirks.

Step 1.  Make sure you have two Bodies ready to go.
Step 2. Define the Joint.
Step 3. Configure the Joint’s properties (What are the Bodies? 
Where are the anchors? What is its rest length? Is it elastic or rigid?)
Step 4. Create the Joint.
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Let’s assume we have two Particle objects that each store a reference to a Box2D Body.  We’ll 
call them Particles p1 and p2.

Particle p1 = new Particle();
Particle p2 = new Particle();

OK, onto Step 2.  Let’s define the Joint.

DistanceJointDef djd = new DistanceJointDef();

Easy, right?  Now it’s time to configure the Joint.   First we tell the Joint which two Bodies it 
connects:

djd.body1 = p1.body;
djd.body2 = p2.body;

Then we set up a rest length.  Remember, if our rest length is in pixels, we need to convert it!

djd.length = box2d.scalarPixelsToWorld(10);

A distance joint also includes two optional settings that can make the joint soft, like a spring 
connection: frequencyHz and damping ratio.

 djd.frequencyHz  = ___;  $$ Measured in Hz, like the frequency of harmonic oscillation; try
                             values between 1 and 5
 djd.dampingRatio = ___;  $$ Dampens the spring, typically a number between 0 and 1

Finally, we create the Joint.

DistanceJoint dj = (DistanceJoint) box2d.world.createJoint(djd);

Box2D won’t keep track of what kind of Joint we are making, so we have to cast it as a 
DistanceJoint upon creation.  

We can create Box2D joints anywhere in our Processing sketch.  Here’s an example of how we 
might write a class to describe two Box2D bodies connected with a single joint.

Example: DistanceJoint
class Pair {

  Particle p1;! ! $$ Two objects that each have a Box2D body
  Particle p2;
  float len = 32;!! $$ Arbitrary rest length

  Pair(float x, float y) {

    p1 = new Particle(x,y);
    p2 = new Particle(x+random(-1,1),y+random(-1,1));  $$ Problems can result if the bodies are
                                                          initialized at the same location

    DistanceJointDef djd = new DistanceJointDef();!    $$ Making the joint!
    djd.body1 = p1.body;
    djd.body2 = p2.body;
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    djd.length = box2d.scalarPixelsToWorld(len);
    djd.frequencyHz = 0;  // Try a value less than 5
    djd.dampingRatio = 0; // Ranges between 0 and 1

    // Make the joint.  Note we aren't storing a reference to the joint anywhere!
    // We might need to someday, but for now it's OK.
    DistanceJoint dj = (DistanceJoint) box2d.world.createJoint(djd);
  }

  // Draw the bridge
  void display() {
    Vec2 pos1 = box2d.getBodyPixelCoord(p1.body);
    Vec2 pos2 = box2d.getBodyPixelCoord(p2.body);
    stroke(0);
    line(pos1.x,pos1.y,pos2.x,pos2.y);

    p1.display();
    p2.display();
  }
}

Exercise: Create a simulation of a bridge by using distance 
joints to connect a sequence of circles (or rectangles) as 
illustrated to the right.  Assign a density of zero to lock the 
endpoints in place.  Experiment with different values to make 
the bridge more or less “springy.”   It should also be noted that 
the joints themselves have no physical geometry, so in order for 
your bridge not to have holes, spacing between the nodes will be 
important.

Another joint you can create in Box2D is a Revolute Joint.   

A revolute connects two Box2D bodies at a common anchor point, which can also be referred to 
as a “hinge.”   The joint has an “angle” which describes the relative rotation of each Body.   To 
use a Revolute Joint, we follow the same steps we did with the Distance Joint.

Step 1.  Make sure you have two bodies ready to go. 
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Let’s assume we have two “Box” objects, each of which stores a reference to a Box2D Body.

Box box1 = new Box();
Box box2 = new Box();

Step 2. Define the Joint.

Now we want a RevoluteJointDef.

RevoluteJointDef rjd = new RevoluteJointDef();

Step 3. Configure the Joint’s properties.

The most important properties of a RevoluteJoint are the two bodies it connects.

rjd.body1 = box1.body;
rjd.body2 = box2.body;

However, there are several other properties you can set, including the local anchor points (where 
the connections are made on the Body), as well as upper and lower limits to the angle.

An exciting aspect to the RevoluteJoint is that you can motorize it so it spins autonomously.  For 
example:

rjd.enableMotor = true;      $$ Turn on the motor.
rjd.motorSpeed = PI*2;       $$ How fast is the motor?
rjd.maxMotorTorque = 1000.0; $$ How powerful is the motor?

The motor can be enabled and disabled while the program is running.

Step 4. Create the Joint.

RevoluteJoint joint = (RevoluteJoint) box2d.world.createJoint(rjd);

Let’s take a look at all of these steps together in a class called Windmill, which connects two 
boxes with a revolute joint.  In this case, “box1” has a density of zero, so only “box2” spins 
around a fixed point. 

Example: Spinning Windmill
class Windmill {

  RevoluteJoint joint;  $$ Our “Windmill” is two boxes and one joint
  Box box1;
  Box box2;

  Windmill(float x, float y) {

    box1 = new Box(x,y,120,10,false); 
    box2 = new Box(x,y,10,40,true);   $$ In this example, the Box class expects a boolean
 ! ! ! ! ! !    argument argument that will be used to determine if the
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! ! ! ! ! !    Box is fixed or not.  See web site for the Box class code.

    RevoluteJointDef rjd = new RevoluteJointDef();! $$ The Joint connects two Bodies
    rjd.body1 = box1.body;
    rjd.body2 = box2.body;
    
    Vec2 v1 = box2d.coordPixelsToWorld(x,y);
    rjd.localAnchor1 = box1.body.getLocalPoint(v1);
    Vec2 v2 = box2d.coordPixelsToWorld(x,y-20);! $$ Here we are customizing the anchor points
    rjd.localAnchor2 = box1.body.getLocalPoint(v2);
    
    rjd.motorSpeed = PI*2;       $$ A Motor!
    rjd.maxMotorTorque = 1000.0; 
    rjd.enableMotor = true;      
    
    joint = (RevoluteJoint) box2d.world.createJoint(rjd);  $$ Create the Joint
  }
  
  void toggleMotor() {!! $$ Turning the motor on or off
    boolean motorstatus = joint.isMotorEnabled();
    joint.enableMotor(!motorstatus);
  }
  
  void display() {
    box1.display();
    box2.display();
  }
}

Exercise: Use a RevoluteJoint for the wheels of a Car.  Use motors so that the car drives 
autonomously.  Try using an EdgeChain for the road’s surface.

The last joint we’ll look at is the MouseJoint.  The MouseJoint is typically used for moving a 
Body with the mouse.  However, it can also be used to drag an object around the screen 
according to some arbitrary x and y.   The joint functions by pulling the Body towards a “target” 
position. 

Before we look at the MouseJoint itself, let’s ask ourselves why we even need it in the first place.  
If you look at the Box2D documentation, there is a function called setXForm() that specifically  
“sets the position of the body's origin and rotation (radians).”  If a Body has a position, can’t we 
just assign the Body’s position to the mouse? 

Vec2 mouse = box2d.screenToWorld(x,y);
body.setXForm(mouse,0);
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While this will in fact move the Body, it also will have the unfortunate result of breaking the 
physics.  Let’s imagine you built a teleportation machine that allows you to teleport from your 
bedroom to your kitchen (good for late night snacking.)   Now, go ahead and rewrite Newton’s 
laws of motion to account for the possibility of teleportation.  Not so easy, right?  Box2D has the 
same problem.  If you manually assign the location of an body, it’s like saying “teleport that 
body” and Box2D no longer knows how to compute the physics properly.  However, Box2D 
does allow you to tie a rope to yourself and get a friend of yours to stand in the kitchen and drag 
you there.  This is what the Mouse Joint does. It’s like a string you attach to a Body and pull 
towards a target.

Let’s look at making this joint, assuming we have a Box object: box.  This code will look 
identical to our distance joint with one small difference.

MouseJointDef md = new MouseJointDef();! ! $$ Just like before, define the Joint

md.body1 = box2d.world.getGroundBody();! ! $$ Whoa, this is new!
md.body2 = box.body;! ! ! ! ! $$ Attach the Box Body

md.maxForce = 5000.0;! ! ! ! ! $$ Set properties
md.frequencyHz = 5.0;
md.dampingRatio = 0.9;

MouseJoint mouseJoint = (MouseJoint) box2d.world.createJoint(md);! $$ Create the Joint

So, what’s this line of code all about?

md.body1 = box2d.world.getGroundBody();

Well, as we’ve stated, a joint is a connection between two bodies.  With the MouseJoint, we’re 
saying that the second body is, well, the ground.  Hmm.  What the heck is the ground in Box2D?   
One way to imagine it is to think of the screen as the ground.  What we’re doing is making a 
joint that connects a rectangle drawn on the window with the Processing window itself.  And the 
point  in the window to which the connection is tied is a moving target.  

Once we have a MouseJoint, we’ll want to update the target location continually while the sketch 
is running.

Vec2 mouseWorld = box2d.coordPixelsToWorld(mouseX,mouseY);
mouseJoint.setTarget(mouseWorld);

To make this work in an actual Processing sketch, we’ll want to have the following:

• Box class—An object that references a Box2D Body.
• Spring class—An object that manages the MouseJoint that drags the Box object around.
• Main tab—Whenever mousePressed() is called, the MouseJoint is created; whenever 

mouseReleased() is called, the MouseJoint is destroyed.  This allows us to interact with a 
Body only when the mouse is pressed.
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Let’s take a look at the main tab.  You can find the rest of the code for the Box and Spring classes 
on the book web site.

Example: MouseJoint demonstration
PBox2D box2d;

Box box;! ! $$ One Box
Spring spring;! $$ Object to manage MouseJoint

void setup() {
  size(400,300);
  box2d = new PBox2D(this);
  box2d.createWorld();

  box = new Box(width/2,height/2);
  spring = new Spring();! $$ The MouseJoint is really null until we click the mouse
}

void mousePressed() {
  if (box.contains(mouseX, mouseY)) {! $$ Was the mouse clicked inside the Box?
    spring.bind(mouseX,mouseY,box);! $$ If so, attach the MouseJoint
  }
}

void mouseReleased() {
  spring.destroy();! ! $$ When the mouse is released, we’re done with the Joint
}

void draw() {
  background(255);

  box2d.step();

  spring.update(mouseX,mouseY);! $$ We must always update the MouseJoint’s target

  box.display();
  spring.display();
}

Exercise: Move a Box2D Body around the screen according to an algorithm or input other than 
the mouse.  For example, assign it a location according to Perlin noise or key presses.  Or build 
your own controller using an Arduino (http://www.arduino.cc/).

5.12 Bringing it all back home to forces

In Chapter 2, we spent a lot of time thinking about building environments with multiple forces.  
An object might respond to gravitational attraction, wind, air resistance, etc.  Clearly there are 
forces at work in Box2D as we watch rectangles and circles spin and fly around the screen.  But 
so far, we’ve only had the ability to manipulate a single global force—gravity.

  box2d = new PBox2D(this);
  box2d.createWorld();
  box2d.setGravity(0, -20);! ! $$ Setting the global gravity force
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If we want to use any of our Chapter 2 techniques with Box2D, we need look no further than our 
trusty applyForce() function.   In our Mover class we wrote a function called applyForce(), 
which received a vector, divided it by mass, and accumulated it into the Mover’s acceleration.  
With Box2D, the same function exists, but we don’t need to write it ourselves.  Instead, we can 
call the Box2D Body’s applyForce() function!

class Box {
  Body body;

  // etc. etc.
  void applyForce(Vec2 force) {
    Vec2 pos = body.getMemberWorldCenter();
    body.applyForce(force, pos);
  }
}

Here we are receiving a force vector and passing it along to the Box2D Body object.  The key 
difference is that Box2D is a more sophisticated engine that our examples from Chapter 2.   Our 
earlier forces examples assumed that the force was always applied at the Mover’s center.  Here 
we get to specify exactly where on the Body the force is applied.  In the above code, we’re just 
applying it to the center by asking the Body for its center, but this could be adjusted.

Let’s say we wanted to use a gravitational attraction force.  Remember the code we wrote back in 
Chapter 2 in our Attractor class?

  PVector attract(Mover m) {
    PVector force = PVector.sub(location,m.location);             
    float distance = force.mag();
    distance = constrain(distance,5.0,25.0);                                                         
    force.normalize();                                            
    float strength = (g * mass * m.mass) / (distance * distance);
    force.mult(strength);                                        
    return force;
  }

We can rewrite the exact same function using Vec2 instead and use it in a Box2D example.  Note 
how for our force calculation we can stay completely within the Box2D coordinate system and 
never think about pixels.

  Vec2 attract(Mover m) {
    Vec2 pos = body.getMemberWorldCenter();    $$ We have to ask Box2D for the locations first!
    Vec2 moverPos = m.body.getMemberWorldCenter();
    Vec2 force = pos.sub(moverPos); 

    float distance = force.length();
    distance = constrain(distance,1,5);
    force.normalize();
    float strength = (G * 1 * m.body.m_mass) / (distance * distance);
    force.mulLocal(strength);!! $$ Remember, it’s mulLocal() for Vec2
    return force;
  }
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Exercise: Take any example you made previously using a force 
calculation and bring that force calculation into Box2D.  

5.13 Collision Events

Now we’ve seen a survey of what can be done with Box2D.   Since this book is not called “The 
Nature of Box2D”, it’s not my intention to cover every single possible feature of the Box2D 
engine.  But hopefully by looking at the basics of building bodies, shapes, and joints, when it 
comes time to use an aspect of Box2D that we haven’t covered, the skills we’ve gained here will 
make that process considerably less painful.  There is one more feature of Box2D, however, that 
I do think is worth covering.  

Let’s ask a question you’ve likely been wondering:

What if I want something to happen when two Box2D bodies collide?   I mean, don’t get me 
wrong—I’m thrilled that Box2D is handling all of the collisions for me. But if it takes care of 
everything for me, how am I supposed to know when things are happening?

Your first thoughts when considering an event during which two objects collide might be as 
follows:  Well, if I know all the bodies in the system, and I know where they are all located, then 
I can just start comparing the locations, see which ones are intersecting, and determine that 
they’ve collided.  That’s a nice thought, but hello??!?  The whole point of using Box2D is that 
Box2D will take care of that for us.  If we are going to do the geometry to test for intersection 
ourselves, then all we’re doing is re-implementing Box2D.

Of course, Box2D has thought of this problem before.  It’s a pretty common one.  After all, if 
you intend to make a bajillion dollars selling some game called Angry Birds, you better well 
make something happen when an ill-tempered pigeon smashes into a cardboard box.   Box2D 
alerts you to moments of collision with something called an “interface.”  It’s worth learning 
about interfaces, an advanced feature of object-oriented programming. You can take a look at the 
Java Interface tutorial (http://download.oracle.com/javase/tutorial/java/concepts/interface.html) 
as well as the JBox2D ContactListener class. (I have also included an example on the web site 
that demonstrates using the interface directly.)  

If you are using PBox2D, as we are here, you don’t need to implement your own interface.  
Detecting collision events is done through a callback function no different than mousePressed().

void mousePressed() {! ! ! ! $$ The mousePressed event with which we are comfortable
  println(“The mouse was pressed!”);
}
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void addContact(ContactPoint cp) {!! $$ What our “addContact” event looks like
  println(“Something collided in the Box2D World!”);
}

Before the above will work, you must first let PBox2D know you intend to listen for collisions. 
(This allows the library to reduce overhead by default; it won’t bother listening if it doesn’t have 
to.)

void setup() {
  box2d = new PBox2D(this);
  box2d.createWorld();
  box2d.listenForCollisions();! $$ Add this line if you want to listen for collisions
}

There are four collision event callbacks.

• addContact()—this is triggered whenever two shapes first come into contact with each 
other.

• persistContact()—this is triggered over and over again as long as shapes continue to be in 
contact.

• removeContact()—this is triggered when two shapes that were previouslytouching 
separate.

• resultContact()—this is triggered after a contact event is resolved.  [OK, I DON’T 
REALLY KNOW WHAT THIS MEANS.]

For simplicity, we are going to look at addContact() only.  This will cover the majority of 
conventional cases in which you want to trigger an action when a collision occurs.

void addContact(ContactPoint cp) {!!

}

Notice that the addContact() method above includes an argument of type ContactPoint.  A 
ContactPoint object includes all the data associated with a collision—the geometry and the 
forces.  Let’s say we have a Processing sketch with Particle objects that store a reference to a 
Box2D body.    Here is the process we are going to follow.

[ILLUSTRATION]

1. ContactPoint, could you tell me the two shapes that collided?

Shape s1 = cp.shape1;! $$ The ContactPoint stores the shapes in variables shape1 and shape2.
Shape s2 = cp.shape2;

2. Shapes, could you tell me which Body you are attached to?
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Body b1 = s1.getBody();! $$ getBody() gives us the Body that the Shape is attached 
Body b2 = s2.getBody();

3. Bodies, could you tell me which Particles you are associated with?

OK, this is the harder part.  After all, Box2D doesn’t know anything about our code.  Sure, it is 
doing all sorts of stuff to keep track of the relationships between Shapes and Bodies and Joints, 
but it’s up to us to manage our own objects and their associations with Box2D elements.   
Luckily for us, Box2D provides a function that allows us to attach our Processing object (a 
Particle) to a Box2D Body via the setUserData() and getUserData() methods.

Let’s take a look at the constructor in our Particle class where the Body is made.   We are 
expanding our Body-making procedure by one line of code, noted below.

class Particle {
  Body body;

  Particle(float x, float y, float r) {
    BodyDef bd = new BodyDef();
    bd.position = box2d.coordPixelsToWorld(x,y);
    body = box2d.world.createBody(bd);
    CircleDef cd = new CircleDef();
    cd.radius = box2d.scalarPixelsToWorld(r);
    cd.density = 1.0;
    cd.friction = 0.01;
    cd.restitution = 0.3; 
    body.createShape(cd);
    body.setMassFromShapes();!
! ! ! !

  body.setUserData(this); ! $$ “this” refers to this Particle object.

! ! ! ! ! ! ! ! ! We are telling the Box2D Body to store a
 ! ! ! ! ! ! ! ! ! reference to this Particle that we can
 ! ! ! ! ! ! ! ! ! access later.
  }

Later, in our addContact() function, once we know the Body, we can access the Particle object 
with getUserData().

Example: CollisionListening

void addContact(ContactPoint cp) {
  Shape s1 = cp.shape1;
  Shape s2 = cp.shape2;

  Body b1 = s1.getBody();
  Body b2 = s2.getBody();
  
  Particle p1 = (Particle) b1.getUserData();! !
  Particle p2 = (Particle) b2.getUserData();! $$ When we pull the “user data” object out of the
  ! ! ! ! ! ! ! ! Body object, we have to remind our program that it
! ! ! ! ! ! ! ! is a Particle object.  Box2D doesn’t know this.
  p1.change();! !
  p2.change();! ! ! $$ Once we have the particles, we can do anything to them.  Here we
! ! ! ! ! just call a function that changes their color.
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}

Now, in many cases, we cannot assume that the objects that collided are all Particle objects.  We 
might have a sketch with Boundary objects, Particle objects, Box objects, etc.  So often we will 
have to query the “user data” and find out what kind of object it is before proceeding.

  Object o1 = b1.getUserData();! ! ! $$ Getting a generic object
  if (o1.getClass() == Particle.class) {!! $$ Asking that object if it’s a Particle
    Particle p = (Particle) o1;
    p.change();
  }

Exercise: Consider how polymorphism could help in this case.  Build an example in which 
several classes extend one class and therefore eliminate the need for the above testing.

It should also be noted that due to how Box2D triggers these callbacks, you cannot create or 
destroy Box2D entities inside of addContact(), removeContact(), persistContact(), or 
resultContact().  If you want to do this, you’ll need to set a variable inside an object (something 
like: markForDeletion = true), which you check during draw() and then delete objects.

Exercise:  Create a simulation in which Particle objects disappear when they collide.  Use the 
methodology I just described.

5.14 A Brief Interlude -- Integration Methods

Has the following ever happened to you?  You’re at a fancy cocktail party regaling your friends 
with tall tales of software physics simulations.   Someone pipes up: “Enchanting! But what 
integration method are you using?”   “What?!” you think to yourself.  “Integration?”  

Maybe you’ve heard the term before.  Along with “differentiation,” it’s one of the two main 
operations in calculus.  Right, calculus.  The good news is, we’ve gotten through about 90% of 
the material in this book related to physics simulation and we haven’t really needed to dive into 
calculus.  But as we’re coming close to finishing this topic, it’s worth taking a moment to 
examine the calculus behind what we have been doing and how it relates to the methodology in 
certain physics libraries (like Box2D and the upcoming toxiclibs).  

Let’s begin by answering the question: “What does integration have to do with location, velocity, 
and acceleration?”   Well, first let’s define differentiation.    The derivative of a function is a 
measure of how a function changes over time.  Consider location and its derivative.  Location is 
a point in space, while velocity is change in location over time.  Therefore, velocity can be 
described as the “derivative” of location.   What is acceleration?  The change in velocity over 
time—i.e. the “derivative” of velocity.    

Now that we understand the derivative ( differentiation), we can define the integral ( integration) 
as the inverse of the derivative.  In other words, the integral of an object's velocity over time tells 
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us the object’s new location when that time period ends.   Location is the integral of velocity, and 
velocity is the integral of acceleration.  Sinceour physics simulation is founded upon the process 
of calculating acceleration based on forces , we need integration to figure out where the object is 
after a certain period of time (like one frame of animation!).

So we’ve been doing integration all along!  It looks like this:

velocity.add(acceleration);
location.add(velocity);

The above methodology is known as Euler Integration (named for the mathematician Leonhard 
Euler, pronounced “Oiler”) or the Euler Method.    It’s essentially the simplest form of 
integration and very easy to implement in our code (see the two lines above!).  However, it is not 
necessarily the most efficient form, nor is it close to being the most accurate.    Why is Euler 
inaccurate?  Let’s think about it this way.  When you drive a car down the road pressing the gas 
pedal with your foot and accelerating, does the car sit in one location at time equals 1 second, 
then disappear and suddenly reappear in a new location at time equals 2 seconds, and do the 
same thing for 3 seconds, and 4, and 5?  No, of course not.  The car moves continuously down 
the road.  But what’s happening in our Processing sketch?  A circle is at one location at frame 0, 
another at frame 1, another at frame 2.  Sure, at 30 frames per second, we’re seeing the illusion 
of motion.  But we only calculate a new location every N units of time, whereas the real world is 
perfectly continuous.   This results in some inaccuracies, as shown in the diagram below:

The “real world” is the curve; Euler simulation is the series of line segments.

One option to improve on Euler is to use smaller timesteps—instead of once per frame, we could 
recalculate an object’s location twenty times per frame.  But this isn’t practical; our sketch would 
then run too slowly.

I still believe that Euler is the best method for learning the basics, and it’s also perfectly adequate 
for most of the projects we might make in Processing.  Anything we lose in efficiency or 
inaccuracy we make up in ease of use and understandability.    For better accuracy, Box2D uses 
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something called symplectic Euler (or semi-explicit Euler), a slight modification of Euler (see: 
http://en.wikipedia.org/wiki/Symplectic_Euler_method).

There is also an integration method called Runge–Kutta (named for German mathematicians C. 
Runge and M.W. Kutta), which is used in some physics engines.

A very popular integration method that our next physics library uses is known as “Verlet 
Integration.”  A simple way to describe Verlet Integration is to think of our typical motion 
algorithm without velocity.  After all, we don't really need to store the velocity.  If we always 
know where an object was at one point in time and where it is now, we can extrapolate its 
velocity.  Verlet Integration does precisely this, though instead of having a variable for velocity, 
it calculates velocity while the program is running.   Verlet Integration is particularly well suited 
for particle systems, especially particle systems with spring connections between the particles.    
We don't need to worry about the details because toxiclibs, as we’ll see below, takes care of them 
for us.  However, if you are interested, here is the seminal paper on Verlet physics, from which 
just about every Verlet computer graphics simulation is derived:

http://www.gamasutra.com/resource_guide/20030121/jacobson_01.shtml

And of course, you can find out more about Verlet Integration via Wikipedia:

http://en.wikipedia.org/wiki/Verlet_integration

5.15 Verlet Physics with Toxiclibs

From toxiclibs.org:

“toxiclibs is an independent, open-source library collection for computational design tasks with 
Java & Processing developed by Karsten “toxi” Schmidt (thus far). The classes are purposefully 
kept fairly generic in order to maximize re-use in different contexts ranging from generative 
design, animation, interaction/interface design, data visualization to architecture and digital 
fabrication, use as teaching tool and more.”

In other words, we should thank our lucky stars for toxiclibs.  We are only going to focus on a 
few examples related to Verlet physics, but toxiclibs includes a suite of other wonderful packages 
that help with audio, color, geometry, and more.  In particular, if you are looking to work with 
form and fabrication in Processing, take a look at the geometry package.   Many demos can be 
found here:

http://www.openprocessing.org/portal/?userID=4530

We should note that toxiclibs was designed specifically for use with Processing.  This is great 
news.  The trouble we had with making Box2D work in Processing (multiple coordinate systems, 
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Box2D vs JBox2D vs PBox2D) is not an issue here.  toxiclibs is a library that you just download, 
stick in your libraries folder, and use.  And the coordinate system that we’ll use for the physics 
engine is the coordinate system of Processing, so no translating back and forth.   In addition, 
toxiclibs is not limited to a 2D world and all of the physics simulations and functions work in 
both two and three dimensions.  So how do you decide which library you should use?  Box2D or 
toxiclibs?  If you fall into one of the following two categories, your decision is a bit easier:

My project involves collisions.   I have circles, squares, and other strangely shaped objects that 
knock each other around and bounce off each other.

In this case, you are going to need Box2D.  toxiclibs does not handle collisions.

My project involves lots of particles flying around the screen.  Sometimes they attract each 
other.  Sometimes they repel each other.  And sometimes they are connected with springs.

In this case, toxiclibs is your best choice.  It is simpler to use than Box2D and particularly well 
suited to connected systems of particles.  It is also faster because of the Verlet integration 
algorithm and its ability to ignore all of the collision geometry [Is this true?  It must be true, 
right?]

Here is a little chart that covers some of the features for each physics library.

Feature Box2D toxiclibs VerletPhysics

Collision geometry Yes No

3D physics No Yes

Particle attraction / repulsion forces No Yes

Spring connections Yes Yes

Other connections: revolute, pulley, gear, prismatic Yes No

Motors Yes No

Friction Yes No

5.16 Getting toxiclibs

Everything you need to download and install toxiclibs can be found at:

http://toxiclibs.org/

When you download the library, you’ll notice that it comes with eight modules (i.e. sub-folders), 
each a library in its own right.  For the examples in this chapter, you will only need 
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“verletphysics” and “toxiclibscore”; however, I recommend you take a look at and consider 
using all of the modules!

Once you have the library installed to your Processing library folder (see: http://
wiki.processing.org/w/How_to_Install_a_Contributed_Library), you are ready to start looking at 
the following examples.  

5.16 Core Elements of VerletPhysics

We spent a lot of time working through the core elements of a Box2D world: world, body, shape, 
joint.   This gives us a head start on understanding toxiclibs, since it follows a similar structure.  

Box2D Toxiclibs VerletPhysics

World VerletPhysics

Body VerletParticle

Shape Nothing!  Toxiclibs does not handle shape geometry

Joint VerletSpring

5.17 Vectors with toxiclibs

Here we go again.  Remember all that time we spent learning the ins and outs of PVector?  Then 
remember how when we got to Box2D, we had to translate all those concepts to a Box2D vector 
class: Vec2?  Well, it’s time to do it again.  toxiclibs also includes its own vector classes, one for 
two dimensions and one for three:  Vec2D and Vec3D.

Again, toxiclibs vectors are the same conceptually, but we need to learn a bit of new syntax.  You 
can find all of the documentation for these vector classes here:

http://toxiclibs.org/docs/core/toxi/geom/Vec2D.html
http://toxiclibs.org/docs/core/toxi/geom/Vec3D.html

And let’s just review some of the basic vector math operations with PVector translated to Vec2D 
(we’re sticking with 2D for simplicity’s sake).

PVector Vec2D

  PVector a = new PVector(1,-1);
  PVector b = new PVector(3,4);
  a.add(b);

  Vec2D a = new Vec2D(1,-1);
  Vec2D b = new Vec2D(3,4);
  a.addSelf(b);
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PVector Vec2D

  PVector a = new PVector(1,-1);
  PVector b = new PVector(3,4);
  PVector c = PVector.add(a,b);

  Vec2D a = new Vec2D(1,-1);
  Vec2D b = new Vec2D(3,4);
  Vec2D c = a.add(b);

  PVector a = new PVector(1,-1);
  float m = a.mag();
  a.normalize();

  Vec2D a = new Vec2D(1,-1);
  float m = a.magnitude();
  a.normalize();

5.17 Building the toxiclibs Physics World

The first thing we need to do to use VerletPhysics in our examples is import the library itself.

import toxi.physics2d.*;
import toxi.physics2d.behaviors.*;
import toxi.geom.*;

Then we’ll need a reference to our physics world, a VerletPhysics or VerletPhysics2D object 
(depending on whether we are working in two or three dimensions.)  The examples in this 
chapter will operate in 2D only for simplicity, but they could easily be extended into 3D (and 3D 
versions are available with the chapter download).

VerletPhysics2D physics;

void setup() {
  physics=new VerletPhysics2D();

Once you have your Physics object, you can set some global properties for your world.  For 
example, if you want it to have hard boundaries past which objects cannot travel, you can set its 
limits:

  physics.setWorldBounds(new Rect(0,0,width,height));

In addition, you can add gravity to the physics world with a GravityBehavior object.  A 
GravityBehavior requires a vector—how strong and in what direction is the gravity?

  physics.addBehavior(new GravityBehavior(new Vec2D(0,0.5)));
}

Finally, in order to calculate the physics of the world and move the objects in the world, we have 
to call update().  Typically this would happen once per frame in draw().

void draw() {
  physics.update();
}
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5.18 Adding Particles to the toxiclibs world

In the Box2D examples, we saw how we can create our own class (called, say, Particle) and 
include a reference to a Box2D Body. 

class Particle {
  Body body;

This technique is somewhat redundant since Box2D itself keeps track of all of the Bodies in its 
world.  However, it allows us to manage which Body is which (and therefore how each Body is 
drawn) without having to rely on iterating through Box2D’s internal lists.

Let’s look at how we might take the same approach with the class VerletParticle2D in toxiclibs. 
We want to make our own Particle class so that we can draw our Particle a certain way and 
include any custom properties. We’d probably write our code as follows:

class Particle {
  VerletParticle2D p;! ! ! $$ Our Particle has a reference to a VerletParticle
 
  Particle(Vec2D pos) {
    p = new VerletParticle2D(pos); $$ A VerletParticle needs an initial location (an x and y)
  }
 
  void display() {
    fill(0,150); 
    stroke(0);
    ellipse(p.x,p.y,16,16);! ! $$ When it comes time to draw the Particle, we ask the
  }! ! ! ! ! ! VerletParticle for its x and y coordinate
}

Looking at the above, we should first be thrilled to notice that drawing the Particle is as simple 
as grabbing the x and y and using them.  No awkward conversions between coordinate systems 
here since toxiclibs is designed to think in pixels.    Second, you might notice that this Particle 
class’s sole purpose is to store a reference to a VerletParticle2D.  This hints at something.  
Remember our discussion of inheritance back in Chapter 4: Particle Systems?

What is a Particle object other than an “augmented” VerletParticle?  Why bother making a 
VerletParticle inside a Particle when we could simply extend VerletParticle? 

class Particle extends VerletParticle2D {
 
  Particle(Vec2D loc) {!
    super(loc);!  ! $$ Calling super() so that the object is initialized properly
  }
 
  void display() {! $$ We want to be just like a VerletParticle, only with a display() method
    fill(175);
    stroke(0);
    ellipse(x,y,16,16);!$$ We’ve inherited x and y from VerletParticle!
  }
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}
 

Remember our multi-step process with the Box2D examples?  We had to ask the Body for its 
location, then convert that location to pixels, then use that location in a drawing function.  Now, 
because we have inherited everything from VerletParticle, our only step is to draw the shape at 
the x and y!  

Incidentally, it’s interesting to note that the VerletParticle2D class is a subclass of Vec2D. So in 
addition to inheriting everything from VerletParticle2D, our Particle class actually has all of the 
Vec2D functions available as well. 

We can now create Particle objects anywhere within our sketch.

  Particle p1 = new Particle(new Vec2D(100,20));
  Particle p2 = new Particle(new Vec2D(100,180));

Just making a Particle object isn’t enough, however.  We have to make sure we tell our physics 
world about them with the addParticle() function.

  physics.addParticle(p1);
  physics.addParticle(p2);

If you look at the toxiclibs documentation, you’ll see that the addParticle() expects a 
VerletParticle2D object.

addParticle(VerletParticle2D p) 

And how can we then pass into the function our own “Particle” object?   Remember that other 
tenet of object-oriented programming—polymorphism?   Here, because our Particle class 
extends VerletParticle2D, we can choose to treat our Particle object in multiple ways—as a 
Particle or as a VerletParticle2D.   This is an incredibly powerful feature of object-oriented 
programming.  If we build our custom classes based on classes from toxiclibs, we can use our 
objects in conjunction with all of the functions toxiclibs has to offer.

5.19 Connecting Particles

toxiclibs has a set of classes that allow you to connect two VerletParticle objects with spring 
forces.  There are three types of springs in toxiclibs:

• VerletSpring: This class creates a springy connection between two VerletParticles in space. 
A Spring’s properties can be configured in such a way as to create a stiff stick-like 
connection or a highly elastic stretchy connection. A Particle can also be locked so that 
only one end of the Spring can move.
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• VerletConstrainedSpring: A VerletConstrainedSpring is a spring whose maximum distance 
can be limited. This can help the whole spring system achieve better stability.

• VerletMinDistanceSpring: A VerletMinDistanceSpring is a Spring that only enforces its 
rest length if the current distance is less than its rest length. This is handy if you want to 
ensure objects are at least a certain distance from each other, but don’t care if the distance 
is bigger than the enforced minimum.

The inheritance and polymorphism technique we employed in the previous section proves also to 
be useful when creating VerletSprings. A VerletSpring expects two VerletParticles when the 
spring is created. And again, because our Particle class extends VerletParticle, VerletSpring will 
accept our Particles passed into the constructor.  Let’s take a look at some example code that 
assumes the existence of our two previous Particles p1 and p2 and creates a connection between 
them with a given rest length and strength.

float len = 80;! ! ! $$ What is the rest length of the spring?
float strength = 0.01;!! $$ How strong is the spring?  
VerletSpring2D spring=new VerletSpring2D(p1,p2,len,strength);

Just as with Particles, in order for the connection to actually be part of the physics world, we 
need to explicitly add it.

physics.addSpring(spring);

5.20 Putting it all together: A simple interactive Spring

One thing we saw with Box2D is that the physics simulation broke down when we overrode it 
and manually set the location of a Body. With toxiclibs’ VerletPhysics, we don’t have this 
problem.  If we want to move the location of a Particle, we can simply set its x and y location 
manually.  However, before we do so, it’s generally a good idea to call the lock() function.

lock() is typically used to lock a Particle in place and is identical to setting a Box2D body’s 
density to zero.   However, here we are going to show how to lock a particle temporarily, move 
it, and then unlock it so that it continues to move according to the physics simulation.  

Let’s say you want to move a given particle whenever you click the mouse.

  if (mousePressed) {! ! $$ First lock the particle, then set the x and y, then unlock() it
    p2.lock();
    p2.x = mouseX;
    p2.y = mouseY;
    p2.unlock();
  }

And now we’re ready to put all of these elements together in a simple example that connects two 
particles with a Spring.  One Particle is locked in place, and the other can be moved by dragging 
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the mouse.  Note that this example is virtually identical to Example 3.x: Oscillating Spring (see 
p.XX).

Example 15-x: Simple Spring with toxiclibs
import toxi.physics2d.*;
import toxi.physics2d.behaviors.*;
import toxi.geom.*;

VerletPhysics2D physics;!
Particle p1;! ! !
Particle p2;

void setup() {
  size(200,200);

  physics=new VerletPhysics2D();! $$ Creating a physics world
  physics.addBehavior(new GravityBehavior(new Vec2D(0,0.5)));
  physics.setWorldBounds(new Rect(0,0,width,height));
  
  p1 = new Particle(new Vec2D(100,20));! $$ Creating 2 Particles
  p2 = new Particle(new Vec2D(100,180));
  p1.lock();! ! ! ! ! $$ Locking Particle 1 in place

  VerletSpring2D spring=new VerletSpring2D(p1,p2,80,0.01);!$$ Creating 1 Spring

  physics.addParticle(p1);! ! $$ Must add everything to the world
  physics.addParticle(p2);
  physics.addSpring(spring);
}

void draw() {
  physics.update();! ! ! $$ Must update the physics

  background(255);

  line(p1.x,p1.y,p2.x,p2.y);!! $$ Drawing everything
  p1.display();
  p2.display();

  if (mousePressed) {! ! ! $$ Moving a Particle according to the Mouse
    p2.lock();
    p2.x = mouseX;
    p2.y = mouseY;
    p2.unlock();
  }
}

class Particle extends VerletParticle2D {! $$ How cute is our simple Particle class!

  Particle(Vec2D loc) {
    super(loc);
  }

  void display() {
    fill(175);
    stroke(0);
    ellipse(x,y,16,16);
  }
}

5.20 Connected Systems Part I: String
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The above example, two particles connected with a single spring, is the core building block for 
what toxiclibs’ VerletPhysics is particularly well suited for: soft body simulations.  For example, 
a string can be simulated by connecting a line of particles with springs.  A blanket can be 
simulated by connecting a grid of particles with springs.  And a cute, cuddly, squishy cartoon 
character can be simulated by a custom layout of particles connected with springs.

[USE NOKIA FRIENDS’ IMAGE + SKELETON? -- ask karsten for permission]

Let’s begin by simulating a “soft pendulum”—a bob hanging from a string, instead of a rigid arm 
like we had in Chapter 3, Examples 3.x.  Let’s use Figure 3.x above as our model.

First, we’ll need a list of Particle objects (let’s use the same Particle class we built in the previous 
example).

ArrayList<Particle> particles = new ArrayList<Particle>();

Now, let’s say we want to have 20 particles, all spaced 10 pixels apart.

float len = 10;
float numParticles = 20;

We can loop from i equals 0 all the way up to 20, with each Particle’s y location set to i * 10 so 
that the first particle is at (0,10), the second at (0,20), the third at (0,30), etc.
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for(int i=0; i < numPoints; i++) {
  Particle particle=new Particle(i*len,10);! $$ Spacing them out along the x-axis
  physics.addParticle(particle);! ! ! $$ Add particle to our list
  particles.add(particle);! ! ! ! $$ Add particle to physics world
}

Even though it’s a bit redundant, we’re going to add the Particle to both the toxiclibs physics 
world and to our own list.  In case we eventually have multiple strings, this will allow us to know 
which particles are connected to which strings.

Now for the fun part: It’s time to connect all the particles.  Particle 1 will be connected to particle 
0, particle 2 to particle 1, 3 to 2, 4 to 3, etc.    

In other words, Particle i needs to be connected to Particle i-1 (except for when i = 0).

if (i != 0) {
 Particle previous = particles.get(i-1);!$$ First we need a reference to the previous particle
 
 VerletSpring2D spring = new VerletSpring2D(particle,previous,len,strength);
 ! ! ! ! ! $$ Then we make a spring connection between particle and previous
! ! ! ! ! particle with a rest length and strength (both floats) 

 physics.addSpring(spring);! $$ We must not forget to add the spring to the physics world
}

Now, what if we want the string to hang from a fixed point?  We can lock one of the particles—
the first, the last, the middle one, etc.  Here’s how we would access the first particle (in the 
ArrayList) and lock it.

Particle head=particles.get(0);
head.lock();

And if we want to draw all the particles connected with a line along with a circle for the last 
particle, we can use beginShape(), endShape(), and vertex(), accessing the particle locations 
from our ArrayList.
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Example 5.x: Soft Swinging Pendulum
stroke(0);
noFill();
beginShape();
for (Particle p : particles) {
  vertex(p.x,p.y);! $$ Each particle is one point in the line
}
endShape();
Particle tail = particles.get(numPoints-1);
tail.display();  $$ This draws the last particle as a circle

The full code available with the chapter download also demonstrates how to drag the tail particle 
with the mouse.

Exercise: Create a hanging cloth simulation using the technique above, but connect all the 
particles with a grid as demonstrated in the screenshot below.

5.21 Connected Systems Part II: Force Directed Graph

Have you ever encountered the following scenario?  

“I have a whole bunch of stuff I want to draw on the screen and I want all that stuff to be spaced 
out evenly in a nice, neat, organized manner.  Otherwise I have trouble sleeping at night.”   

This is not an uncommon problem in computational design. One solution is typically referred to 
as a “force-directed graph.”  A force-directed graph is a visualization of elements—let’s call 
them “nodes”—in which the positions of those nodes are not manually assigned. Rather, the 
nodes arrange themselves according to a set of forces.  While any forces can be used, a typical 
example involves spring forces.  And so toxiclibs is perfect for this scenario.  
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How do we implement the above?

First, we’ll need a Node class.  This is the easy part; it can extend VerletParticle2D.  Really, this 
is just what we did before, only we’re calling it Node now instead of Particle.

class Node extends VerletParticle2D {
  Node(Vec2D pos) {
    super(pos);
  }

  void display() {
    fill(0,150);
    stroke(0);
    ellipse(x,y,16,16);
  }
}

Next we can write a class called Cluster, which will describe a list of Nodes.

class Cluster {

  ArrayList<Node> nodes;

  float diameter;!  $$ We’ll use this variable for the rest length between all the nodes

  Cluster(int n, float d, Vec2D center) {
    nodes = new ArrayList<Node>();
    diameter = d;

    for (int i = 0; i < n; i++) {
      nodes.add(new Node(center.add(Vec2D.randomVector())));
! ! ! ! ! $$ Here’s a funny little detail.  We’re going to have a problem
    }!! ! ! ! if all the Node objects start in exactly the same location.
  }! ! ! ! ! So we add a random vector to the center location so that each
! ! ! ! ! Node is slightly offset.

     

Let’s assume we added a display() function to draw all the Node objects in the Cluster and then 
created a Cluster object setup() and displayed it in draw(). If we ran the sketch as is, nothing 
would happen.  Why?  Because we forgot the whole force-directed graph part!  We need to 
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connect every single Node to every other Node with a force.   But what exactly do we mean by 
that?  Let’s assume we have four Node objects: 0, 1, 2 and 3.  Here are our connections:

0 connected to 1
0 connected to 2
0 connected to 3
1 connected to 2
1 connected to 3
2 connected to 3

So how do we write code to make these connections for N number of nodes?

Look at the left column. It reads:  000 11 22.  So we know we need to access each Node in the 
list from 0 to N-1.

    for (int i = 0; i < nodes.size()-1; i++) {
      VerletParticle2D ni = nodes.get(i);

Now, we know we need to connect Node 0 to Nodes 1,2,3.  For Node 1: 2,3.  For Node 2: 3.  So 
for every Node i, we must loop from i+1 until the end of the list.
 
! !     $$ Look how we start j at i + 1 
      for (int j = i+1; j < nodes.size(); j++) {
        VerletParticle2D nj = nodes.get(j);

With every two Nodes we find, all we have to do then is make a VerletSpring2D.

! ! ! ! ! ! !     $$ The Spring connects Nodes “ni” and “nj”
        physics.addSpring(new VerletSpring2D(ni,nj,diameter,0.01));
      }
    }

Assuming those connections are made in the Cluster constructor, we can now create a Cluster in 
our main tab and see the results!

Notice two important details about our connection list.

• No Node is connected to itself.  We don’t have 0 connected 
to 0 or 1 connected to 1.

• We don’t need to repeat connections in reverse.  In other 
words, if we’ve already said 0 is connected to 1, we don’t 
need to say 1 is connected to 0 because, well, it already is!
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!
Example 5.x: Cluster
import toxi.geom.*;
import toxi.physics2d.*;

VerletPhysics2D physics;
Cluster cluster;

void setup() {
  size(300,300);
  physics=new VerletPhysics2D();
  cluster = new Cluster(8,100,new Vec2D(width/2,height/2));
! $$ Make a cluster
}

void draw() {
  physics.update();
  background(255);
  cluster.display();! ! $$ Draw the Cluster
}

Exercise: Use the Cluster structure as a skeleton for a cute, cuddly, squishy creature (à la 
“Nokia Friends”).  Add gravity and also allow the creature to be dragged with the mouse.

Exercise: Expand the Force Directed Graph to have more than one Cluster object.  Use a 
VerletMinDistanceSpring2D to connect Cluster to Cluster.

5.22 Attraction and Repulsion Behaviors

When we looked at adding an attraction force to Box2D, we found that the Box2D Body object 
included an applyForce() function.  All we needed to do was calculate the attraction force (Force 
= G * mass1 * mass2 / distance squared) as a vector and apply it to the Body.  toxiclibs also 
includes a function called addForce() that we can use to apply any calculated force to a 
VerletParticle.  

However, toxiclibs also takes this idea one step further by allowing us to attach some common 
forces (let’s call them “Behaviors”) to VerletParticles, calculating them and applying them for us!  
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For example, if we attach an AttractionBehavior to a VerletParticle, then all other particles in the 
physics world will be attracted to that particle.  

Let’s say we have a Particle object (which extends VerletParticle).

Particle p = new Particle(new Vec2D(200,200));

Once we have that Particle, we can create an AttractionBehavior object associated with that 
Particle.

float distance = 20;
float strength = 0.1;
AttractionBehavior behavior = new AttractionBehavior(p, distance, strength);

Notice how the behavior is created with two parameters—distance and strength.  The distance 
specifies the range within which the behavior will be applied.  For example, in the above 
scenario, only other Particle objects within 20 pixels will feel the Attraction force.  The strength, 
of course, specifies how strong the force is.

Finally, in order for the force to be activated, the behavior needs to be added to the physics 
world.

physics.addBehavior(behavior);

This means everything that lives in the physics simulation will always be attracted to that 
Particle object, as long as it is within the distance threshold.

Even though toxiclibs does not handle collisions, you can create a collision-like effect by adding 
a repulsive behavior to each and every Particle (so that every Particle repels every other Particle).  
Let’s look at how we might modify our Particle class to do this.

class Particle extends VerletParticle2D {

  float r;! ! $$ We’ve added a radius to every Particle

  Particle (Vec2D loc) {
    super(loc);
    r = 4;
    physics.addBehavior(new AttractionBehavior(this, r*4, -1));
  }! ! ! $$ Every time a Particle is made, an AttractionBehavior is
 ! ! ! generated and added to the physics world.  Note that when the strength 
! ! ! is negative, it’s a repulsive force!
 
  void display () {
    fill (255);
    stroke (255);
    ellipse (x, y, r*2, r*2);
  }
}
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We could now recreate our Attraction example by having a single Attractor object that exerts an 
AttractionBehavior over the entire window.

Example 5.x: Attraction / Repulsion
class Attractor extends VerletParticle2D {

  float r;

  Attractor (Vec2D loc) {
    super (loc);
    r = 24;
    physics.addBehavior(new AttractionBehavior(this, width, 0.1));
! ! ! ! $$ The AttractionBehavior “distance” equals
 ! ! ! ! the width so that it covers the entire window.
  }! ! ! !

  void display () {
    fill(0);
    ellipse (x, y, r*2, r*2);
  }
}

Exercise: Create an object that both attracts and repels.  What if it attracts any Particle that are 
far away but repels those Particles at a short distance?

Exercise: Use AttractionBehavior in conjunction with Spring forces.
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Chapter 6.  Autonomous Agents

“This is an exercise in fictional science, or science fiction, if you like that better.” 
! —Valentino Braitenberg 

6.1  Forces from within

Believe it or not, there is a purpose.  Well, at least there’s a purpose for the first five chapters of 

this book.   We could stop right here; after all, we’ve looked at several different ways of 

modeling motion and simulating physics.  Angry Birds, here we come!  

Still, let’s think for a moment.  Why are we here?   The nature of code, right?   What have we 

been designing so far?   Inanimate objects.  Lifeless shapes sitting on our screens that flop 

around when affected by forces in their environment.   What if we could breathe life into those 

shapes? What if those shapes could live by their own rules?  Can shapes have hopes and dreams 

and fears?   This is what we are here in this chapter to do—develop autonomous agents.

The term autonomous agent generally refers to an entity that makes its own choices about how 

to act in its environment without any influence from a leader or global plan.  For us, “acting” will 

mean moving.   This addition is a significant conceptual leap.  Instead of a box sitting on a 

boundary waiting to be pushed by another falling box, we are now going to design a box that has 

the ability and “desire” to leap out of the way of that other falling box, if it so chooses.   While 

the concept of forces that come from within is a major shift in our design thinking, our code base 

will barely change, as these desires and actions are simply that—forces. 

Here are three key components of autonomous agents that we’ll want to keep in mind as we 

build our examples.

• An autonomous agent has a limited ability to perceive environment.   It makes sense 

that a living, breathing being should have an awareness of its environment.  What does 

this mean for us, however?   As we look at examples in this chapter, we will point out 

programming techniques for allowing objects to store references to other objects and 

therefore “perceive” their environment.    It’s also crucial that we consider the word 

limited here.  Are we designing a all-knowing rectangle that flies around a Processing 

window aware of everything else in that window?  Or are we creating a shape that can 

only examine any other object within 15 pixels of itself?   Of course, there is no right 

answer to this question; it all depends.  We’ll explore some possibilities as we move 

forward.  For a simulation to feel more “natural,” however, limitations are a good thing.  

An insect, for example, may only be aware ofthe sights and smells that immediately 

surround it?   For a real-world creature, we could study the exact science of  these 

limitations.   Luckily for us, we can just make stuff up and try it out.
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• An autonomous agent processes the information from its environment and 

calculates an action.    This will be the easy part for us, as the action is a force.  The 

environment might tell the agent that there’s a big scary-looking shark swimming right 

at it, and the action will be a powerful force in the opposite direction.  

• An autonomous agent has no leader.  This third principle is something we care a little 

less about.  After all, if you are designing a system where it makes sense to have a 

leader barking commands at various entities, then that’s what you’ll want to implement.  

Nevertheless, many of these examples will have no leader for an important reason.   As 

we get to the end of this chapter and examine group behaviors, we will look at 

designing collections of autonomous agents that exhibit the properties of complex 

systems— intelligent and structured group dynamics that emerge not from a leader, but 

from the local interactions of the elements themselves.

In the late 1980s, computer scientist Craig Reynolds developed algorithmic steering behaviors 

for animated characters. These behaviors allowed individual elements to navigate their digital 

environments in a “lifelike” manner with strategies for fleeing, wandering, arriving, pursuing, 

evading, etc. Used in the case of a single autonomous agent, these behaviors are fairly simple to 

understand and implement. In addition, by building a system of multiple characters that steer 

themselves according to simple locally based rules, surprising levels of complexity emerge.  The 

most famous example is Reynolds’s “boids” model for “flocking/swarming” behavior.

6.2  Vehicles and Steering

Now that we understand the core concepts behind autonomous agents, we can begin writing the 

code.  There are many places we could start. Artificial simulations of ant and termite colonies are 

fantastic demonstrations of systems of autonomous agents (for more, I encourage you to read 

Turtles, Termites, and Traffic Jams by Mitchel Resnick).  However, we want to start by 

examining agent behaviors that build on the work we’ve done in the first five chapters of this 

book: modeling motion with vectors and driving motion with forces.  And so it’s time to rename 

our Mover class that became our Particle class once again.  This time we are going to call it 

Vehicle.

class Vehicle {

  PVector location;
  PVector velocity;
  PVector acceleration;
! ! ! ! ! $$ What else do we need to add?
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In his 1999 paper “Steering Behaviors for 

Autonomous Characters”,    Reynolds uses the word 

“Vehicle” to describe his autonomous agents, so we 

will follow suit.

Reynolds describes the motion of idealized vehicles 

(idealized because we are not concerned with the 

actual engineering of such vehicles, but simply 

assume that they exist and will respond to our 

rules)as a series of three layers—Action Selection, 

Steering, and Locomotion.

1. Action Selection.   A Vehicle has a goal (or goals) and can select an action (or a 

combination of actions) based on that goal.  This is essentially where we left off with 

autonomous agents.  The vehicle takes a look at its environment and calculates an 

action based on a desire: “I see a zombie marching towards me. Since I don’t want 

my brains to be eaten, I’m going to flee from the zombie.”   The goal is to keep one’s 

brains and the action is to flee.   Reynolds’s paper describes many goals and 

associated actions such as: seek a target, avoid an obstacle, and follow a path..   In a 

moment, we’ll start building these examples out with Processing code.

2. Steering.  Once an action has been selected, the vehicle has to calculate its next 

move.  For us, the next move will be a force; more specifically, a steering force.  

Luckily, Reynolds has developed a simple steering force formula that we’ll use 

throughout the examples in this chapter: Steering Force = Desired Velocity minus 

Current Velocity.  We’ll get into the details of this formula and why it works so 

effectively in the next section.

3. Locomotion.  For the most part, we’re going to ignore this third layer.   In the case of 

fleeing zombies, the locomotion could be described as “left foot, right foot, left foot, 

right foot, as fast as you can.”   In our Processing world, however, a rectangle or 

circle or triangle’s actual movement across a window is irrelevant given that it’s all an 

illusion in the first place.  Nevertheless, this isn’t to say that you should ignore 

locomotion.   You will find great value in thinking about the locomotive design of 

your vehicle and how you choose to animate it.   The examples in this chapter will 

remain visually bare, and a good exercise would be to elaborate on the animation 

style —could you add spinning wheels or oscillating paddles or shuffling legs?

Ultimately, the most important layer for you to consider is #1 -- Action Selection.  What are the 

elements of your system and what are their goals?  In this chapter, we are going to look at a 

series of steering behaviors (i.e. actions): seek, flee, follow a path, follow a flow field, flock with 

your neighbors, etc.   It’s important to realize, however, that the point of understanding how to 

write the code for these behaviors is not becauseyou should use them in all of your projects.  

Rather, these are a set of building blocks, a foundation from which you can design and develop 

Why Vehicle?

In 1986, Italian neuroscientist and cyberneticist 
Valentino Braitenberg described a series of 
hypothetical vehicles with simple internal 
structures in his book Vehicles: Experiments in 
Synthetic Psychology.  Braitenberg argues that his 
extraordinarily simple mechanical vehicles 
manifest behaviors such as fear, aggression, love, 
foresight, and optimism.  Reynolds took his 
inspiration from Braitenberg, and we’ll take ours 
from Reynolds.
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vehicles with creative goals and new and exciting behaviors.   And even though we will think 

literally in this chapter (follow that pixel), you should allow yourself to think more abstractly 

(like Braitenberg). What would it mean for your vehicle to have “love” or “fear” as its goal, its 

driving force?    Finally (and we’ll address this later in the chapter) you won’t get very far by 

developing simulations with only one action.  Yes, our first example will be “seek a target.”  But 

for you to be creative—to, as they say in American Idol, make these steering behaviors your own

—it will all come down to mixing and matching multiple actions within the same vehicle.  So 

view these examples not as singular behaviors to be emulated, but as pieces of a larger puzzle 

that you will eventually assemble.

6.3  The Steering Force

We can entertain ourselves by discussing the theoretical principles behind autonomous agents 

and steering as much as we like, but we can’t get anywhere without first understanding the 

concept of a steering force. Consider the following scenario.  A “Vehicle” moving with velocity 

desires to seek a target.   

Its goal and subsequent action is to seek the target in the above figure.  If you think back to 

Chapter 2, you might begin by making the target an “attractor” and apply a gravitational force 

that pulls the vehicle to the target.  This would be a perfectly reasonable solution, but 

conceptually it’s not what we’re looking for here.   We don’t want to simply calculate a force that 

pushes the Vehicle towards its target; rather, we are asking the Vehicle to make an intelligent 

decision to steer towards the target based on its perception of its state and environment (i.e. how 

fast and in what direction is it currently moving).   The vehicle should look at how it desires to 

move (a vector pointing to the target), compare that goal  with how quickly it is currently moving 

(its velocity), and apply a force accordingly.

STEERING FORCE = DESIRED VELOCITY - CURRENT VELOCITY

Or as we might write in Processing:

PVector steer = PVector.sub(desired,velocity);

In the above formula, velocity is no problem.  After all, we’ve got a variable for that.   However, 

we don’t have the desired velocity; this is something we have to calculate.  Let’s take a look at 
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Figure X again.   If we’ve defined the vehicle’s goal as “seeking the target”, then its desired 

velocity is a vector that points from its current location to the target location.  Assuming a 

PVector target, we then have:

PVector desired = PVector.sub(target,location);  

But this isn’t particularly realistic.  What if we have a very high-resolution window and the target 

is thousands of pixels away?  Sure, the vehicle might desire to teleport itself instantly to the 

target location with a massive velocity, but this won’t make for an effective animation.  What we 

really want to say is:

The vehicle desires to move towards the target at maximum speed.  

In other words, the vector should point from location to target and with a magnitude equal to 

maximum speed (i.e. the fastest the vehicle can go.)   So first, we need to make sure we add a 

variable in our Vehicle class to store maximum speed.

class Vehicle {
  PVector location;
  PVector velocity;
  PVector acceleration;
  float maxspeed;    ! // Maximum speed

Then, in our desired velocity calculation, we scale according to maximum speed.

PVector desired = PVector.sub(target,location);
desired.normalize();
desired.mult(maxspeed);
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Putting this all together, we can write a function called seek() that receives a PVector target and 

calculates a steering force towards that target.

  void seek(PVector target) {
    PVector desired = PVector.sub(target,location);  
    desired.normalize();
    desired.mult(maxspeed);! ! $$ Calculating the desired velocity to target at max speed

    
    PVector steer = PVector.sub(desired,velocity);
    ! ! ! ! ! ! $$ Reynolds formula for steering force

    applyForce(steer);!! ! $$ Using our physics model and applying the force

  }! ! ! ! ! ! to the object’s acceleration

Note how in the above function we finish by passing the steering force into applyForce().  This 

assumes that we are basing this example on the foundation we built in Chapter 2.  However, you 

could just as easily use the steering force with Box2D’s applyForce() function or toxiclibs’ 

addForce() function.

So why does this all work so well?  Let’s see what the steering force looks like relative to the 

vehicle and target locations.

Again, notice how this is not at all the same force as gravitational attraction.  Remember one of 

our principles of autonomous agents: An autonomous agent has a limited ability to perceive its 

environment.  Here is that ability, subtly embedded into Reynolds’s steering formula.  If the 

vehicle weren’t moving at all (zero velocity) desired minus velocity would be equal to desired.  

But this is not the case.  The vehicle is aware of its own velocity and its steering force 

compensates accordingly.   This creates a more active simulation, as the way in which the vehicle 

moves towards the targets depends on the way it is moving in the first place.

In all of this excitement, however, we’ve missed one last step.  What sort of vehicle is this?  Is it 

a super sleek race car with amazing handling?  Or a giant Mack truck that needs a lot of advance 

notice to turn?   A graceful panda, or a lumbering elephant?  Our example code, as it stands, has 

no feature to account for this variability in steering ability.   Steering ability can be controlled 

with a variable that limits the magnitude of the steering force.  Let’s call it maxforce.  And so 

finally, we have:
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class Vehicle {
  PVector location;
  PVector velocity;
  PVector acceleration;
  float maxspeed;!! // Maximum speed
  float maxforce;!! // Maximum force

followed by:

  void seek(PVector target) {
    PVector desired = PVector.sub(target,location);  
    desired.normalize();
    desired.mult(maxspeed);
    PVector steer = PVector.sub(desired,velocity);

    steer.limit(maxforce);! $$ Limit the magnitude of the steering force

    applyForce(steer);
  }! ! ! !

Limiting the steering force brings up an important point.  We must always remember that it’s not 

actually our goal to get the Vehicle to the target as fast as possible.  If that were the case, we 

would just say “location equals target” and there the vehicle would be.  Our goal, as Reynolds 

puts it, is to move the vehicle in a lifelike and improvisational manner.  We’re trying to make it 

appear as if the vehicle is steering its way to the target, and so it’s up to us to play with the forces 

and variables of the system to achieve the result we want.  For example, a large maximum 

steering force would result in a very different path than a small one.  One is not inherently better 

or worse than the other; it depends on your desired effect.  (And of course, these values need not 

be fixed and could change based on other conditions.  Perhaps a vehicle has health: the better its 

health, the better it can steer.)
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Here is the full Vehicle class, incorporating the rest of the elements from the Chapter 2 “Mover” 

object.

Example 6-1: Seeking a Target

class Vehicle {
  
  PVector location;
  PVector velocity;
  PVector acceleration;
  float r;! ! ! ! $$ Additional variable for size

  float maxforce;
  float maxspeed;

  Vehicle(float x, float y) {
    acceleration = new PVector(0,0);
    velocity = new PVector(0,0);
    location = new PVector(x,y);
    r = 3.0;
    maxspeed = 4;!! ! $$ Arbitrary values for maxspeed and force; try varying these!

    maxforce = 0.1;
  }

  void update() {!! ! $$ Our standard “Euler integration” motion model! !

    velocity.add(acceleration);
    velocity.limit(maxspeed);
    location.add(velocity);
    acceleration.mult(0);
  }

  void applyForce(PVector force) {!  $$ Newton’s second law; we could divide by mass if we wanted
    acceleration.add(force);
  }

  void seek(PVector target) {!!   $$ Our seek steering force algorithm
    PVector desired = PVector.sub(target,location);    
    desired.normalize();
    desired.mult(maxspeed);
    PVector steer = PVector.sub(desired,velocity);
    steer.limit(maxforce);
    applyForce(steer);
  }
    
  void display() {! ! ! ! !  $$ Vehicle is a triangle pointing in 

    float theta = velocity.heading2D() + PI/2;! the direction of velocity; since it is drawn
    fill(175);! ! ! ! ! !  pointing up, we rotate it an additional 90
    stroke(0);! ! ! ! ! !  degrees
    pushMatrix();
    translate(location.x,location.y);
    rotate(theta);!
    beginShape();!!    
    vertex(0, -r*2);
    vertex(-r, r*2);
    vertex(r, r*2);
    endShape(CLOSE);
    popMatrix();
  }

Exercise: Implement a “fleeing” steering behavior (desired vector is inverse of “seek”).
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Exercise: Implement seeking a moving target, often referred to as “pursuit.”  In this case, your 

desired vector won’t point towards the object’s current location, rather its “future” location as 

extrapolated based on its current velocity.   We’ll see this ability for a Vehicle to “predict the 

future” in later examples.

Exercise: Create a sketch where a Vehicle’s maximum force and maximum speed do not remain 

constant, but rather vary according to environmental factors.

6.4  “Arrive”

After working for a bit with the seeking behavior, you probably are asking yourself,  “What if I 

want my vehicle to slow down as it approaches the target?”   Before we can even begin to answer 

this question, we should look at the reasons behind why the seek behavior causes the vehicle to 

fly past the target so that it has to turn around and go back.  Let’s consider the brain of a seeking 

vehicle.  What is it thinking?

Frame 1: I want to go as fast as possible towards the target!

Frame 2: I want to go as fast as possible towards the target!

Frame 3: I want to go as fast as possible towards the target!

Frame 4: I want to go as fast as possible towards the target!

Frame 5: I want to go as fast as possible towards the target!

etc.

The Vehicle is so gosh darn excited about getting to the target that it doesn’t bother to make any 

intelligent decisions about its speed relative to the target’s proximity.  Whether it’s far away or 

very close, it always wants to go as fast as possible.

In some cases, this is the desired behavior (if a missile is flying at a target, it should always travel 

at maximum speed).  However, in many other cases (a car pulling into a parking spot, a bee 

landing on a flower), the Vehicle’s thought process needs to consider its speed relative to the 

distance from its target.  For example:

Frame 1: I’m very far away, I want to go as fast as possible towards the target!

Frame 2: I’m very far away, I want to go as fast as possible towards the target!

Frame 3: I’m somewhat far away, I want to go as fast as possible towards the target!

Frame 4: I’m getting close, I want to go more slowly towards the target!

Frame 5: I’m almost there, I want to go very slowly towards the target!

Frame 6: I’m there, I want to stop!
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How can we implement this “arriving” behavior in code?  Let’s return to our seek() function and 

find the line of code where we set the magnitude of the desired vector.  

   PVector desired = PVector.sub(target,location);    
   desired.normalize();
   desired.mult(maxspeed);

In the above example, the magnitude of the desired vector is always “maximum” speed.   

What if we instead said the desired velocity is equal to half the distance?    

   PVector desired = PVector.sub(target,location);   
   desired.div(2);

While this is a reasonable first step and nicely demonstrates our goal of a desired speed tied to 

our distance from the target, it’s not particularly reasonable.  After all, 10 pixels away is rather 

close and a desired speed of 5 is rather large.   Something like a desired velocity with a 

magnitude of 5% of the distance would work much better.

  PVector desired = PVector.sub(target,location);   
  desired.mult(0.05);
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Reynolds describes a more sophisticated approach.  Let’s imagine a circle around the target with 

a given radius.  If the Vehicle is within that circle it slows down—at the edge of the circle its 

desired speed is maximum speed, and at the target itself its desired speed is 0.

In other words, if the distance from the target is less than r, the desired speed is between 0 and 

maximum speed mapped according to that distance.  

Example 6.x: Arrive Steering Behavior

  void arrive(PVector target) {
    PVector desired = PVector.sub(target,location); 
    
    float d = desired.mag();!$$ The distance is the magnitude of the vector pointing from
! ! ! ! ! location to target    
    desired.normalize();
    if (d < 100) {! ! ! ! ! $$ If we are closer than 100 pixels

      float m = map(d,0,100,0,maxspeed);!! $$ Set the magnitude according to how close

      desired.mult(m);

    } else {

      desired.mult(maxspeed);!! ! ! $$ Otherwise, proceed at maximum speed

    }

    PVector steer = PVector.sub(desired,velocity);! $$ The usual steering = desired - velocity

    steer.limit(maxforce);  
    applyForce(steer);
  }

[ADD A LITTLE MORE ABOUT THE MAGIC OF DESIRED - VELOCITY]

6.5 Your Own Desires

The first two examples we’ve covered—seek and arrive—boil down to calculating a single 

vector for each behavior:the desired velocity.   And in fact, every single one of Reynolds’s 

steering behaviors follows this same pattern.  In this chapter, we’re going to walk through several 

more of Reynolds’s behaviors—flow field, path-following, flocking.  First, however, I want to 

emphasize again that these are examples—demonstrations of common steering behaviors that are 

useful in procedural animation.   They are not the be-all and end-all of what you can do.  As long 
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as you can come up with a vector that describes a vehicle’s desired velocity, then you have 

created your own steering behavior.  

Let’s see how Reynolds defines the desired velocity for his wandering behavior.

“Wandering is a type of random steering which has some long term order: the steering direction 

on one frame is related to the steering direction on the next frame. This produces more 

interesting motion than, for example, simply generating a random steering direction each 

frame.”  —http://www.red3d.com/cwr/steer/Wander.html

For Reynolds, the goal of wandering is not simply random motion, but rather a sense of moving 

in one direction for a little while, wandering off to the next for a little bit, and so on and so forth.  

So how does Reynolds calculate a desired vector to achieve such an effect?

The above diagram illustrates how the vehicle predicts its future location as a fixed distance in 

front of it (in the direction of its velocity), draws a circle with radius r at that location, and picks 

a random point along the circumference of the circle.  That random point moves randomly 

around the circle in each frame of animation.   And that random point is the vehicle’s target, its 

desired vector pointing in that direction.

Exercise: Write the code for the wander behavior.  Use polar coordinates to 

calculate the vehicle’s target along a circular path.

Sounds a bit absurd, right?  Or, at the very least, rather arbitrary.   In fact, this 

is a very clever and thoughtful solution—it uses randomness to drive a 

vehicle’s steering, but constrains that randomness along the path of a circle to 

keep the vehicle’s movement from appearing totally random and jittery.  

But the seemingly random and arbitrary nature of this solution should drive home the point I’m 

trying to make—these are made-up behaviors inspired by real-life motion.  You can just as easily  

concoct some elaborate scenario to compute a desired velocity yourself.  And you should.

Let’s say we want to create a steering behavior called “stay within walls.”  We’ll define the 

desired velocity as:
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If a Vehicle comes within a distance d of a wall, it desires to move at maximum speed in the 

opposite direction of the wall.  

If we define the walls of the space as the edges of a Processing window and the distance d as 25, 

the code is rather simple.

Example 6.x: Stay within bounds steering behavior

if (location. x > 25) {
  PVector desired = new PVector(maxspeed,velocity.y);

! ! ! $$ Make a desired vector that retains the y direction of

! ! ! the vehicle but points the x direction directly away from

! ! ! window’s left edge

  PVector steer = PVector.sub(desired, velocity);
  steer.limit(maxforce);
  applyForce(steer);
}

Exercise: Come up with your own arbitrary scheme for calculating a desired velocity. 

6.6  Flow Field

Now back to the task at hand.  Let’s examine a couple more of Reynolds’s steering behaviors.  

First, flow field following.  What is a flow field?   Think of your Processing window as a grid.  

In each cell of the grid lives an arrow pointing in some direction—you know, a vector.   As a 

Vehicle moves around the screen, it asks, “Hey, what arrow is beneath me?  That’s my desired 

velocity!”
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Reynolds’s flow field following example has the vehicle predicting its future location and 

following the vector at that spot, but for simplicity’s sake, we’ll have the Vehicle simply look to 

the vector at its current location.

Before we can write the additional code for our Vehicle class, we’ll need to build a class that 

describes the flow field itself, the grid of vectors.   A two-dimensional array is a convenient data 

structure in which to store a grid of information. (If you are not familiar with 2D arrays, I suggest  

reviewing this online Processing tutorial: http://processing.org/learning/2darray/).   The 2D array 

is convenient because we reference each element with two indices, which we can think of as 

columns and rows.

class FlowField {

  PVector[][] field;! $$ Declaring a 2D array of PVectors

  int cols, rows;!! $$ How many columns and how many rows in the grid?

  int resolution;!! $$ Resolution of grid relative to window width and height in pixels

Notice how we are defining a third variable called “resolution” above.   What is this variable?  

Let’s say we have a Processing window that is 200 pixels wide by 200 pixels high.  We could 

make a flow field that has a PVector object for every single pixel, or 40,000 PVectors (200 * 

200).  This isn’t terribly unreasonable, but in our case, it’s overkill.  We don’t need a PVector for 

every single pixel; we can achieve the same effect by having one, say, every ten pixels (20 * 20 = 

400).   We use this resolution to define the number of columns and rows based on the size of the 

window divided by resolution:

  FlowField() {
    resolution = 10;! ! !

    cols = width/resolution;!! $$ Total columns equals width divided by resolution

    rows = height/resolution;!! $$ Total rows equals height divided by resolution

    field = new PVector[cols][rows];
  }

Now that we’ve set up the flow field’s data structures, it’s time to compute the vectors in the 

flow field itself.  How do we do that? However we feel like it!  Perhaps we want to have every 

vector in the flow field pointing to the right.

for (int i = 0; i < cols; i++) {! ! $$ Using a nested loop to hit every column

  for (int j = 0; j < rows; j++) {!! and every row of the flow field

     field[i][j] = new PVector(1,0);! $$ Arbitrary decision to make each vector point to right

  }
}
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Or a random vector.

 for (int i = 0; i < cols; i++) {! !

    for (int j = 0; j < rows; j++) {!

      float theta = random(TWO_PI);
      field[i][j] = new PVector(cos(theta),sin(theta));! $$ A random PVector

    }
  }

What if we use 2D Perlin noise (mapped to an angle)?

  float xoff = 0;
  for (int i = 0; i < cols; i++) {
    float yoff = 0;
    for (int j = 0; j < rows; j++) {
      float theta = map(noise(xoff,yoff),0,1,0,TWO_PI);! $$ Noise

      field[i][j] = new PVector(cos(theta),sin(theta));

      yoff += 0.1;
    }
    xoff += 0.1;
  }

Now we’re getting somewhere.   Flow fields can be used for simulating various effects, such as 

an irregular gust of wind or the meandering path of a river.  Calculating the direction of your 

vectors using Perlin noise is one way to achieve such an effect.  Of course, there’s no “correct” 

way to calculate the vectors of a flow field; it’s really up to you to decide what you’re looking to 

simulate.

Exercise: Write the code to calculate a PVector at every location in the flow field that points 

towards the center of a window.

PVector v = new PVector(____________,____________);
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v.______________();
field[i][j] = v;

Now that we have a two-dimensional array storing all of the flow field vectors, we need a way 

for a Vehicle to look up its desired vector from the flow field.    Let’s say we have a vehicle that 

lives at a PVector: its location.  We first need to divide by the resolution of the grid.  For 

example, if the resolution is 10 and the vehicle is at (100,50), we need to look up column 10 and 

row 5.

int column = int(location.x/resolution);
int row = int(location.y/resolution);

Because a vehicle could theoretically wander off the Processing window, it’s also useful for us to 

employ the constrain() function to make sure we don’t look outside of the flow field array.  Here 

is a function we’ll call lookup() that goes in the FlowField class—it receives a PVector 

(presumably the location of our vehicle) and returns the corresponding flow field PVector for that  

location.

  PVector lookup(PVector lookup) {
    int column = int(constrain(lookup.x/resolution,0,cols-1));! $$ Using constrain()

    int row = int(constrain(lookup.y/resolution,0,rows-1));
    return field[column][row].get();! !

  }! ! ! ! $$ Note the use of get() to ensure we return a copy of the PVector

Before we move on to the Vehicle class, let’s take a look at the FlowField class all together.

class FlowField {

  PVector[][] field;! ! ! $$ A flow field is a two-dimensional array of PVectors

  int cols, rows; 
  int resolution;

  FlowField(int r) {
    resolution = r;
    cols = width/resolution;!! $$ Determine the number of columns and rows

    rows = height/resolution;
    field = new PVector[cols][rows];
    init();
  }

  void init() {! ! ! ! $$ In this example, we use Perlin noise to seed the vectors

    float xoff = 0;! ! !    
    for (int i = 0; i < cols; i++) {
      float yoff = 0;
      for (int j = 0; j < rows; j++) {
        float theta = map(noise(xoff,yoff),0,1,0,TWO_PI);
        field[i][j] = new PVector(cos(theta),sin(theta));
        yoff += 0.1;! !   $$ Polar to cartesian coordinate transformation to get x and y
! ! ! ! !      components of the vector

      }
      xoff += 0.1;
    }
  }
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  PVector lookup(PVector lookup) {!! $$ A function to return a PVector based on a location

    int column = int(constrain(lookup.x/resolution,0,cols-1));
    int row = int(constrain(lookup.y/resolution,0,rows-1));
    return field[column][row].get();
  }
}

So let’s assume we have a FlowField object 

“flow”.  Using the lookup() function above, our 

vehicle can then retrieve a desired vector from 

the FlowField object and use Reynolds’s rules 

(steering = desired minus velocity) to calculate a 

steering force.

Example 6-x: Flow Field Following

class Vehicle {

  void follow(FlowField flow) {
    PVector desired = flow.lookup(location);  $$ What is the vector at that spot 
! ! ! ! ! ! !         in the flow field?

    
    desired.mult(maxspeed);
    PVector steer = PVector.sub(desired, velocity);! $$ Steering is desired minus velocity
    steer.limit(maxforce); 
    applyForce(steer);
  }

Exercise: Adapt the flow field example so that the PVectors change over time (hint: try using the 

3rd dimension of Perlin noise!)

Exercise: Can you seed a flow field from a PImage?  For example, try having the PVectors point 

from dark to light colors (or vice versa).

6.7  The Dot Product

In a moment, we’re going to work through the algorithm (along with accompanying 

mathematics) and code for another of Craig Reynolds’s steering behaviors: path following (see: 

http://www.red3d.com/cwr/steer/PathFollow.html).  Before we can do this, however, we have to 

spend some time learning about another piece of vector math that we skipped in Chapter 1—the 

dot product.  We haven’t needed it yet, but it’s likely going to prove quite useful for you (beyond 

just this path-following example), so we’ll go over it in detail now.

Remember all the basic vector math we covered in Chapter 1?  Add, subtract, multiply and 

divide?
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Notice how in the above diagram vector multiplication involved multiplying a vector by a scalar 

value.  This makes sense; when we want a vector to be twice as large (but facing the same 

direction), we multiply it by 2.  When we want it to be half the size, we multiply it by 0.5.

However, there are two other multiplication-like operations with vectors that are useful in certain 

scenarios—the dot product and the cross product. For now we’re going to focus on the dot 

product, which is defined as follows.  Assume vectors A and B:

A = (ax,ay)

B = (bx,by)

THE DOT PRODUCT:   A   B = ax*bx + ay* by

For example, if we have the following two vectors:

A = (-3,5)

B = (10,1)

A   B = -3*10 + 5*1 = -30 + 5 = -25

Notice that the result of the dot product is a scalar value (a single number) and not a vector.

In Processing, this would translate to:

PVector a = new PVector(-3,5);
PVector b = new PVector(10,1);

float n = a.dot(b); ! $$ The PVector class includes a function to calculate the dot product

And if we were to look in the guts of the PVector source, we’d find a pretty simple 

implementation of this function:

public float dot(PVector v) {
  return x*v.x + y*v.y + z*v.z;
}
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This is simple enough, but why do we need the dot product, and when is it going to be useful for 

us in code?   

One of the more common uses of the dot product is to find the angle between two vectors.   

Another way the dot product can be expressed is:

THE DOT PRODUCT:     

In other words, A dot B is equal to the magnitude of A times magnitude of B times cosine of 

theta (with theta defined as the angle between the two vectors A and B.)

The two formulas for dot product can be derived from one another with trigonometry (see: http://

mathworld.wolfram.com/DotProduct.html), but for our purposes we can be happy with operating 

on the assumption that:

A   B = |A| * |B| * cos(theta) 

A   B = ax*bx + ay* by

both hold true and therefore:

ax*bx + ay* by = |A| * |B| * cos(theta) 

Now, let’s start with the following problem. We have the vectors A and B:

A = (10,2)

B = (4,-3)

We now have a situation where we know everything except for theta.   We know the components 

of the vector (ax,ay,bx,by) and we can calculate the magnitude of each vector as we did in 

Chapter 1 with the Pythagorean theorem.  We can therefore solve for cos(theta):

cos(theta) = A   B /  |A| * |B|
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Once we’ve solved for cosine of theta, we can take the inverse cosine (often expressed as 

arccosine) to solve for theta.

theta = arccos (A   B /  |A| * |B|)

Let’s now do the math with actual numbers:

|A| = 10.2

|B| = 5

Therefore:

theta = arccos ( 10*4 + 2*-3 / 10.2 * 5 )

theta = arccos ( 34 / 51 )

theta = ~ 48 degrees

The Processing version of this would be:

PVector a = new PVector(10,2);
PVector b = new PVector(4,-3);
float theta = acos(a.dot(b) / (a.mag() * b.mag()));

And, again, if we were to dig into the guts of the Processing source code, we would see a 

function that implements this exact algorithm.

  static public float angleBetween(PVector v1, PVector v2) {
    float dot = v1.dot(v2);
    float theta = (float) Math.acos(dot / (v1.mag() * v2.mag()));
    return theta;
  }

Exercise: Create a sketch that displays the angle between two PVector 

objects.

A couple things to note here:

1) If two vectors (A and B) are orthogonal (i.e. perpendicular), the dot 

product (A   B ) is equal to zero.

2) If two vectors are unit vectors then the dot product is simply equal to cosine of the angle 

between, i.e.  A   B = cos(theta)  if A and B are of length 1. 

6.8  Path Following
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Now that we’ve got a basic understanding of the dot product under our belt, we can return to a 

discussion of Craig Reynolds’s path-following algorithm.     Let’s quickly clarify something.  We 

are talking about path following, not path finding.  Pathfinding refers to a research topic 

(commonly studied in artificial intelligence) related to solving for the shortest distance between 

two points, often in a maze.   With path following, the path already exists and we’re asking a 

vehicle to follow that path.

Before we work out the individual pieces, let’s take a look at the overall algorithm for path 

following, as defined by Reynolds.

Step 1. Predict the future.  Compute the vehicle’s theoretical location N frames in the future.  

This is yet another example of how our vehicles have an intelligent ability to perceive their 

environment.  Instead of knowing only its current location, a vehicle can extrapolate its future 

location according to its velocity.

Step 2. How far away from the path are we?  Calculate the distance between the vehicle’s 

future location and the path.  If it is within the path, do nothing. Otherwise, continue:

Step 3. Find a target point on the path.   Take the point on the path that is “normal” (more on 

this in a moment) to the vehicle’s future location.   Then look ahead on the path and set a target 

location. 

Step 4. Steer.  Set the vehicle’s steering force to seek that target.

Before we deal with the vehicle, let’s define what we mean by a path.  There are many ways we 

could implement a path, but for us, the simplest will be to define a path as a series of connected 

points:
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To start, let’s think of our path in an even simpler way, as a line between two points.

We’re also going to consider a path to have a radius.  If we think of the path as a road, the radius 

determines the road’s width.  With a smaller radius, our vehicles will have to follow the path 

more closely; a wider radius will allow them to stray a bit more.

Putting this into a class, we have:

class Path {

  PVector start;! $$ A Path is only two points, start and end

  PVector end;
  
  float radius;! $$ A path has a radius, i.e how wide is it

  Path() {
    radius = 20;! $$ Picking some arbitrary values to initialize path

    start = new PVector(0,height/3);
    end = new PVector(width,2*height/3);
  }

  void display() {! $$ Display the path

    strokeWeight(radius*2);
    stroke(0,100);
    line(start.x,start.y,end.x,end.y);
    strokeWeight(1);
    stroke(0);
    line(start.x,start.y,end.x,end.y);
  }
}
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Now, let’s assume we have a Vehicle (as depicted below) outside of the path’s radius, moving 

with a velocity.

The first thing we want to do is predict, assuming a constant velocity, where that vehicle will be 

in the future:

PVector predict = vel.get();! $$ Start by making a copy of the velocity

predict.normalize();! ! $$ Normalize it and look 25 pixels ahead by scaling vector up

predict.mult(25);

PVector predictLoc = PVector.add(loc, predict);
! ! ! ! $$ Add vector to location to find the predicted location

Once we have that location, it’s now our job to find out its distance from the path that predicted 

location.  If it’s very far away, well, then, we’ve strayed from the path and need to steer back 

towards it.  If it’s close, then we’re doing OK and are following the path nicely.

So, how do we find the distance between a point and a line?  This concept is key.  The distance 

between a point and a line is defined as the length of the “normal” between that point and line.  

The normal is a vector that extends from that point and is perpendicular to the line.
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Let’s figure out what we do know.    We know we have a vector (call it A) that extends from the 

path’s starting point to the vehicle’s predicted location:

PVector a = PVector.sub(predictLoc,path.start);

We also know that we can define a vector (call it B) that points from the start of the path to the 

end. 

PVector b = PVector.sub(path.end,path.start);

Now, with basic trigonometry, we know that the distance from the path’s start to the normal point 

is |A| * cos(theta).  

If we knew theta, we could easily define that normal point as follows:

float d = a.mag()*cos(theta);!$$ The distance from START to NORMAL
b.normalize();
b.mult(d);! ! ! $$ Scale PVector b to that distance

PVector normalPoint = PVector.add(path.start,b);
! ! ! ! $$ The normal point can be found by adding the scaled version of b

 ! ! ! ! to the path’s starting point

And if the dot product has taught us anything, it’s that given two vectors, we can get theta, the 

angle between.

float theta = PVector.angleBetween(a,b);! $$ What is theta?  The angle between A and B

b.normalize();
b.mult(a.mag()*cos(theta));
PVector normalPoint = PVector.add(path.start,b);

While the above code will work, there’s one more simplification we can make.   If you notice 

that the desired magnitude for vector B is:

a.mag()*cos(theta)
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or

|A|*cos(theta)

And if you recall: 

A   B = |A|*|B|*cos(theta)

Now, what if vector B is a unit vector, i.e. length 1?  Then:

A   B = |A|*1*cos(theta)

or

A   B = |A|*cos(theta)

And what are we doing in our code?  Normalizing b!

b.normalize();

Because of this fact, we can simplify our code as:

float theta = PVector.angleBetween(a,b);

b.normalize();
b.mult(a.dot(b));! $$ We can use the dot product to scale B’s length

PVector normalPoint = PVector.add(path.start,b);

This process is commonly known as “scalar projection.”
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|A| cos(!) is the scalar projection of A onto B.  And if we normalize B before computing the dot 

product, the scalar projection of A onto B is equal to A • B.

Once we have the normal point along the path, we have to decide whether the vehicle should 

steer towards the path and how.  Reynolds’s algorithm states that the vehicle should only steer 

towards the path if it strays beyond the path (i.e., if the distance between the normal point and 

the predicted future location is greater than the path radius).

float distance = PVector.dist(predictLoc, normalPoint);

if (distance > path.radius) {!! $$ If the vehicle is outside the path, seek the target

  seek(target);! ! ! $$ We don’t have to work out the desired velocity and

}! ! ! ! !    steering force; all that is taken care of by seek(),
! ! ! ! !    which we already wrote in Example 6.x

     

But what is the target?

Reynolds’s algorithm involves picking a point ahead of the normal on the path (see step #3 

above).  But for simplicity, we could just say that the target is the normal itself. This will work 

fairly well:

float distance = PVector.dist(predictLoc, normalPoint);
if (distance > path.radius) {
  seek(normalPoint);! ! $$ Seek the normal point on the path

}

Since we know the vector that defines the path (we’re calling it “b”), we can implement 

Reynolds’s “point ahead on the path” without too much trouble.
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float distance = PVector.dist(predictLoc, normalPoint);
if (distance > path.radius) {
  b.normalize();! $$ Normalize and scale b (pick 25 pixels arbitrarily) 

  b.mult(25);
  PVector target = PVector.add(normalPoint,b);!
  ! ! ! $$ By adding b to normalPoint, we now move 25 pixels ahead on the path

  seek(target);

}

Putting it all together, we have the following 

steering function in our Vehicle class.

Example 6.x: Simple Path Following

  void follow(Path p) {

! $$ Step 1. Predict vehicle’s future location

    PVector predict = vel.get();! !

    predict.normalize();
    predict.mult(25);
    PVector predictLoc = PVector.add(loc, predict);

    PVector a = p.start;! ! ! $$ Step 2. Find normal point along path

    PVector b = p.end;
    PVector normalPoint = getNormalPoint(predictLoc, a, b);
   
    PVector dir = PVector.sub(b, a);! ! $$ Step 3. Move a little further along path

    dir.normalize();! ! ! !    and set a target

    dir.mult(10);
    PVector target = PVector.add(normalPoint, dir);
    
    float distance = PVector.dist(normalPoint, predictLoc);
    if (distance > p.radius) {! ! $$ Step 4. If we are off the path, seek that target

      seek(target);! ! ! !    in order to stay on the path.

    }
  }

Now, you may notice above that instead of using all that dot product/scalar projection code to 

find the normal point, we instead call a function: getNormalPoint().   In cases like this, it’s 

useful to break out the code that performs a specific task (finding a normal point) into a function 

that it can be used generically in any case where it is required.  The function takes three 

PVectors: the first defines a point in Cartesian space and the second and third arguments define a 

line segment.
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  PVector getNormalPoint(PVector p, PVector a, PVector b) {
    PVector ap = PVector.sub(p, a);! $$ PVector that points from a to p

    PVector ab = PVector.sub(b, a);! $$ PVector that points from a to b

    
    ab.normalize();! ! ! $$ Using the dot product for scalar projection

    ab.mult(ap.dot(ab));
    PVector normalPoint = PVector.add(a, ab);
! ! ! ! ! $$ Finding the normal point along the line segment  
    return normalPoint;
  }

What do we have so far?  We have a Path class that defines a path as a line between two points.  

We have a Vehicle class that defines a vehicle that can follow the path (using a steering behavior 

to seek a target along the path).  What is missing?

Take a deep breath.  We’re almost there.  

We’ve built a great example so far, yes, but it’s pretty darn limiting.  After all, what if we want 

our path to be something that looks more like:

While it’s true that we could make this example work for a curved path, we’re much less likely 

to end up needing a cool compress on our forehead if we stick with line segments.  In the end, we  

can always employ the same technique we discovered with Box2D—we can draw whatever 

fancy curved path we want and approximate it behind the scenes with simple geometric forms.  

So, what’s the problem?  If we made path following work with one line segment, how do we 

make it work with a series of connected line segments?   Let’s take a look again at our vehicle 

driving along the screen.    Say we arrive at Step 3.
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Step 3. Find a target point on the path.

To find the target, we need to find the normal to the line segment.  But now that we have a series 

of line segments, we have a series of normal points (see above)!  Which one do we choose?  The 

solution we’ll employ is to pick the normal point that is (a) closest and (b) on the path itself.  

If we have a point and an infinitely long line, we’ll always have a normal.  But, as in the path-

following example, if we have a point and a line segment, we won’t necessarily find a normal 

that is on the line segment itself.  So if this happens for any of the segments, we can disqualify 

those normals.  Once we are left with normals that are on the path itself (only two in the above 

diagram), we simply pick the one that is closest to our vehicle’s location.

In order to write the code for this, we’ll have to expand our Path class to have an ArrayList of 

points (rather than just two, a start and an end.)

class Path {

  ArrayList<PVector> points;!
! ! $$ A Path is now an ArrayList of points

 ! !   (PVector objects)

  float radius;

  Path() {
    radius = 20;
    points = new ArrayList<PVector>();
  }

  void addPoint(float x, float y) {! ! $$ This function allows us to add points

    PVector point = new PVector(x,y);!!    to the path
    points.add(point);
  }

  void display() {! ! ! ! $$ Display the path as a series of points
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    stroke(0);
    noFill();
    beginShape();
    for (PVector v : points) {
      vertex(v.x,v.y);
    }
    endShape();
  }
}

Now that we have the Path defined, it’s the vehicle’s turn to deal with multiple line segments.  

All we did before was find the normal for one line segment.  We can now find the normals for all 

the line segments in a loop.

for (int i = 0; i < p.points.size()-1; i++) {
  PVector a = p.points.get(i);
  PVector b = p.points.get(i+1);
  PVector normalPoint = getNormalPoint(predictLoc, a, b);
! ! ! ! $$ Finding the normals on each line segment

Then we should make sure the normalPoint is actually between points a and b.  Since we know 

our path goes from left to right in this example, we can test if the x location of normalPoint is 

outside the x locations of a and b.

     if (normalPoint.x < a.x || normalPoint.x > b.x) {
        normalPoint = b.get();  $$ Use the end point of the segment as our normal point if we

     }! ! ! !   can’t find one.

As a little trick, we’ll say that if it’s not within the line segment, let’s just pretend the end point of 

that line segment is the normal.  This will ensure that our vehicle always stays on the path, even 

if it strays out of the bounds of our line segments.  

Finally, we’ll need to make sure we find the normal point that is closest to our vehicle.  To 

accomplish this, we can start with a “world record” of some very high number and progressively 

save normal point that beats the record as we go through the loop in a variable called “target”.  

When all is said and done, we’ll have the closest normal point in that variable.

Example 6.x: Path Following

PVector target = null;
float worldRecord = 1000000; !$$ Start with a very high record 

! ! ! ! that can easily be beaten

for (int i = 0; i < p.points.size()-1; i++) {
  PVector a = p.points.get(i);
  PVector b = p.points.get(i+1);
  PVector normalPoint = getNormalPoint(predictLoc, a, b);
  if (normalPoint.x < a.x || normalPoint.x > b.x) {
    normalPoint = b.get();
  }

  float distance = PVector.dist(predictLoc, normalPoint);
      
  if (distance < worldRecord) {! $$ If we beat the record then this should be our target!

    worldRecord = distance;

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 30

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project


    target = normalPoint.get();
  }

}

Exercise: Update the path-following example so that the path can go in any direction.  (Hint, 

you’ll need to use the min() and max() function when determining if the normal point is inside 

the line segment.)

if (normalPoint.x < ____(____,____) || normalPoint.x > ____(____,____)) {
  normalPoint = b.get();
}

Exercise: Create a path that changes over time.  Can the points that define the path itself have 

their own steering behaviors?

6.8  Complex Systems

Remember our purpose?  To breathe life into the things that move around our Processing 

windows?  By learning to write the code for an autonomous agent and building a series of 

examples of individual behaviors, hopefully our souls feel a little more full.  But this is no place 

to stop and rest on our laurels.  We’re just getting started.   After all, there is a deeper purpose at 

work here.  Yes, a vehicle is a sentient being making decisions about how to seek and flow and 

follow.  But what is a life led by oneself, without the love and support of others?  Our purpose 

here is not only to build individual behaviors for our vehicles, but to put our vehicles into 

systems of many vehicles and allow those vehicles to interact with each other.  

Why?  Well, for one, we’re just following the natural creative coding progression—“Oooh, I 

made one thing that is cool. You know what would be even cooler?  Let’s try putting hundreds of 

those things on the screen!”  But more is not necessarily better.  Our reasons for not stopping this 

chapter at a perfectly reasonable thirty pages is because we have an opportunity to breathe even 

more life into our Processing sketches.  

Let’s think about a tiny, crawling ant—one single ant.  An ant is an autonomous agent; it can 

perceive its environment (using antennae to gather information about the direction and strength 

of chemical signals) and make decisions about how to move based on those signals.  But can a 

single ant acting alone build a nest, gather food, defend its queen?   An ant is a simple unit and 

can only perceive its immediate environment.  A colony of ants, however, is a sophisticated 

complex system, a “superorganism” that collectively works together to accomplish difficult and 

complicated goals.

We want to take what we’ve learned during the process of building autonomous agents in 

Processing into simulations that involve many agents operating in parallel—agents that have an 

ability not only to perceive their physical environment but also the actions of their fellow agents, 

and then act accordingly.  We want to create complex systems in Processing.
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What is a complex system?  A complex system is typically defined as a system that is “more than 

the sum of its parts.”  While the individual elements of the system may be incredibly simple and 

easily understood, the behavior of the system as a whole can be highly complex, intelligent, and 

difficult to predict.  Here are three key principles of complex systems.

•  Simple units with short-range relationships.  This is what we’ve been building all along: 

vehicles that have a limited perception of their environment.

• Simple units operate in parallel.   This is what we need to simulate in code.  For every 

cycle through Processing’s draw() loop, each unit will decide how to move (to create the 

appearance of them all working in parallel.)

• System as a whole exhibits emergent phenomena.   Out of the interactions between these 

simple units emerges complex behavior, patterns, and intelligence.  Here we’re talking 

about the result we are hoping for in our sketches.  Yes, we know this happens in nature 

(ant colonies, termites, migration patterns, earthquakes, snowflakes, etc.), but can we 

achieve the same result in our Processing sketches?

As we move beyond this chapter, we’ll see further examples of complexity.  But we’ll begin by 

adding one more feature to our Vehicle class: an ability to look at neighboring vehicles.

6.9  Group Behaviors Part I: Let’s not run into each other.

A group is certainly not a new concept. We’ve done this before—in Chapter 4, where we 

developed a framework for managing collections of particles in a ParticleSystem class.   There, 

we stored a list of particles in an ArrayList.  We’ll do the same thing here: store a bunch of 

Vehicle objects in an ArrayList.

ArrayList<Vehicle> vehicles;!! $$ Declare an ArrayList of Vehicle objects

void setup() {
  vehicles = new ArrayList<Vehicle>;! $$ Initialize and fill the ArrayList with a bunch

  for (int i = 0; i < 100; i++) {! !    of Vehicles

    vehicles.add(new Vehicle(random(width),random(height)));
  }
}

Now when it comes time to deal with all the vehicles in draw(), we simply loop through all of them and 
call the necessary functions.

void draw(){
  for (Vehicle v : vehicles) {
    v.update();
    v.display();
  }
}
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OK, so maybe we want to add a behavior, a force to be applied to all the vehicles.  This could be 

seeking the mouse.

    v.seek(mouseX,mouseY);

But that’s an individual behavior.  We’ve already spent thirty-odd pages worrying about 

individual behaviors.  We’re here because we want to apply a group behavior.  Let’s begin with 

“separation”, a behavior that states, “Avoid colliding with your neighbors!”

    v.separate();

Is that right?  It sounds good, but it’s not.  What’s missing?  In the case of seek, we said “Seek 

mouseX and mouseY.”  In the case of separate, we’re saying “separate from everyone else.”  

Who is everyone else?  It’s the list of all the other vehicles.

    v.separate(vehicles);

This is the big leap beyond what we did before with Particle Systems.  Instead of having each 

element (particle or vehicle) operate on its own, we’re now saying, “You, the vehicle, when it 

comes time for you to operate, you need to operate with an awareness of everyone else. So I’m 

going to go ahead and pass you the ArrayList of everyone else.”

This is how we’ve mapped out setup() and draw() to deal with a group behavior.

ArrayList<Vehicle> vehicles;

void setup() {
  size(320,240);
  vehicles = new ArrayList<Vehicle>();
  for (int i = 0; i < 100; i++) {
    vehicles.add(new Vehicle(random(width),random(height)));
  }
}

void draw() {
  background(255);

  for (Vehicle v : vehicles) {
    v.separate(vehicles);! ! $$ This is really the only new thing we’re doing in this

    v.update();! ! ! !    section.  We’re asking a Vehicle object to examine all the

    v.display();! ! ! !    other vehicles in the process of calculating a separation
  }! ! ! ! ! !    force.
}

Of course, this is just the beginning.  The real work happens inside the separate() function itself.  

Let’s figure out how we want to define separation. Reynolds states: “Steer to avoid crowding.” In 

other words, if a given vehicle is too close to you, steer away from that vehicle.  Sound familiar?  

Remember the seek behavior where a vehicle steers towards a target?  Reverse that force and we 

have the flee behavior.   
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But what if more than one vehicle is too close?  In this case, we’ll define separation as the 

average of all the vectors pointing away from any close vehicles.

Let’s begin to write the code.  As we just worked out, we’re writing a function called separate() 

that receives an ArrayList of Vehicle objects as an argument.

void separate (ArrayList<Vehicle> vehicles) {

}

Inside this function, we’re going to loop through all of the vehicles and see if any are too close.

  float desiredseparation = 20;! $$ This variable specifies how close is too close.

  for (Vehicle other : vehicles) {

    float d = PVector.dist(location, other.location);! $$ What is the distance between me

! ! ! ! ! ! ! ! ! !    and another Vehicle?

    if ((d > 0) && (d < desiredseparation)) {

! ! $$ Here is the code that will be executed if the Vehicle! !

! !    is within 20 pixels.

    }
  }

Notice how in the above code, we are not only checking if the distance is less than a desired 

separation (i.e. too close!), but also if the distance is greater than zero.  This is a little trick that 

makes sure we don’t ask a vehicle to separate from itself.   Remember, all the vehicles are in the 

ArrayList, so if you aren’t careful you’ll be comparing each vehicle to itself!   

Once we know that two vehicles are too close, we need to make a vector that points away from 

the offending vehicle.

    if ((d > 0) && (d < desiredseparation)) {
      PVector diff = PVector.sub(location, other.location);!

      diff.normalize();!! ! ! $$ A PVector pointing away from the other’s location.
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    }

This is not enough.  We have that vector now, but we need to make sure we calculate the average 

of all vectors pointing away from close vehicles.   How do we compute average?  We add up all 

the vectors and divide by the total.

  PVector sum = new PVector();! $$ Start with an empty PVector

  int count = 0;! ! ! ! $$ We have to keep track of how many Vehicles are too close

  for (Vehicle other : vehicles) {
    float d = PVector.dist(location, other.location);
    if ((d > 0) && (d < desiredseparation)) {
      PVector diff = PVector.sub(location, other.location);
      diff.normalize();
      sum.add(diff);! ! ! $$ All the vectors together and increment the count

      count++;

    }
  }

  if (count > 0) {! ! ! $$ We have to make sure we found at least one close

    sum.div(count);! ! !    vehicle.  We don’t want to bother doing anything

  }! ! ! ! ! !    if nothing is too close (not to mention we can’t

! ! ! ! ! !    divide by zero!)

Once we have the average vector (stored in the PVector object “sum”), that PVector can be 

scaled to maximum speed and become our desired velocity—we desire to move in that direction 

at maximum speed!   And once we have the desired velocity, it’s the same old Reynolds story: 

steering equals desired minus velocity.

  if (count > 0) {
    sum.div(count);

    sum.normalize();! ! $$ Scale average to maxspeed (this becomes desired)

    sum.mult(maxspeed);

    PVector steer = PVector.sub(sum,vel);! $$ Reynolds Steering formula

    steer.limit(maxforce);

    applyForce(steer);!! $$ Apply the force to the Vehicle’s acceleration

  }

Let’s see the function in its entirety.  There are two additional improvements, noted in the code 

bubbles.

  Example 6.x: Group Behavior: Separation
  void separate (ArrayList<Vehicle> vehicles) {
    float desiredseparation = r*2;!! $$ Note how the desired separation is based

    PVector sum = new PVector();! !    on the Vehicle’s size.
    int count = 0;
    for (Vehicle other : vehicles) {
      float d = PVector.dist(location, other.location);
      if ((d > 0) && (d < desiredseparation)) {
        PVector diff = PVector.sub(location, other.location);
        diff.normalize();
        diff.div(d);  !! ! ! $$ What is the magnitude of the PVector pointing away

        sum.add(diff);!! ! !    from the other vehicle?  The closer it is, the more
        count++;   ! ! ! !    we should flee.  The farther, the less. So we divide
! ! ! ! ! ! !    by the distance to weight it appropriately.
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      }! ! ! ! ! !    
    }
    if (count > 0) {
      sum.div(count);
      sum.normalize();
      sum.mult(maxspeed);
      PVector steer = PVector.sub(sum, vel);
      steer.limit(maxforce);
      applyForce(steer);
    }

  }

Exercise: Rewrite separate() to work in the opposite fashion (“cohesion”).  If a vehicle is beyond 

a certain distance, steer towards that vehicle.  This will keep the group together.  (Note that in a 

moment, we’re going to look at what happens when we have both cohesion and separation in the 

same simulation.)

Exercise: Add the separation force to path following to 

create a simulation of Reynolds’s “Crowd Path 

Following.”

6.10  Combinations

The previous two exercises (6.x, 6.x) hint at what is perhaps the most important aspect of this 

chapter—our true purpose for being here.  After all, what is a Processing sketch with one steering 

force compared to one with many?  How could we even begin to simulate emergence in our 

sketches with only one rule?   The most exciting and intriguing behaviors will come from mixing 

and matching multiple steering forces, and we’ll need a mechanism for doing so.  

You may be thinking, Duh, this is nothing new.  We do this all the time.  You would be right.  In 

fact, we did this as early as Chapter 2.  

  PVector wind = new PVector(0.001,0);
  PVector gravity = new PVector(0,0.1);
  mover.applyForce(wind);
  mover.applyForce(gravity);
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Here we have a Mover object that responds to two forces.  This all works nicely because of the 

way we designed the Mover object to accumulate the force vectors into its acceleration vector.  

In this chapter, however, our forces stem from internal desires of the Mover objects (now called 

“Vehicles” themselves).   And those desires can be weighted.    Let’s consider a sketch where all 

vehicles have two desires:

• Seek the mouse location.

• Separate from any vehicles that are too close.

We might begin by adding a function to the Vehicle class that manages all of the behaviors.  Let’s 

call it applyBehaviors().  

void applyBehaviors(ArrayList<Vehicle> vehicles) {
  separate(vehicles);
  seek(new PVector(mouseX,mouseY));
} 

Here we see how a single function takes care of calling the other functions that apply the forces

—separate() and seek().    We could start mucking around with those functions and see if we can 

adjust the strength of the forces they are calculating.  But it would be easier for us to ask those 

functions to return the forces so that we can adjust their strength before applying them to the 

Vehicle’s acceleration.  

  void applyBehaviors(ArrayList<Vehicle> vehicles) {
    PVector separate = separate(vehicles);! ! !

    PVector seek = seek(new PVector(mouseX,mouseY));
    applyForce(separate);! ! ! $$ We have to apply the force here since

    applyForce(seek); !! ! !    seek() and separate() no longer do so.
  }

Let’s look at how the seek function changed.

  PVector seek(PVector target) {! ! $$ Seek now returns a PVector

    PVector desired = PVector.sub(target,loc);      
    desired.normalize();
    desired.mult(maxspeed);
    PVector steer = PVector.sub(desired,vel);
    steer.limit(maxforce);
    applyForce(steer);   ! $$ Instead of applying the force, we return the PVector

    return steer;

  }

This is a subtle change, but incredibly important for us: itallows us alter the strength of these 

forces. 

Example 6.x: Combining Steering Behaviors: Seek and Separate

void applyBehaviors(ArrayList<Vehicle> vehicles) {
  PVector separate = separate(vehicles);
  PVector seek = seek(new PVector(mouseX,mouseY));

  separate.mult(1.5);! $$ These values can be whatever you want them to be!

  seek.mult(0.5);!!    They can be variables that are customized for
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 ! ! ! !    each vehicle as well as change over time.

  applyForce(separate);
  applyForce(seek); 
}

Exercise: Redo example 6.x so that the behavior weights are not constants.  What happens if they 

change over time (according to a sine wave or Perlin noise)?  Or if some vehicles are more 

concerned with seeking and others more concerned with separating?  Can you introduce other 

steering behaviors as well?

6.11  Flocking

Flocking is an group animal behavior that is characteristic of many living creatures, such as 

birds, fish, and insects.   In 1986, Craig Reynolds created a computer simulation of flocking 

behavior and documented the algorithm in his paper, “Flocks, Herds, and Schools: A Distributed 

Behavioral Model.”    Recreating this simulation in Processing will bring together all the 

concepts in this chapter.

1. We will use the steering force formula (steer = desired - velocity) to implement the rules of 

flocking.

2. These steering forces will be group behaviors and require each vehicle to look at all the other 

vehicles.

3. We will combine and weight multiple forces.

4. The result will be a complex system—intelligent group behavior will emerge from the simple 

rules of flocking without the presence of a centralized system or leader.

The good news is, we’ve already done items 1 through 3 in this chapter, so this section will be 

about just putting it all together and seeing the result.

Before we begin, I should mention that we’re going to change the name of our Vehicle class (yet 

again).  Reynolds uses the term “boid” (a made-up word that refers to a bird-like object) to 

describe the elements of a flocking system and we will do the same.

Let’s take an overview of the three rules of flocking.

1. Separation (also known as “avoidance”): Steer to avoid colliding with your neighbors.

2. Alignment (also known as “copy”): Steer in the same direction as your neighbors.

3. Cohesion (also known as “center”): Steer towards the center of your neighbors (stay with the 

group). 
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Just as we did with our separate and seek example, we’ll want our Boid objects to have a single 

function that manages all the above behaviors.  We’ll call this function flock().

  void flock(ArrayList<Boid> boids) {
    PVector sep = separate(boids); ! ! $$ The three flocking rules 
    PVector ali = align(boids);      
    PVector coh = cohesion(boids);  

    sep.mult(1.5);! ! ! ! ! $$ Arbitrary weights for these forces

    ali.mult(1.0);! ! ! ! !    (Try different ones!)
    coh.mult(1.0);

    applyForce(sep);! ! ! ! ! $$ Applying all the forces

    applyForce(ali);
    applyForce(coh);
  }

Now, it’s just a matter of implementing the three rules.   We did separation before; it’s identical 

to our previous example.  Let’s take a look at alignment—steer in the same direction as your 

neighbors.  As with all of our steering behaviors, we’ve got to boil down this concept into a 

desire: the boid’s desired velocity is the average velocity of its neighbors.

So our algorithm is to calculate the average velocity of all the other boids and set that to desired.

  PVector align (ArrayList<Boid> boids) {
    PVector sum = new PVector(0,0);! $$ Add up all the velocities and divide by the total

    for (Boid other : boids) {! !    to calculate the average velocity.

      sum.add(other.velocity);
    }
    sum.div(boids.size());

    sum.normalize();! ! ! ! $$ We desire to go in that direction at maximum speed

    sum.mult(maxspeed);!! !

    PVector steer = PVector.sub(sum,velocity);!$$ Reynolds steering force formula
    steer.limit(maxforce);
    return steer;
  }
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The above is pretty good, but it’s missing one rather crucial detail.  One of the key principles 

behind complex systems like flocking is that the elements (in this case, boids) have short-range 

relationships.   Thinking about ants again, it’s pretty easy to imagine an ant being able to sense 

its immediate environment, but less so an ant having an awareness of what another ant is doing 

hundreds of feet away.  The fact that the ants can perform such complex collective behavior from 

only these neighboring relationships is what makes them so exciting in the first place.

In our alignment function, we’re taking the average velocity of all the boids, whereas we should 

really only be looking at the boids within a certain distance.  That distance threshold is up to you, 

of course.  You could design boids that can see only twenty pixels away or boids that can see a 

hundred pixels away.

Much like we did with separation (we only calculated a force for others within a certain 

distance), we’ll want to do the same with alignment (and cohesion).

  PVector align (ArrayList<Boid> boids) {
    float neighbordist = 50;!! ! ! $$ This is an arbitrary value and could

    PVector sum = new PVector(0,0);! !    vary from boid to boid
    int count = 0;

    for (Boid other : boids) {
      float d = PVector.dist(location,other.location);
      if ((d > 0) && (d < neighbordist)) {
        sum.add(other.velocity);
        count++;! ! ! ! ! ! $$ For average, we need to keep track of

      }! ! ! ! ! ! !    how many boids are within the distance
    }
    if (count > 0) {

      sum.div(count);
      sum.normalize();
      sum.mult(maxspeed);
      PVector steer = PVector.sub(sum,velocity);
      steer.limit(maxforce);
      return steer;
    } else {
      return new PVector(0,0);! ! ! $$ If we don’t find any close boids the steering

    }!! ! ! ! ! ! !    force is zero.

  }

Exercise: Can you write the above code so that boids can only see other boids that are actually 

within their “peripheral” vision (as if they had eyes)?
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Finally, we are ready for cohesion.  Here our code is virtually identical to alignment—only 

instead of calculating the average velocity of the boid’s neighbors, we want to calculate the 

average location of the boid’s neighbors (and use that as a target to seek).

  PVector cohesion (ArrayList<Boid> boids) {
    float neighbordist = 50;
    PVector sum = new PVector(0,0);
    int count = 0;
    for (Boid other : boids) {
      float d = PVector.dist(location,other.location);
      if ((d > 0) && (d < neighbordist)) {
        sum.add(other.location);! ! ! ! $$ Adding up all the others’ locations 

        count++;
      }
    }
    if (count > 0) {
      sum.div(count);
      return seek(sum);!! ! $$ Here we make use of the seek() function we wrote in

    } else {! ! ! !    Example 6.x.  The target we seek is the average location
      return new PVector(0,0);!    of our neighbors.
    }
  }

It’s worth taking the time to also write a class called Flock, which will be virtually identical to 

the ParticleSystem class we wrote in Chapter 4 with only one tiny change:  When we call run() 

on each Boid object (as we did to each Particle object), we’ll pass in a reference to the entire 

ArrayList of boids.

class Flock {
  ArrayList<Boid> boids;

  Flock() {
    boids = new ArrayList<Boid>(); 
  }

  void run() {
    for (Boid b : boids) {
      b.run(boids); ! !  $$ Each Boid object must know about all the other Boids
    }
  }

  void addBoid(Boid b) {
    boids.add(b);
  }
}

And our main program will look like:
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Flock flock;! ! $$ A Flock object manages the entire

! ! ! !    group.!
void setup() {
  size(300,200);
  flock = new Flock();
  for (int i = 0; i < 100; i++) {! !

    Boid b = new Boid(width/2,height/2);
    flock.addBoid(b);! $$ The Flock starts out with 100 Boids

  }
}

void draw() {
  background(255);
  flock.run();
}

Exercise:  Combine Flocking with some other steering behaviors.

Exercise: In “The Computational Beauty of Nature” (Gary Flake, MIT 

Press, 2000), Gary Flake describes a fourth rule for flocking: “View: 

move laterally away from any boid that blocks the view.”  Implement 

this rule.

Exercise: Create a flocking simulation where all of the parameters (separation weight, cohesion 

weight, alignment weight, maximum force, maximum speed) change over time.  They could be 

controlled by Perlin noise or by user interaction (for example, you could use a library such as 

controlp5 to tie the values to slider positions.)

Exercise: Visualize the flock in an entirely different way.

6.12  Algorithmic Efficiency (or Why does my $#@(*%#! run so slow?)

I would like to hide the dark truth of what we’ve done from you, because I would like you to be 

happy and live a fulfilling and meaningful life.  But I also would like to be able to sleep at night 

without worrying about you so much.  So it is with a heavy heart that I must bring up this topic.  

Group behaviors are wonderful.  But they can be slow, and the more elements in the group, the 

slower they can be.  Usually, when we talk about Processing sketches running slowly, it’s 

because drawing to the screen can be slow—the more you draw, the slower your sketch runs.  

This is actually a case, however, where the slowness derives from the algorithm itself.  Let’s 

discuss.

Computer scientists classify algorithms with something called “Big O notation”, which describes 

the efficiency of an algorithm: how many computational cycles does it require to complete?  

Let’s consider a simple analog search problem.  You have a basket full of one hundred chocolate 

treats, only one of which is pure dark chocolate. That’s the one you want to eat.  To find it, you 

pick the chocolates out of the basket one by one.  Sure, you might be lucky and find it on the first 
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try, but in the worst-case scenario you have to check all one hundred before you find the dark 

chocolate.   To find one thing in one hundred, you have to check one hundred things (or to find 

one thing in N things, you have to check N times.)  Your Big O Notation is N.  This incidentally 

is the Big O Notation that describes our simple particle system.  If we have N particles, we have 

to run and display those particles N times.

Now, let’s think about a group behavior (such as flocking).   For every Boid object, we have to 

check every other Boid object (for its velocity and location).  Let’s say we have one hundred 

boids.  For Boid #1, we need to check one hundred boids; for Boid #1, we need to check one 

hundred boids, and so on and so forth.   For one hundred boids, we need to perform one hundred 

times one hundred checks, or ten thousand.   No problem: computers are fast and can do things 

ten thousand times pretty easily.  Let’s try one thousand.

1,000 x 1,000 = 1,000,000 cycles. 

OK, this is rather slow, but still somewhat manageable.   Let’s try 10,000 elements:

10,000 x 10,000 elements = 100,000,000 cycles. 

Now, we’re really getting slow. Really, really, really slow.

Notice something odd?  As the number of elements increases by a factor of 10, the number of 

required cycles increases by a factor of 100.  Or as the number of elements increases by a factor 

of N, the cycles increase by a factor of N times N.  This is known as Big O Notation N-Squared. 

I know what you are thinking.  You are thinking: “No problem; with flocking, we only need to 

consider the boids that are close to other boids.  So even if we have 1,000 boids, we can just look 

at, say, the five closest boids and then we only have 5,000 cycles.”   You pause for a moment, 

and then start thinking: “So for each boid I just need to check all the boids and find the five 

closest ones and I’m good!”  See the catch-22?  Even if we only want to look at the close ones, 

the only way to know what the close ones are would be to check all of them.  

Or is there another way?

Let’s take a number that we might actually want to use, but would still run too slow: 2,000 

(4,000,000 cycles required.)

What if we could divide the screen into a grid?  We would take all 2,000 boids and assign each 

boid to a cell within that grid.   We would then be able to look at each boid and compare it to its 

neighbors within that cell at any given moment. Imagine a 10 x 10 grid. In a system of 2,000 

elements, on average, approximately 20 elements would be found in each cell (20 x 10 x 10 = 

2,000).  Each cell would then require 20 x 20 = 400 cycles. With 100 cells, we’d have 100 x 400 

= 40,000 cycles, a massive savings over 4,000,000.
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This technique is known as “bin-lattice spatial subdivision” and is outlined in more detail in 

(surprise, surprise) Reynolds’s 2000 paper: “Interaction with Groups of Autonomous 

Characters” (see: http://www.red3d.com/cwr/papers/2000/pip.pdf).   How do we implement such 

an algorithm in Processing?  One way is to keep multiple ArrayLists.  One ArrayList would keep 

track of all the boids, just like in our Flocking example.

ArrayList<Boid> boids;           

In addition to that ArrayList, we store an additional reference to each Boid object in a two-

dimensional ArrayList.  For each cell in the grid, there is an ArrayList that tracks the objects in 

that cell.

ArrayList<Boid>[][] grid;

In the main draw() loop, each Boid object then registers itself in the appropriate cell according to 

its location.

int column = int(boid.x) / resolution; 
int row    = int(boid.y) /resolution;
grid[column][row].add(boid);

Then when it comes time to have the boids check for neighbors, they can look at only those in 

their particular cell (in truth, we also need to check neighboring cells to deal with border cases).

Example 6.x: Bin-Lattice Spatial Subdivision

int column = int(boid.x) / resolution; 
int row    = int(boid.y) /resolution;
boid.flock(boids);
boid.flock(grid[column][row]);! $$ Instead of looking at all the boids, just this cell

We’re only covering the basics here; for the full code, check the web site.
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Now, there are certainly flaws with this system.  What if all the boids congregate in the corner 

and live in the same cell? Then don’t we have to check all 2,000 against all 2,000? 

The good news is that this need for optimization is a common one and there are a wide variety of 

similar techniques out there.   For us, it’s likely that a basic approach will be good enough (in 

most cases, you won’t need one at all) and we can stop here.  

6.13  A few last notes: optimization tricks.

This is something of a momentous occasion.  The end of Chapter 6 marks the end of our story of 

motion (in the context of this book, that is).  We started with the concept of a vector, moved onto 

forces, designed systems of many elements, examined physics libraries, built entities with hopes 

and dreams and fears, and simulated emergence.  The story doesn’t end here, but it does take a 

bit of a turn.  The next two chapters won’t focus on moving bodies, but rather on systems of 

rules.   Before we get there, I have a few quick items I’d like to mention that are important when 

working with the examples in Chapters 1-6.  They also relate to optimizing your code, which fits 

in with the previous section.

Magnitude squared (or sometimes distance squared)

What is magnitude squared and when should you use it?  Let’s revisit how the magnitude of a 

vector is calculated.

float mag() {
  return sqrt(x*x + y*y);
}

Magnitude requires the square root operation.  And it should.  After all, if you want the 

magnitude of a vector then you’ve got to look up the Pythagorean theorem and compute it (we 

did this in Chapter 1).  However, if you could somehow skip using the square root, your code 

would run faster.   Let’s consider a situation where you just want to know the relative magnitude 

of a vector.  For example, is the magnitude greater than ten?  (Assume a PVector v).

if (v.mag() > 10) {
  // Do Something!
}

Well, this is equivalent to saying:

if (v.magSquared() > 100) {
  // Do Something!
}

And how is magSquared calculated?

float magSquared() {
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  return x*x + y*y;
}

Same as magnitude, but without the square root.  In the case of a single PVector object, this will 

never make a significant difference on a Processing sketch.  However, if you are computing the 

magnitude of thousands of PVector objects each time through draw(), using magSquared() 

instead of mag() could help your code run a wee bit faster.

Sine and cosine lookup tables.  

There’s a pattern here.  What kinds of functions are slow to compute? Square root. Sine. Cosine.  

Tangent.  Again, if you just need a sine or cosine value here or there in your code, you are never 

going to run into a problem.  But what if you had something like this?

void draw() {
  for (int i = 0; i < 10000; i++) {
     println(sin(PI));
  }
}

Sure, this is a totally ridiculous code snippet that you would never write.  But it illustrates a 

certain point.  If you are calculating the sine of pi ten thousand times, why not just calculate it 

once, save that value, and refer to it whenever necessary?  This is the principle behind sine and 

cosine lookup tables.   Instead of calling the sine and cosine functions in your code whenever 

you need them, you can build an array that stores the results of sine and cosine at angles between 

0 to TWO_PI and just look up the values when you need them. For example, here are two arrays 

that store the sine and cosine values for every angle, 0 to 359 degrees.

float sinvalues[] = new float[360];
float cosvalues[] = new float[360];
for (int i = 0; i < 360; i++) {
  sinvalues[i] = sin(radians(i));
  cosvalues[i] = cos(radians(i));
}

Now, what if you need the value of of sine of pi?

int angle = int(degrees(PI));
float answer = sinvalues[angle];

A more sophisticated example of this technique is available on the Processing wiki: 

http://wiki.processing.org/w/Sin/Cos_look-up_table

Making gajillions of unnecessary PVector objects

I have to admit, I am perhaps the biggest culprit of this last note.  In fact, in the interest of 

writing clear and understandable examples, I often choose to make extra PVector objects when I 
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absolutely do not need to.  For the most part, this is not a problem at all.   But sometimes, it can 

be.  Let’s take a look at an example.

void draw() {
  for (Vehicle v : vehicles) {
   PVector mouse = new PVector(mouseX,mouseY);
   v.seek(mouse);
  }
}

Let’s say our ArrayList of vehicles has one thousand vehicles in it.  We just made one thousand 

new PVector objects every single time through draw().  Now, on any ol’ laptop or desktop 

computer you’ve purchased in recent times, your sketch will likely not register a complaint, run 

slowly, or have any problems.  After all, you’ve got tons of RAM, and Java will be able to handle 

making a thousand or so temporary objects and dispose of them without much of a problem. 

If your numbers grow larger (and they easily could) or perhaps more likely, if you are working 

with Processing on Android, you will almost certainly run into a problem.  In cases like this you 

want to look for ways to reduce the number of PVector objects you make.  An obvious fix for the 

above code is:

void draw() {
  PVector mouse = new PVector(mouseX,mouseY);
  for (Vehicle v : vehicles) {
   v.seek(mouse);
  }
}

Now you’ve made just one PVector instead of one thousand.  Even better, you could turn the 

PVector into a global variable and just assign the x and y value:

PVector mouse = new PVector();

void draw() {
  mouse.x = mouseX;
  mouse.y = mouseY;
  for (Vehicle v : vehicles) {
   v.seek(mouse);
  }
}

Now you never make a new PVector; you use just one over the length of your sketch!

In my examples, you’ll find lots of opportunities to reduce the number of temporary objects.  

Let’s look at one more.  Here is a snippet from our seek() function.

    PVector desired = PVector.sub(target,location); 
    desired.normalize();
    desired.mult(maxspeed);

    PVector steer = PVector.sub(desired,velocity);

    steer.limit(maxforce);! ! $$ Create a new PVector to store the steering force
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    return steer;

See how we’ve made two PVector objects?  First, we figure out the desired vector, then we 

calculate the steering force.  Notice how we could rewrite this to create only one PVector.

    PVector desired = PVector.sub(target, location); 
    desired.normalize();
    desired.mult(maxspeed);

    desired.sub(velocity);! ! $$ Calculate the steering force in the desired PVector

    desired.limit(maxforce);

    return desired;

      

We don’t actually need a second PVector called steer.  We could just use the desired PVector 

object and turn it into the steering force by subtracting velocity.  I didn’t do this in my example 

because it is more confusing to read.  But in some cases, it may be greatly more efficient.

Exercise: Eliminate as many temporary PVector objects from the flocking example as possible.  

Also use magSquared() where possible.

[MENTION SOMETHING ABOUT OPENSTEER? http://opensteer.sourceforge.net/]

Exercise: Use steering behaviors with Box2D or Toxiclibs. 
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Chapter 7.  Cellular Automata

“To play life you must have a fairly large checkerboard and a plentiful supply of flat counters of two colors.  It is possible to work 
with pencil and graph paper but it is much easier, particularly for beginners, to use counters and a board.” 
! —Martin Gardner, Scientific American (October 1970)

7.1 I miss vectors.

In this chapter, we’re going to take a break from talking about vectors and motion.  In fact, the 

rest of the book will mostly focus on systems and algorithms (albeit ones that we can, should, 

and will apply to moving bodies).  In the previous chapter, we encountered our first Processing 

example of a complex system: flocking.  We briefly stated the core principles behind complex 

systems: more than the sum of its parts, a complex system is a system of elements, operating in 

parallel, with short-range relationships that as a whole exhibit emergent behavior.   This entire 

chapter is going to be dedicated to building another complex system simulation in Processing.    

Oddly, we are going to take some steps backward and simplify the elements of our system.  No 

longer are the individual elements going to be members of a physics world; instead we will build 

a system out of the simplest digital element possible, a single bit.  This bit is going to be called a 

cell and its value (zero or one) will be called its state.  Working with such simple elements will 

help us understand more of the details behind how complex systems work, and we’ll also be able 

to elaborate on some programming techniques that we can apply to code-based projects.

7.2 What is a cellular automaton?

First, let’s get one thing straight.   The term cellular automata is plural.   Our code examples will 

simulate just one—a cellular automaton, singular.   To simplify our lives, we’ll also refer to 

cellular automata as “CA.”  

In Chapters 1 through 6, our objects (Mover, Particle, Vehicle, Boid)  generally existed in only 

one “state”. They might have moved around with advanced behaviors and physics, but ultimately  

they have remained the same type of object over the course of their digital lifetime.  We’ve 

alluded to the possibility that these entities can change over time (for example, the weights of 

steering “desires” can vary), but we haven’t fully put this into practice.   In this context, cellular 

automata make a great first step in building a system of many objects that have varying states 

over time.  

A cellular automaton is a model of a system of “cell” objects with the following characteristics.

• The cells live on a grid. (We’ll see examples in both one and two dimensions in this 

chapter, though a cellular automaton can exist in any finite number of dimensions.)
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• Each cell has a state.  The number of state possibilities is typically finite. The simplest 

example has the two possibilities of one and zero (otherwise referred to as “on” and “off” 

or “alive” and “dead.”)

• Each cell has a neighborhood.  This can be defined in any number of ways, but it is 

typically a list of adjacent cells.

7.3 Where do cellular automata come from?

The development of cellular automata systems is typically attributed Stanis!aw Ulam and John 

von Neumann, who were both researchers at the Los Alamos National Laboratory in New 

Mexico in the 1940s.  Ulam was studying the growth of crystals and von Neumann was 

imagining a world of self-replicating robots.  That’s right, robots that build copies of themselves.  

Once we see some examples of CA visualized, it’ll be clear how one might imagine modeling 

crystal growth; the robots idea is perhaps less obvious.   If you forget about robots for a moment 

and think about a grid of cells displaying a pattern, and through a set of simple rules that pattern 

is able to create copies of itself on that grid, then what you have is a CA that exhibits behavior 

similar to the biological processes of reproduction and evolution.  (Incidentally, von Neumann’s 

cells had 29 possible states.)  Von Neumann’s work in self-replication and CA is conceptually 

similar to what is probably the most famous cellular automaton: the game of life, which we will 

discuss in detail in section 7.5.

[FIGURE?  Can I find some nice diagram / illustration of Ulam or von Neumann’s work?]

Perhaps the most significant scientific (and lengthy) work studying cellular automata arrived in 

2002: Stephen Wolfram’s 1,280-page A New Kind of Science.  Wolfram’s book, available in its 

entirety for free online (http://www.wolframscience.com/nksonline/toc.html), discusses how CA 

are not simply neat tricks, but are relevant to the study of biology, chemistry, physics, and all 

branches of science.  This chapter will barely scratch the surface of the theories Wolfram outlines 

(we will focus on the code implementation) so if the examples provided spark your curiosity, 

you’ll find plenty more to read about in his book.

7.4  Elementary Cellular Automata
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The examples in this chapter will beginwith a simulation of Wolfram’s work, followed by the 

game of life.   To understand Wolfram’s elementary CA, we should ask ourselves the question: 

“What is the simplest cellular automaton we can imagine?”  What’s truly exciting about this 

question and its answer is that even with the simplest CA imaginable, we will see the properties 

of complex systems at work.

Let’s build Wolfram’s elementary CA from scratch.  Concepts first, then code.   What are the 

three key elements of a CA?

1) Grid.  The simplest grid would be one-dimensional.  A line of cells.

2) States.  The simplest set of states (beyond having only one state) would be two states: 0 or 1.

3) Neighborhood.  The simplest neighborhood in one dimension for any given cell would be the 

cell itself and its two adjacent neighbors: one to the left and one to the right.

So we begin with a line of cells, each with an initial state (let’s say it is random), and each with 

two neighbors.   We’ll have to figure out what we want to do with the cells on the edges (since 

those have only one neighbor each), but this is something we can sort out later.

We haven’t yet discussed, however, what is perhaps the most important detail of how cellular 

automata work—time.   We’re not really talking about real-world time here, but we’re talking 

about the CA living over a period of time, which could also be called a generation and, in our 

case, will likely refer to the frame count of an animation.  The figures above shows us the CA at 

time equals zero or generation 0.  The questions we have to ask ourselves is: how do we compute 

the states for all cells at generation 1?  And generation 2?  And so on and so forth. 
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Let’s say we have an individual cell in the CA, and let’s call it CELL.   The formula for 

calculating CELL’s state at any given time (“T”) is as follows:

CELL state at time T = f (CELL neighborhood at time T - 1)

In other words, a cell’s new state is a function of all the states in the cell’s neighborhood at the 

previous moment in time (or during the previous generation).  We calculate a new state value by 

looking at all the previous neighbor states.

Now, in the world of cellular automata, there are many ways we could compute a cell’s state 

from a group of cells.  Consider blurring an image.  (Guess what? Image processing works with 

CA-like rules.)  A pixel’s new state (i.e. its color) is the average of all of its neighbors’ colors.  

We could also say that a cell’s new state is the sum of all of its neighbors’ states.   With 

Wolfram’s elementary CA, however, we can actually do something a bit simpler and seemingly 

absurd: We can look at all the possible configurations of a cell and its neighbor and define the 

state outcome for every possible configuration.  It seems ridiculous—wouldn’t there be way too 

many possibilities for this to be practical?   Let’s give it a try.

We have three cells, each with a state of 0 or 1.  How many possible ways can we configure the 

states?  If you love binary, you’ll notice that three cells define a 3-bit number, and how high can 

you count with three bits?  Up to eight.  Let’s have a look.

Once we have defined all the possible neighborhoods, we need to define an outcome (new state 

value: 0 or 1) for each neighborhood configuration.
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The standard Wolfram model is to start Generation 0 with all cells having a state of 0 except for 

the middle cell, which should have a state of 1.

     

Referring to the ruleset above, let’s see how a given cell (let’s pick the center one) would change 

from Generation 0 to Generation 1.

[This diagram should note: Generation 0, Generation 1]

Try applying the same logic to all of the cells above and fill in the empty cells. 

Now, let’s go past just one generation and color the cells —0 means white, 1 means black—and 

stack the generations, with each new generation appearing below the previous one.
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The low-resolution shape we’re seeing above is the “Sierpi"ski triangle.” Named after the Polish 

mathematician Wac!aw Sierpi"ski, it’s a fractal pattern that we’ll examine in the next chapter.  

That’s right: this incredibly simple system of zeros and ones, with little neighborhoods of three 

cells, can generate a shape as sophisticated and detailed as the Sierpi"ski triangle.   Let’s look at 

it again, only with each cell a single pixel wide so that the resolution is much higher.

This particular result didn’t happen by accident.  I picked this set of rules because of the pattern 

it generates.  Take a look at Figure X one more time.  Notice how there are eight possible 

neighborhood configurations; we therefore define a “ruleset” as a list of eight bits.  

So this particular rule can be illustrated as follows:

[taken from http://mathworld.wolfram.com/ElementaryCellularAutomaton.html, need to 

redraw]

Eight zeros and ones means an 8-bit number.  How many combinations of eight zeros and ones 

are there?  Two hundred and fifty six.  This is just like how we define the components of an RGB 

color.  We get 8 bits for red, green, and blue, meaning we make colors with values from 0 to 255 

(256 possibilities).

In terms of a Wolfram elementary CA, we have now discovered that there are two hundred and 

fifty-six possible rulesets.   The above ruleset is commonly referred to as “Rule 90” because if 

you convert the binary sequence—01011010—to a decimal number, you’ll get the integer 90.  

Let’s try looking at the results of another ruleset.
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As we can now see, the simple act of creating a CA and 

defining a ruleset does not guarantee visually interesting 

results. Out of all 256 rulesets, only a handful produce 

compelling outcomes.  However, the fact that even one of 

these rulesets for a one-dimensional CA with only two 

possible states can produce the patterns we see every day 

in nature (see figure X) is quite incredible and 

demonstrates how valuable these systems can be in 

simulation and pattern generation.

Before we go too far down the road of how Wolfram 

classifies the results of varying rulesets, let’s look at how 

we actually build a Processing sketch that generates the 

Wolfram CA and visualizes it onscreen.

7.5 How to Program an Elementary CA

You may be thinking: “OK, I’ve got this cell thing.  And the cell thing has some properties, like a 

state, what generation it’s on, who its neighbors are, where it lives pixel-wise on the screen.   

And maybe it has some functions: it can display itself, it can generate its new state, etc.”  This 

line of thinking is an excellent one and would likely lead you to write some code like this:

class Cell {

}

This line of thinking, however, is not the road we will first travel.  Later in this chapter, we will 

discuss why an object-oriented approach could prove valuable in developing a CA simulation, 

http://en.wikipedia.org/wiki/
File:Textile_cone.JPG
Photographer: Richard Ling 
[Shall I use this or something else? If I use 
this, make sure I can and that it’s cited 
properly]
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but to begin,we can work with a more elementary data structure.  After all, what is an elementary 

CA but a list of zeros and ones?   Certainly, we could describe the following CA generation using 

array:

int[] cells = {1,0,1,0,0,0,0,1,0,1,1,1,0,0,0,1,1,1,0,0};

To draw that array, we simply check if we’ve got a zero or a one and create a fill accordingly.

for (int i = 0; i < cells.length; i++) {!! $$ Loop through every cell

  if (cells[i] == 0) fill(255);

  else fill(0);! ! ! ! ! ! $$ Create a fill based on its state (0 or 1)

  stroke(0);

  rect(i*50,0,50,50);

}

Now that we have the array to describe the cell states of a given generation (which we’ll 

ultimately consider the “current” generation), we need a mechanism by which to compute the 

next generation.   Let’s think about the pseudo-code of what we are doing at the moment.

For every cell in the array:

• Take a look at the neighborhood states: left, middle, right.

• Look up the new value for the cell state according to some ruleset.

• Set the cell’s state to that new value.

This may lead you to write some code like this:

for (int i = 0; i < cells.length; i++) {! ! $$ For every cell in the array

  int left   = cell[i-1];! ! ! ! $$ Take a look at the neighborhood

  int middle = cell[i];

  int right  = cell[i+1];

  int newstate = rules(left,middle,right);! $$ Look up new value according to rules

  cell[i] = newstate;! ! ! ! ! $$ Set the cell’s state to the new value

}

We’re fairly close to getting this right, but we’ve made one minor blunder and one major blunder 

in the above code.  Let’s talk about what we’ve done well so far.

Notice how easy it is to look at a cell’s neighbors.  Because an array is an ordered list of data, we 

can use the fact that the indices are numbered to know which cells are next to which cells.  We 

know that cell number fifteen, for example, has cell fourteen to its left and sixteen for its right.  

More generally, we can say that for any cell i, its neighbors are (i-1) and (i+1).  
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We’re also farming out the calculation of a new state value to some function called rules().  

Obviously, we’re going to have to write this function ourselves, but the point we’re making here 

is modularity.  We have a basic framework for the CA in this function, and if we later want to 

change how the rules operate, we don’t have to touch that framework; we can simply rewrite the 

rules() function to compute the new states differently.

So what have we done wrong?  Let’s begin talking through how the code will execute.  First, we 

look at cell index i equals 0.  Now let’s look at 0’s neighbors.  Left is index -1.  Middle is index 

0.  And right is index 1.  However, our array by definition does not have an element with the 

index -1.  It starts with 0.  This is a problem we’ve alluded to before: the edge cases.  How do we 

deal with the cells on the edge who don’t have a neighbor to both their left and right?  Here are 

three possible solutions to this problem:

1) Edges remain constant.  This is perhaps the simplest solution.  We never bother to evaluate 

the edges and always leave their state value constant (0 or 1).

2) Edges wrap around.  Think of the CA as a strip of paper and turn that strip of paper into a 

ring.  The cell on the left edge is a neighbor of the cell on the right and vice versa.  This can 

create the appearance of an infinite grid and is probably the most used solution.

3) Edges have different neighborhoods and rules.  If we wanted to, we could treat the edge cells 

differently and create rules for cells that have a neighborhood of two instead of three.  You 

may want to do this in some circumstances, but in our case, it’s going to be a lot of extra lines 

of code for little benefit.

To make the code easiest to read and understand right now, we’ll go with option #1 and just skip 

the edge cases, leaving their values constant.  This can be accomplished by starting the loop one 

cell later and ending one cell earlier:

for (int i = 1; i < cells.length-1; i++) {! $$ A loop that ignores the first 

  int left   = cell[i-1];! ! ! ! and last cell

  int middle = cell[i];

  int right  = cell[i+1];

  int newstate = rules(left,middle,right);!

  cell[i] = newstate;! ! ! ! !

}

There’s one more problem we have to fix before we’re done.  It’s subtle and you won’t get a 

compilation error; the CA just won’t perform correctly.  However, identifying this problem is 

absolutely fundamental to the techniques behind programming CA simulations.  It all lies in this 

line of code:

  cell[i] = newstate;! ! ! ! !

This seems like a perfectly innocent line.  After all, we’ve computed the new state value and 

we’re simply giving the cell its new state.   But in the next iteration, you’ll discover a massive 
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bug.  Let’s say we’ve just computed the new state for cell #5.  What do we do next?  We 

calculate the new state value for Cell #6.  

Cell #6, generation 0 =  some state, 0 or 1

Cell #6, generation 1 =  a function of states for Cell #5, Cell #6, and Cell #7 at generation 0

Notice how we need the value of Cell #5 at generation 0 in order to calculate Cell #6’s new state 

at Generation 1?  A cell’s new state is a function of the previous neighbor states.   Do we know 

Cell #5’s value at Generation 0?   Remember, Processing just executes this line of code for i = 5.

  cell[i] = newstate;! ! ! ! !

Once this happens, we no longer have access to Cell #5’s state at Generation 0, and cell index 5 

is storing the value for Generation 1.  We cannot overwrite the values in the array while we are 

processing the array, because we need those values to calculate the new values.   A solution to 

this problem is to have two arrays, one to store the current generation states and one for the next 

generation states.

int[] newcells = new int[cells.length];! ! $$ Another array to store the states for the next

! ! ! ! ! ! ! ! generation.

for (int i = 1; i < cells.length-1; i++) {!

  int left   = cell[i-1];! ! ! !

  int middle = cell[i];

  int right  = cell[i+1];

  int newstate = rules(left,middle,right);!

  newcells[i] = newstate;! ! ! ! $$ Saving the new state in the new array

}

Once the entire array of values is processed, we can then discard the old array and set it equal to 

the new array of states.

cells = newcells;!! ! ! ! $$ The new generation becomes the current generation

We’re almost done.  The above code is complete except for the fact that we haven’t yet written 

the rules() function that computes the new state value based on the neighborhood (left, middle, 

and right).   We know that function needs to return an integer (0 or 1) as well as receive three 

arguments (for the three neighbors).

  int rules (int a, int b, int c) {! $$ Function receives 3 ints and returns 1

Now, there are many ways we could write this function, but I’d like to start with a long-winded 

one that will hopefully provide a clear illustration of what we are doing.

Let’s first establish how we are storing the ruleset.  The ruleset, if you remember from the 

previous section, is a series of eight bits (0 or 1) that defines that outcome for every possible 

neighborhood configuration.  
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 [Same thing, redraw]

We can store this ruleset in Processing as an array.

int[] ruleset = {0,1,0,1,1,0,1,0};

And then say:

if (a == 1 && b == 1 && c == 1) return ruleset[0];

If left, middle, and right all have the state 1, then that matches the configuration 111 and the new 

state should be equal to the first element in the ruleset.   We can now duplicate this strategy for 

all eight possibilities.

  int rules (int a, int b, int c) {

    if      (a == 1 && b == 1 && c == 1) return ruleset[0];

    else if (a == 1 && b == 1 && c == 0) return ruleset[1];

    else if (a == 1 && b == 0 && c == 1) return ruleset[2];

    else if (a == 1 && b == 0 && c == 0) return ruleset[3];

    else if (a == 0 && b == 1 && c == 1) return ruleset[4];

    else if (a == 0 && b == 0 && c == 1) return ruleset[6];

    else if (a == 0 && b == 0 && c == 0) return rules[7];

    return 0;! ! $$ For this function to be valid, we have to make sure something is

  }! ! ! ! returned in the case where the states do not match one of the 8

 ! ! ! ! possibilities.  We know this is impossible given the rest of our code, but

 ! ! ! ! Processing does not.

I like having the example written as above because it describes line by line exactly what is 

happening for each neighborhood configuration.  However, it’s not a great solution.  After all, 

what if we design a CA that has 4 possible states (0-3) and suddenly we have 64 possible 

neighborhood configurations?  With 10 possible states, we have 1,000 configurations.  Certainly 

we don’t want to type in 1,000 lines of code!  

Another solution, though perhaps a bit more difficult to follow, is to convert the neighborhood 

configuration (a 3-bit number) into a regular integer and use that value as the index into the 

ruleset array.  This can be done in Java like so.

  int rules (int a, int b, int c) {

    String s = "" + a + b + c;! ! $$ A quick way to join three bits into a String

    int index = Integer.parseInt(s,2);! $$ The second argument ‘2’ indicates that we intend to

 ! ! ! ! ! ! ! parse a binary number (base 2)

    return ruleset[index];

  }

There’s one  tiny problem with this solution, however.  Let’s say we are implementing rule 222:

int[] ruleset = {1,1,0,1,1,1,1,0};!$$ Rule 222
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And we have the neighborhood “111”.    The resulting state is equal to ruleset index 0, as we see 

in the first way we wrote the function.

    if (a == 1 && b == 1 && c == 1) return ruleset[0];

If we convert “111” to a decimal number, we get 7.  But we don’t want ruleset[7], we want 

ruleset[0].  For this to work, we need to write the ruleset with the bits in reverse order, i.e.

int[] ruleset = {0,1,1,1,1,0,1,1};!$$ Rule 222 in “reverse” order

So far in this section, we’ve written everything we need to compute the generations for a 

Wolfram elementary CA.    Let’s take a moment to organize the above code into a class, which 

will ultimately help in the design of our overall sketch.

class CA {

  int[] cells;   !! ! $$ We need an array for the cells and one for the rules

  int[] ruleset;

  CA() {

    cells = new int[width];

    ruleset = {0,1,0,1,1,0,1,0};! ! ! $$ Arbitrarily starting with rule 90

    for (int i = 0; i < cells.length; i++) {

      cells[i] = 0;

    }

    cells[cells.length/2] = 1; ! ! ! $$ All cells start with state 0 except center

  }! ! ! ! ! ! ! ! cell has state 1

  void generate() {

    int[] nextgen = new int[cells.length];! ! $$ Compute the next generation

    for (int i = 1; i < cells.length-1; i++) {

      int left   = cells[i-1];

      int me     = cells[i];      

      int right  = cells[i+1];  

      nextgen[i] = rules(left, me, right);

    }

    cells = nextgen;

  }

  int rules (int a, int b, int c) {! ! ! $$ Lookup a new state from ruleset

    String s = "" + a + b + c;

    int index = Integer.parseInt(s,2);

    return ruleset[index];

  }

}

7.6 Drawing an Elementary CA

What’s missing?  Presumably, it’s our intention to display cells and 

their states in visual form.  As we saw earlier, the standard 

technique for doing this is to stack the generations one on top of 

each other and draw a rectangle that is black (for state 1) or white 

(for state 0).
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Before we implement this particular visualization, I’d like to point out two things.  

One, this visual interpretation of the data is completely literal.  It’s useful for demonstrating the 

algorithms and results of Wolfram’s elementary CA, but it shouldn’t necessarily drive your own 

personal work.  It’s rather unlikely that you are building a project that needs precisely this 

algorithm with this visual style.  So while learning to draw the CA in this way will help you 

understand and implement CA systems, this skill should exist only as a foundation.  

Second, the fact that we are visualizing a one-dimensional CA with a two-dimensional image can 

be confusing.  It’s very important to remember that this is not a 2D CA.  We are simply choosing 

to show a history of all the generations stacked vertically.  This technique creates a two-

dimensional image out of a many instances of one-dimensional data.  But the system itself is 

one-dimensional.  Later, we are going to look at an actual 2D CA (the game of life) and discuss 

how we might choose to display such a system.

The good news is that drawing the CA is not particularly difficult.  Let’s begin by looking at how 

we would render a single generation.  Let’s assume we have a Processing window 600 pixels 

wide and we want each cell to be a 10x10 square.  We therefore have a CA with 60 cells.  Of 

course, we can calculate this value dynamically.

int w = 10;

int[] cells = new int[width/w];

Assuming we’ve gone through the process of generating the cell states (which we did in the 

previous section), we can now loop through the entire array of cells, drawing a black cell when 

the state is one and a white one when the state is zero.

for (int i = 0; i < cells.length; i++) {

  if (cells[i] == 1) fill(0);!! ! $$ Black or white fill?

  else               fill(255);

  rect(i*w, 0, w, w);! ! ! ! $$ Notice how the x location is the cell index times the

} ! ! ! ! ! ! ! cell width.  In the above scenario, this would give us

! ! ! ! ! ! ! cells located at x equals 0, 10, 20, 30, all the way up

 ! ! ! ! ! ! ! to 600.

In truth, we could optimize the above by having a white background and only drawing when 

there is a black cell (saving us the work of drawing many white squares), but in most cases this 

solution is good enough (and necessary for other more sophisticated designs with varying colors, 

etc).  Also, if we wanted each cell to be represented as a single pixel, we would not want to use 

Processing’s rect() function, but rather access the pixel array directly.

In the above code, you’ll notice the y location for each rectangle is zero.  If we want the 

generations to be drawn next to each other, with each row of cells marking a new generation, 

we’ll also need to compute a y location based on how many iterations of the CA we’ve executed.  

We could accomplish this by adding a “generation” variable (an integer) to our CA class and 
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incrementing it each time through generate().  With these additions, we can now look at the CA 

class with all the features for both computing and drawing the CA.

Example 7.x: Wolfram Elementary Cellular Automata

class CA {

  int[] cells;   !! !

  int[] ruleset;

  int w = 10;

  int generation = 0;! ! $$ The CA should keep track of how

! ! ! ! ! many generations

  CA() {

    cells = new int[width/w];

    ruleset = {0,1,0,1,1,0,1,0};! !

    cells[cells.length/2] = 1; ! ! !

  }! ! ! ! ! ! ! !

  void generate() {

    int[] nextgen = new int[cells.length];! !

    for (int i = 1; i < cells.length-1; i++) {

      int left   = cells[i-1];

      int me     = cells[i];      

      int right  = cells[i+1];  

      nextgen[i] = rules(left, me, right);

    }

    cells = nextgen;

    generation++;!! ! ! ! $$ Increment the generation counter

  }

  int rules(int a, int b, int c) {!! !

    String s = "" + a + b + c;

    int index = Integer.parseInt(s,2);

    return ruleset[index];

  }

  for (int i = 0; i < cells.length; i++) {

    if (cells[i] == 1) fill(0);! ! !

    else               fill(255);

    rect(i*w, generation*w, w, w);!! $$ Set the y location according to the generation!

  } !

}

Exercise: Expand example 7.x to have the following feature: when the CA reaches the bottom of 

the Processing window, the CA starts over with a new, random ruleset.

Exercise: Examine what patterns occur if you initialize the first generation with each cell having 

a random state.

Exercise: Visualize the CA in a non-traditional way.  Break all the rules you can; don’t feel tied 

to using squares on a perfect grid with black and white colors.

Exercise: Create a visualization of the CA that scrolls upwards as the generations increase so 

that you can view the generations to “infinity.”  Hint: instead of keeping track of only one 

generation at a time, you’ll need to store a history of generations, always adding a new one and 

deleting the oldest one in each frame.
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7.7 Wolfram Classification

Before we move on to looking at CA in two dimensions, it’s worth taking a brief look at 

Wolfram’s classification for cellular automata.  As we noted earlier, the vast majority of 

elementary CA rulesets produce uninspiring results, while some result in wondrously complex 

patterns like those found in nature.  Wolfram has divided up the range of outcomes into four 

classes:

Class 1: Uniformity.  Class 1 CAs end up, after some 

number of generations, with every cell constant.   This is not 

terribly exciting to watch.  Rule 222 (see image to the left) is 

a Class 1 CA; if you run it for enough generations, every cell 

will eventually become and remain black.

Class 2: Repetition.  Like class 1 CAs, class 2 CAs remain 

stable, but the cell states are not constant.  Rather, they 

oscillate in some regular pattern back and forth from 0 to 1 

to 0 to 1 and so on.   In rule 190 to the left, each cell follows 

the sequence 11101110111011101110.  Rule 90 (The 

Sierpi"ski Triangle) is also an example of a class 2 CA, with 

a more sophisticated oscillating pattern. [It is, right? I mean 

it’s not 1,3, or 4?]

Class 3: Random.  Class 3 CAs appear random and have no 

easily discernible pattern.   In fact, rule 30 (see left) is used 

as a random number generator in Wolfram’s Mathematica 

software.  Again, this is a moment where we can feel amazed 

that such a simple system with simple rules can descend into 

a chaotic and random pattern.

Class 4: Complexity.  Class 4 CAs can be thought of as a 

mix between Class 2 and Class 3.  One can find repetitive, 

oscillating patterns inside the CA, but where and when these 

patterns appear is unpredictable and seemingly random.  

Class 4 CA exhibit the properties of complex systems that 

we described earlier in this chapter and in Chapter 6.  If a 

Class 3 CA wowed you, then Class 4 should really blow your 

mind.

[Unsure about the placement or necessity of this section.  Maybe tie in an exercise to the above  

classes?]
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7.8 The Game of Life

The next step we are going to take is to move from a one-dimensional CA to a two-dimensional 

one.  This will introduce some additional complexity; each cell will have a bigger neighborhood, 

but that will open up the door to a range of possible applications.  After all, most of what we do 

in computer graphics lives in two dimensions and this chapter will demonstrate how to apply CA 

thinking to what we draw in our Processing sketches.

In 1970 Martin Gardner wrote an article in Scientific American that documented mathematician 

John Conway’s new “game of life,” describing it as “recreational” mathematics and suggesting 

that the reader get out a chessboard and some checkers and “play.”    While the game of life has 

become something of a computational cliché (make note of the myriad of projects that display 

the game of life on LEDs, screens, projection surfaces, etc.), it is still important for us to build it 

from scratch.  For one, it provides a good opportunity to practice our skills with two-dimensional 

arrays, object orientation, etc.   But perhaps more importantly, its core principles are tied directly 

to our core goals—simulating the natural world with code.    Though we may want to avoid 

simply duplicating it without a great deal of thought or care, the algorithm and its technical 

implementation will provide us with the inspiration and foundation to build simulations that 

exhibit the characteristics and behaviors of biological systems of reproduction.

Unlike von Neumann, who created an extraordinarily complex system of states and rules, 

Conway wanted to achieve a similar “lifelike” result with the simplest set of rules possible.    

Martin Gardner outlined Conway’s goals as follows:    

1. There should be no initial pattern for which there is a simple proof that the 

population can grow without limit.

2. There should be initial patterns that apparently do grow without limit.

3. There should be simple initial patterns that grow and change for a considerable 

period of time before coming to an end in three possible ways: fading away 

completely (from overcrowding or becoming too sparse), settling into a stable 

configuration that remains unchanged thereafter, or entering an oscillating phase 

in which they repeat an endless cycle of two or more periods.

! ! ! ! —Martin Gardner, Scientific American 223 (October 1970): 120-123.

! ! ! !    http://www.ibiblio.org/lifepatterns/october1970.html

The above might sound a bit cryptic, but it essentially describes a Wolfram Class 4 CA.  The CA 

should be patterned but unpredictable over time, eventually settling into a uniform or oscillating 

state.  In other words, though Conway didn’t use this terminology, it should have all those 

properties of a complex system that we keep mentioning.  

Let’s look at how the game of life works.  It won’t take up too much time or space, since we’ve 

covered the basics of CA already.
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First, instead of a line of cells, we now have a two-dimensional matrix of cells.   As with the 

elementary CA, the possible states are 0 or 1.  Only in this case, since we’re talking about “life”, 

0 means dead and 1 means alive.   

The cell’s neighborhood has also expanded.  If a neighbor is an adjacent cell, a neighborhood is 

now nine cells instead of three.

With three cells, we had a 3-bit number or eight possible configurations.  With nine cells, we 

have 9 bits, or 512 possible neighborhoods.  In most cases, it would be impractical to define an 

outcome for every single possibility.  The game of life gets around this problem by defining a set 

of rules according to general characteristics of the neighborhood.  In other words, is the 

neighborhood overpopulated with life?  Surrounded by death?  Or just right?  Here are the rules 

of life.

1. Death.  If a cell is alive (state = 1) it will die (state becomes 0) under the following 

circumstances.

• Overpopulation: If the cell has four or more alive neighbors, it dies.

• Loneliness: If the cell has one or fewer alive neighbors, it dies.

2. Birth.  If a cell is dead (state = 0) it will come to life (state becomes 1) if it has exactly 

three alive neighbors (no more, no less.)

3. Stasis. In all other cases, the cell state does not change.  To be thorough, let’s describe 

those scenarios.

• Staying Alive: If a cell is alive and has exactly 2 or 3 live neighbors, it stays alive.

• Staying Dead: If a cell is dead and has anything other than 3 live neighbors, it stays 

dead.

Let’s look at a few examples.
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[FIGURE -- make these nice and more of them!]

With the elementary CA, we were able to look at all the generations next to each other, stacked 

as rows in a 2D grid.  With the game of life, however, the CA itself is in two dimensions.  We 

could try creating an elaborate 3D visualization of the results and stack all the generations in a 

cube-structure (and in fact, you might want to try this as an exercise).  Nevertheless, the typical 

way the game of life is displayed is to treat each generation as a single frame in an animation.  

So instead of viewing all the generations at once, we see them one at a time, and the result 

resembles rapidly growing bacteria in a petri dish.

One of the exciting aspects about the game of life is there are initial patterns that yield intriguing 

results.  For example, some might remain static and never change.

   

 block   beehive   loaf   boat

[images from wikipedia, redraw]

There are patterns that oscillate back and forth between two states.

blinker  toad  beacon

[images from wikipedia, redraw]

And there are also patterns that from generation to generation move about the grid.  (It’s 

important to note that the pattern itself isn’t actually moving, although we see the appearance of 

motion in the result as the cells turn on and off.)
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glider (also, glider fun, breeder, fish?) include or mention Methuselahs?

If you are interested in these patterns, there are several good “out of the box” game of life 

demonstrations online that allow you to configure the CA’s initial state and watch it run at 

varying speeds.  Two good examples you might want examine are:

• Exploring Emergence by Mitchel Resnick and Brian Silverman, Lifelong Kindergarten Group, 

MIT Media Laboratory http://llk.media.mit.edu/projects/emergence/

• Conway’s Game of Life by Steven Klise, http://conway.stevenklise.com/ (uses Processing.js!)

For the example we’ll build from scratch in the next section, it will be easier to simply randomly 

set the states for each cell.  

7.9  Programming the Game of Life

Now we just need to extend our code from the Wolfram CA to two dimensions.   We used a one-

dimensional array to store the list of cell states before, and for the game of life, we can use a two-

dimensional array.  (Reminder, for more about 2D arrays: http://www.processing.org/learning/

2darray/).

int[][] board = new int[columns][rows];

We’ll begin by initializing each cell of the board with a random state: 0 or 1.

for (int x = 0; x < columns; x++) {

  for (int y = 0; y < rows; y++) {

    current[x][y] = int(random(2));

  }

}

And to compute the next generation, just as before, we need a fresh 2D array to write to as we 

analyze each cell’s neighborhood and calculate a new state.

int[][] next = new int[columns][rows];

for (int x = 0; x < columns; x++) {

  for (int y = 0; y < rows; y++) {

    next[x][y] = _______________?;  $$ We need a new state for each cell

  }

}
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OK, before we can sort out how to actually calculate the new state, we need to know how we can 

reference each cell’s neighbor.  In the case of the 1D CA, this was simple: if a cell index was i, 

its neighbors were i-1 and i+1.  Here each cell doesn’t have a single index, but rather a column 

and row index: x,y.  Looking at the diagram below, we can see that its neighbors are: (x-1,y-1) 

(x,y-1), (x+1,y-2), (x-1,y), (x+1,y), (x-1,y+1), (x,y+1), and (x+1,y+1).

All of the game of life rules operate by knowing how many neighbors are alive.  So if we create 

a neighbor counter variable and increment it each time we find a neighbor with a state of 1, we’ll 

have the total of live neighbors.

        int neighbors = 0;

        if (board[x-1][y-1] == 1) neighbors++;!! $$ Top row of neighbors

        if (board[x  ][y-1] == 1) neighbors++;

        if (board[x+1][y-1] == 1) neighbors++;

        if (board[x-1][y]   == 1) neighbors++;!! $$ Middle row of neighbors (note we don’t

        if (board[x+1][y]   == 1) neighbors++;!! count self)

        if (board[x-1][y+1] == 1) neighbors++;!! $$ Bottom row of neighbors

        if (board[x  ][y+1] == 1) neighbors++;

        if (board[x+1][y+1] == 1) neighbors++;

And again, just as with the Wolfram CA, we find ourselves in a situation where the above is a 

useful and clear way to write the code for teaching purposes, allowing us to see every step (each 

time we find a neighbor with a state of one, we increase a counter).  Nevertheless, it’s a bit silly 

to say, “If the cell state equals one, add one to a counter” when we could just say, “Add the cell 

state to a counter.”   After all, if the state is only a 0 or 1, the sum of all the neighbors’ states will 

yield the total number of live cells.   Since the neighbors are arranged in a mini 3x3 grid, we can 

add them all up with another loop.

        for (int i = -1; i <= 1; i++) {

          for (int j = -1; j <= 1; j++) {

              neighbors += board[x+i][y+j];  $$ Add up all the neighbors’ states

          }
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        }

Of course, we’ve made a mistake in the code above.   In the game of life, the cell itself does not 

count as one of the neighbors.  We could use a conditional to skip adding the state when both i 

and j equal 0, but another option would be to just subtract the cell state once we’ve finished the 

loop.

        neighbors -= board[x][y];! $$ Whoops! Subtract the cell’s state, which we don’t want

! ! ! ! ! ! in the total.

Finally, once we know the total number of live neighbors, we can decide what the cell’s new 

state should be according to the rules: birth, death, and stasis.

        if      ((board[x][y] == 1) && (neighbors <  2)) next[x][y] = 0;

! ! ! ! $$ If it is alive and has less than 2 live neighbors, it dies

! ! ! ! from loneliness.

        else if ((board[x][y] == 1) && (neighbors >  3)) next[x][y] = 0;

! ! ! ! $$ If it is alive and has more than 3 live neighbors, it dies

! ! ! ! from overpopulation.

        else if ((board[x][y] == 0) && (neighbors == 3)) next[x][y] = 1;

! ! ! ! $$ If it is dead and has exactly 3 live neighbors, it is born!

        else next[x][y] = board[x][y];! $$ In all other cases, its state remains the same.

! !

Putting this all together, we have:

   int[][] next = new int[columns][rows];! $$ The next board

    

   for (int x = 1; x < columns-1; x++) {!! $$ Looping but skipping the edge cells

     for (int y = 1; y < rows-1; y++) {

       int neighbors = 0;! ! ! ! $$ Add up all the neighbor states to calculate

       for (int i = -1; i <= 1; i++) {! ! number of live neighbors

         for (int j = -1; j <= 1; j++) {

           neighbors += board[x+i][y+j];  

         }

       }

       neighbors -= board[x][y];! ! ! $$ Correct by subtracting cell state itself

! ! $$ The rules of life!

       if      ((board[x][y] == 1) && (neighbors <  2)) next[x][y] = 0;

       else if ((board[x][y] == 1) && (neighbors >  3)) next[x][y] = 0;

       else if ((board[x][y] == 0) && (neighbors == 3)) next[x][y] = 1;

       else next[x][y] = board[x][y];

     }

   }

   board = next;! ! $$ The 2D array “next” is now the current board

Finally, once the next generation is calculated, we can employ the identical method we used to 

draw the Wolfram CA—a square for each spot, white for off, black for on.
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Example 7.x: Game of Life

for ( int i = 0; i < columns;i++) {

  for ( int j = 0; j < rows;j++) {

    if ((board[i][j] == 1)) fill(0);! $$ Black when state = 1

    else fill(255); ! ! ! ! white when state = 0

    stroke(0);

    rect(i*w, j*w, w, w);

  }

}

Exercise: Create a game of life simulation that allows you to manually configure the grid by 

drawing or with specific known patterns.

Exercise: Implement “wrap-around” for the game of life so that cells on the edges have 

neighbors on the opposite side of the grid.

Exercise: [something about swapping to use only two arrays]

7.10 Object-oriented Cells

In some ways, this chapter as it stands could have come at the very beginning of this book.  Over 

the course of six chapters, we’ve slowly built examples of systems of objects with properties 

moving about the screen.  And in this chapter, although we’ve been talking about a “cell” as if it 

were an object, we actually haven’t been using any object-orientation in our code (other than a 

class to describe the CA system as a whole.)   This has worked because a cell is such an 

enormously simple object (a single bit).  However, in a moment, we are going to discuss some 

ideas for further developing CA systems, many of which involve keeping track of multiple 

properties for each cell.  For example, what if a cell needed to remember its last 10 states?  Or 

what if we wanted to apply some of our motion and physics thinking to a CA and have the cells 

move about the window, dynamically changing their neighbors from frame to frame?

To accomplish any of these ideas (and more), it would be helpful to see how we might treat a cell 

as an object with multiple properties, rather than as a single 0 or 1.  To show this, let’s just 

recreate the game of life simulation. Only instead of:

  int[][] board;

Let’s have:

  Cell[][] board;
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where Cell is a class we will write.   What are the properties of a Cell object?   In our game of 

life example, each cell has a location and size, as well as a state.

class Cell {

  float x, y;! $$ Location and size

  float w;

  int state;! $$ What is the cell’s state

In the non-OOP version, we used a separate 2D array to keep track of the states for the current 

and next generation.   By making a Cell an object, however, each cell could keep track of both 

states.   In this case, we’ll think of the cell as remembering its previous state (for when new 

states need to be computed).

  int previous;! $$ What was its previous state?

This allows us to visualize easily more information about what the state is doing.  For example, 

we could choose to color a cell differently if its state has changed.  For example:

Example 7.x: Game of Life OOP

void display() {

  if (previous == 0 && state == 1) fill(0,0,255);

! ! ! ! ! $$ If the cell is born, color it blue! 

  else if (state == 1) fill(0);

  else if (previous == 1 && state == 0) fill(255,0,0);!

! ! ! ! ! $$ If the cell dies, color it red!

  else fill(255); 

  rect(x, y, w, w);

}

Not much else about the code (at least for our purposes here)  has to change.  The neighbors can 

still be counted the same way; the difference is that we now need to refer to the object’s state 

variables as we loop through the 2D array.

for (int x = 1; x < columns-1; x++) {

  for (int y = 1; y < rows-1; y++) {

    int neighbors = 0;

    for (int i = -1; i <= 1; i++) {

      for (int j = -1; j <= 1; j++) {

        neighbors += board[x+i][y+j].previous;! $$ Use previous state when tracking neighbors

      }

    }

    neighbors -= board[x][y].previous;

    if      ((board[x][y].state == 1) && (neighbors <  2)) board[x][y].newState(0);

    else if ((board[x][y].state == 1) && (neighbors >  3)) board[x][y].newState(0);

    else if ((board[x][y].state == 0) && (neighbors == 3)) board[x][y].newState(1);

    // else do nothing!!! ! ! ! ! $$ We are calling a function newState()

  }! ! ! ! ! ! ! ! ! to assign a new state to each cell

}
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7.11 Variations of Traditional CA

Now that we have covered the basic concepts, algorithms, and programming strategies behind 

the most famous 1D and 2D cellular automata, it’s time to think about how you might take this 

foundation of code and build on it, find ways to be creative with CAs and incorporate them into 

your own work.  In this section, we’ll talk through some ideas for expanding the features of the 

CA examples as exercises.  Example answers to each of these topics can be found on the book 

web site.

1. Non-rectangular Grids.  There’s no particular reason why you should limit yourself to having 

your cells on a rectangular grid.  What happens if you design a CA with another type of shape?  

Exercise: Create a CA using a grid of hexagons (as below), each with six neighbors. 

 

2. Probabilistic.  The rules of a CA don’t necessarily have to define an exact outcome.

Exercise: Rewrite the game of life rules as follows:

• Overpopulation: If the cell has four or more alive neighbors, it has a 80% chance of 

dying.

• Loneliness: If the cell has one or fewer alive neighbors, it has a 60% chance of dying.

• etc.

3. Continuous.  We’ve looked at examples where the cell’s state can only be a 1 or a 0.  But what 

if the cell’s state was a floating point number between 0 and 1?  

Exercise: Adapt Wolfram elementary CA to have the state be a float.  You could define rules such 

as, “If the state is greater than 0.5” or “...less than 0.2”, etc.

4. Image Processing.  We briefly touched on this earlier, but many image-processing algorithms 

operate on CA-like rules.  Blurring an image is creating a new pixel out of the average of a 
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neighborhood of pixels.   Simulations of ink dispersing on paper or water rippling over an 

image can be achieved with CA rules.

Exercise: Create a CA where a pixel is a cell and a color is its state.

5. Historical.  In the game of life object-oriented example, we used two variables to keep track 

of its state: current and previous.  What if you use an array to keep track of a cell’s state 

history?   This relates to the idea of a “Complex Adaptive System,” one that has the ability to 

adapt and change its rules over time by learning from its history.  We’ll see an example of this 

in Chapter 10: neural networks.

Exercise: Visualize the game of life by coloring each cell according to how long it’s been alive or 

dead.  Can you also use the cell’s history to inform the rules?

6. Moving cells.  In these basic examples, cells have a fixed position on a grid, but you could 

build a CA with cells that have no fixed position and instead move about the screen.

Exercise: Use CA rules in a flocking system.  What if each boid had a state (that perhaps informs 

its steering behaviors) and its neighborhood changed from frame to frame as it moved closer to 

or further from other boids?

7. Nesting.  Another feature of complex systems is that they can be nested.   Our world tends to 

work this way: a city is a complex system of people, a person is a complex system of organs, 

an organ is a complex system of cells, and so on and so forth.   

Exercise: Design a CA in which each cell itself is a smaller CA or a system of boids.
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-------------------------------------

[THIS IS SOME STRAY TEXT ABOUT COMPLEX SYSTEMS THAT I MAY INTEGRATE 

BACK INTO CHAPTER 6 OR SOMEWHERE IN THIS CHAPTER]

Let’s talk through some of the other properties of complex systems that help to frame the 

discussion as well as provide guidelines for features we will want to include in our software 

simulations.  

• Non-linearity.  This aspect of complex systems is often casually referred to as “The 

Butterfly Effect,” coined by mathematician and meteorologist Edward Norton Lorenz, a 

pioneer in the study of chaos theory.  In 1961, Lorenz was running a computer weather 

simulation for the second time and, perhaps to save a little time, typed in a starting value of 

0.506 instead of 0.506127.   The end result was completely different from the first result of 

the simulation.   In other words, the theory is that a single butterfly flapping its wings on 

the other side of the world could cause a massive weather shift and ruin our weekend at the 

beach.  We call it “non-linear” because there isn’t a linear relationship between a change in 

initial conditions and a change in outcome.   A small change in initial conditions can have a 

massive effect on the outcome.   In this chapter, we’ll see how even in a system of many 

zeros and ones, if we change just one bit, the result will be completely different.

• Competition and cooperation.  One of the things that often makes a complex system tick is 

the presence of both competition and cooperation between the elements.   In our flocking 

system, we had three rules—alignment, cohesion, and separation.  We can think of 

alignment and cohesion as “cooperation”, i.e. let’s work together to stay together and move 

together.  Separation, however, is a form of “competition” in that the boids are competing 

for space.  Take out the cooperation or take out the competition and we’re not left with any 

complexity.   [TIE THIS INTO THIS CHAPTER OR CHAPTER 6 SOMEHOW?]
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Chapter 8.  Fractals

“Pathological monsters! cried the terrified mathematician
Every one of them a splinter in my eye
I hate the Peano Space and the Koch Curve
I fear the Cantor Ternary Set
The Sierpinski Gasket makes me wanna cry
And a million miles away a butterfly flapped its wings
On a cold November day a man named Benoit Mandelbrot was born” 
! —Jonathan Coulton, lyrics from “Mandelbrot Set”

8.1 The Nature of Geometry

Once upon a time, I took a course in high school called “Geometry.”  Perhaps you did too.   You 
learned about shapes in one dimension, two dimensions, and maybe even three.  What is the 
circumference of a circle?  The area of a rectangle?   The distance between a point and a line?   
Come to think of it, we’ve been studying geometry all along in this book, using vectors to 
describe the motion of bodies in Cartesian space.  This sort of geometry is generally referred to 
as Euclidean Geometry, after the Greek mathematician Euclid.

[Some sort of illustration showing idealized geometrical forms vs. fractals?]

For us nature coders, we have to ask the question: Can we describe our world with Euclidean 
geometry?    The LCD screen I’m staring at right now sure looks like a rectangle.  And the plum 
I ate this morning is circular.  But what if I were to look further, and consider the trees that line 
the street, the leaves that hang off those trees, the lightning from last night’s thunderstorm, the 
cauliflower I ate for dinner, the blood vessels in my body, and the mountains and coastlines that 
cover land beyond New York City?   Most of the stuff you find in nature cannot be described by 
the idealized geometrical forms of Euclidean geometry.  So if we want to start building 
computational designs with patterns beyond the simple shapes ellipse(), rect(), and line(), it’s 
time for us to learn about the concepts behind and techniques for simulating the geometry of 
nature: fractals.
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8.2  What is a fractal?

The term fractal (from the Latin fractus, 
meaning “broken”) was coined by the 
mathematician Benoit Mandelbrot in 1975.  In 
his seminal work “The Fractal Geometry of 
Nature,” he defines a fractal as “a rough or 
fragmented geometric shape that can be split 
into parts, each of which is (at least 
approximately) a reduced-size copy of the 
whole.”  Let’s illustrate this definition with two 
simple examples.  First, let’s think about a tree 
branching structure (which we’ll write the code 
for later):  

Notice how the above tree has a single root with two branches connected at its end.  Each one of 
those branches has two branches at its end and those branches have two branches and so on and 
so forth.  What if we were to pluck one branch from the tree and examine it on its own?

 
One of the most well-known and recognizable fractal 
patterns is named for Benoit Mandelbrot himself.   
Generating the Mandelbrot set involves testing the 
properties of complex numbers after being passed 
through an iterative function.  Do they tend to infinity?  
Do they stay bounded?  While a fascinating 
mathematical discussion, this “escape-time” algorithm 
is a less practical method for generating fractals than 
the recursive techniques we’ll examine in this chapter.  
However, an example for generating the Mandelbrot set  
is included in the code examples.
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Looking closely at a given section of the tree, we find that the shape of this branch resembles the 
tree itself.   This is known as “self-similarity”; as Mandelbrot stated, each part is a “reduced-size 
copy of the whole.”

The above tree is perfectly symmetrical and the parts are, in fact, exact replicas of the whole.  
However, fractals do not have to be perfectly self-similar.  Let’s take a look at a graph of the 
stock market (these are adapted from actual Apple stock data [But who knows what i’ll use in 
the end])

A 

And one more.

B 

In these graphs, the x-axis is time and the y-axis is the stock’s value.   It’s not an accident that I 
omitted the labels, however.   Graphs of stock market data are examples of fractals because they 
look at the same at any scale.  Are these graphs of the stock over one year?  One day?  One hour?  
The answer is that graph A shows six months’ worth of data and graph B zooms into a tiny part 
of graph A, showing six hours.  

This is an example of a stochastic fractal, meaning that it is built out of probabilities and 
randomness.  Unlike the deterministic tree-branching structure, it is not statistically self-similar.  
As we go through the examples in this chapter, we will look at both deterministic and stochastic 
techniques for generating fractal patterns.

While self-similarity is a key trait of fractals, it’s important to realize that self-similarity alone 
does not make a fractal.  After all, a line is self-similar.  A line looks the same at any scale, and 
can be thought of as comprising lots of little lines.  But it’s not a fractal.  Fractals are  
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characterized by having a fine structure at small scales (keep zooming into the stock market 
graph and you’ll continue to find fluctuations) and cannot be described with Euclidean geometry.  
If you can say “It’s a line!” then it’s not a fractal.    

Another fundamental component of fractal geometry is recursion.  Fractals all have a recursive 
definition and this will be our starting place as we develop techniques and code examples for 
building fractal patterns in Processing.

8.3  What is recursion?

Let’s begin our discussion of recursion by examining the first appearance of fractals in modern 
mathematics.  In 1883, German mathematician George Cantor developed simple rules to 
generate an infinite set:

1.  Start with a line.                                      

2. Erase the middle third of that line.          

3.  Repeat step 2 for the remaining lines again and again and again.

           
There is a feedback loop at work here.  Take a single line and break it into two.  Then return to 
those two lines and apply the same rule, breaking each line into two, and now we’re left with 
four.  Then return to those four lines and apply the rule.  Now you’ve got eight.   This process is 
known as recursion: the repeated application of a rule to successive results.   Cantor was 
interested in what happens when you apply these rules an infinite number of times.   Since we 
are working in a finite pixel space, we can mostly ignore the questions and paradoxes that arise 
from infinite recursion.  We will instead construct our code in such a way that we do not apply 
the rules forever (which would cause our program to freeze).

What does it mean to have recursion in code?   Before we implement the Cantor set, let’s take a 
look at some simple Processing examples of recursive functions.

[ADAPTING SOME MATERIAL FROM LEARNING PROCESSING NOW]

Here’s something we’re used to doing all the time—calling a function.   We do this, for example, 
whenever we call any function inside of the draw() function.

void someFunction() {
  background(0);! $$ Calling the function background() in the definition of someFunction()
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}

What would happen if we called the function we are defining within the function itself?   Can 
someFunction() call someFunction()?  

void someFunction() {
  someFunction();
}

In fact, this is not only allowed, but it’s quite common (and essential to how we will implement 
the Cantor set).   Functions that call themselves are called recursive and are appropriate for 
solving certain problems.  This occurs in mathematical calculations; the most common example 
is factorial. 

The factorial of any number n, usually written as n!, is defined as:

n! = n * n – 1 * . . . . * 3 * 2 * 1
0! = 1

We could write a function to calculate factorial using a for loop in Processing:

int factorial(int n) {
  int f = 1;
  for (int i = 0; i < n; i++) {! $$ Using a regular loop to compute factorial
    f = f * (i+1);
  }
  return f;
}

If you look closely at how factorial works, however, you’ll notice something interesting. Let’s 
examine 4! and 3!

4! = 4 * 3 * 2 * 1
3! = 3 * 2 * 1

therefore. . .  4! = 4 * 3!

We can describe this in more general terms.  For any positive integer n:

n! = n * (n-1)!
1! = 1

Written in English:

The factorial of n is defined as n times the factorial of n-1.
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The definition of factorial includes factorial?!  It’s kind of like saying that “tired is defined as 
“the feeling you get when you are tired.”   This concept of self-reference in functions is an 
example of recursion.   And we can use it to write a factorial function that calls itself.

int factorial(int n) {
  if (n == 1) {
    return 1;
  } else {
    return n * factorial(n-1);
  }
}

Crazy, I know.  But it works.   Here are the steps that happen when factorial(4) is called.

 
[This diagram really needs to be better]

The same principle, as we will see in many examples throughout this chapter, can be applied to 
graphics with interesting results. Take a look at the following recursive 
function.

void drawCircle(int x, int y, float radius) {
  ellipse(x, y, radius, radius);
  if(radius > 2) {
    radius *= 0.75f;
    drawCircle(x, y, radius);!$$ The drawCircle() function is 
  }! ! ! ! calling itself recursively
}

What does drawCircle() do? It draws an ellipse based on a set of parameters received as 
arguments, and then it calls itself with the same parameters (adjusting them slightly). The result 
is a series of circles each drawn inside the previous circle. 

Notice that the above function only recursively calls itself if the radius is greater than 2.  This is a 
crucial point.  As with iteration, all recursive functions must have an exit condition!    You 
likely are already aware that all for and while loops must include a boolean test that eventually 
evaluates to false, thus exiting the loop. Without one, the program would crash, caught inside of 
an infinite loop. The same can be said about recursion.  If a recursive function calls itself forever 
and ever, you’ll be most likely be treated to a nice frozen screen.
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The above circles example is rather trivial; it could easily be achieved through simple iteration. 
However, in more complex scenarios where a function calls itself more than once, recursion 
becomes wonderfully elegant.

Let’s revise drawCircle() to be a bit more complex.    For every circle displayed, draw a circle 
half its size to the left and right of that circle.

Example: Recursion twice
void setup() {
  size(400,400);  
  smooth();
}

void draw() {
  background(255);
  drawCircle(width/2,height/2,200); 
}

void drawCircle(float x, float y, float radius) {
  stroke(0);
  noFill();
  ellipse(x, y, radius, radius);
  if(radius > 2) {
    drawCircle(x + radius/2, y, radius/2);  !$$ drawCircle() calls itself twice, creating a 
    drawCircle(x - radius/2, y, radius/2);  !branching effect.  For every circle, a smaller 
  }! ! ! ! ! ! circle is drawn to the left and right.
}

With a teeny bit more code, we could add a circle above and below.

Example: Recursion four times
void drawCircle(float x, float y, float radius) {
  ellipse(x, y, radius, radius);
  if(radius > 8) {
    drawCircle(x + radius/2, y, radius/2);
    drawCircle(x - radius/2, y, radius/2);
    drawCircle(x, y + radius/2, radius/2);
    drawCircle(x, y - radius/2, radius/2);
  }
}

Just try recreating this sketch with iteration instead of recursion—I dare you!

8.3  The Cantor Set with a recursive function

Now we’re ready to visualize the Cantor set in Processing using a recursive function.  Where do 
we begin?  Well, we know that the Cantor set begins with a line.  So let’s start there and write a 
function that draws a line.

void cantor(float x, float y, float len) {
  line(x,y,x+len,y);
}
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The above cantor() function draws a line that starts at pixel coordinate (x,y) with a length of len.  
(The line is drawn horizontally, but this is an arbitrary decision.)    So if we called that function, 
saying:

cantor(10, 20, width-20);

we’d get the following:

Now, the Cantor rule tells us to erase the middle third of that line, which leaves us with two lines, 
one from the beginning of the line to the one-third mark, and one from the two-thirds mark to the 
end of the line.

We can now add two more lines of code to draw the second pair of lines, moving the y location 
down a bunch of pixels so that we can see the result below the original line.

void cantor(float x, float y, float len) {
  line(x,y,x+len,y);
  
  y += 20;
  line(x,y,x+len/3,y);!!   $$ From start to 1/3rd.
  line(x+len*2/3,y,x+len,y);   $$ From 2/3rd to end.
}

While this is a fine start, such a manual approach of calling line() for each line is not what we 
want.   It will get unwieldy very quickly, as we’d need four, then eight, then sixteen calls to line
().  Yes, a for loop is our usual way around such a problem, but give that a try and you’ll see that 
working out the math for each iteration quickly proves inordinately complicated.   Here is where 
recursion comes and rescues us.  
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Take a look at where we draw that first line from start to the one-third mark.

   line(x,y,x+len/3,y);

Instead of calling the line() function directly, we can simply call the cantor() function itself.  
After all, what does the cantor() function do?  It draws a line at an (x,y) location with a given 
length!  And so:

   line(x,y,x+len/3,y);!! ! becomes ------->! cantor(x,y,len/3);

And for the second line:

   line(x+len*2/3,y,x+len,y);!! becomes ------->! cantor(x+len*2/3,y,len/3);

Leaving us with:

void cantor(float x, float y, float len) {
  line(x,y,x+len,y);
  
  y += 20;
  
  cantor(x,y,len/3);
  cantor(x+len*2/3,y,len/3);
}

And since the cantor() function is called recursively, the same rule will be applied to the next 
lines and to the next and to the next as cantor() calls itself again and again!  Now, don’t go and 
run this code yet.  We’re missing that crucial element: an exit condition.   We’ll want to make 
sure we stop at some point—for example, if the length of the line ever is less than one pixel.

void cantor(float x, float y, float len) {
  if (len >= 1) {
    line(x,y,x+len,y);
    y += 20;
    cantor(x,y,len/3);
    cantor(x+len*2/3,y,len/3);
  }
}

8.4  The Koch Curve and the ArrayList technique

Writing a function that recursively calls itself is one technique for generating a fractal pattern on 
screen.  However, what if you wanted the lines in the above Cantor set to exist as individual 
objects that could be moved independently?   The recursive function is simple and elegant, but it 
does not allow you to do much besides simply generating the pattern itself.  However, there is 
another way we can apply recursion in combination with an ArrayList that will allow us to not 
only generate a fractal pattern, but keep track of all its individual parts as objects.
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To demonstrate this technique, let’s look at another famous fractal pattern, discovered in 1904 by  
Swedish mathematician Helge von Koch.   Here are the rules.  (Note it starts the same way as the 
Cantor set, with a single line.)

1. Start with a line.                                  

2. Divide the line into three equal parts.   

3. Draw an equilateral triangle (a triangle where all three sides are of equal length) using the 
middle segment as its base.

                 

4. Erase the base of the equilateral triangle (the middle line segment from step #2.)

                  

5. Repeat step 2-4 for the remaining lines again and again and again.
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The result looks like:

  

  

 

We could proceed in the same manner as we did with the Cantor set, and write a recursive 
function that iteratively applies the Koch rules over and over.   Nevertheless, we are going to 
tackle this problem in a different manner by treating each segment of the Koch curve as an 
individual object.  This will open up some design possibilities.  For example, if each segment is 
an object, we could allow each segment to move independently from its original location and 
participate in a physics simulation.  In addition, we use a random color, line thickness, etc. to 
display each segment differently.

In order to accomplish our goal of treating each segment as an individual object, we must first 
decide what this object should be in the first place.  What data should it store?  What functions 
should it have?

The Koch curve is a series of connected lines, and so we will think of each segment as a 
“KochLine.”  The KochLine will have a start point (“a”) and an end point (“b”).  These points 
will be PVector objects, and the KochLine can be drawn with Processing’s line() function.

class KochLine {

  PVector start;! ! $$ A line between two points: start and end
  PVector end;

  KochLine(PVector a, PVector b) {
    start = a.get();
    end = b.get();
  }

  void display() {
    stroke(0);
    line(start.x, start.y, end.x, end.y);! $$ Draw the line from PVector start to end

The “Monster” Curve

The Koch curve and other fractal patterns 
are often called“mathematical monsters.”   
This is due to an odd paradox that emerges 
when you apply the recursive definition an 
infinite number of times.  If the length of 
the original starting line is 1, the first 
iteration of the Koch curve will yield a line 
of length 4/3rds (each segment is 1/3rd the 
length of the starting line).  Do it again 
and you get a length of 16/9ths.  As you 
iterate towards infinity, the length of the 
Koch curve approaches infinity.  Yet it fits 
in the tiny finite space provided right here 
on this paper (or screen)!  

Since we are working in the Processing 
land of finite pixels, this theoretical 
paradox won’t be a factor for us.  We’ll 
have to limit the number of times we 
recursively apply the Koch rules so that 
our program won’t run out of memory or 
crash.
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  }
}

Now that we have our KochLine class, we can get started on the main program.  We’ll need a 
data structure to keep track of what will eventually become many KochLine objects, and an 
ArrayList (see Chapter 4 for a review of ArrayLists) will do just fine.

ArrayList<KochLine> lines;

In setup(), we’ll want to create the ArrayList and add the first line segment to it, a line that 
stretches from zero to the width of the sketch.

void setup() {
  size(600, 300);
  lines = new ArrayList<KochLine>();! ! $$ Create the ArrayList

  PVector start = new PVector(0, 200);! ! $$ Left side of window
  PVector end   = new PVector(width, 200);! $$ Right side of window

  lines.add(new KochLine(start, end));! ! $$ The first KochLine object
}

Then in draw(), all KochLine objects (just one right now) can be displayed in a loop.

void draw() {
  background(255);
  for (KochLine l : lines) {
    l.display();
  }
}

This is our foundation.  Let’s review what we have so far:

• KochLine class: A class to keep track of a line from point A to B.
• ArrayList: A list of all KochLine objects.

With the above elements, how and where do we apply Koch rules and principles of recursion?  

Remember the Game of Life cellular automata?  In that simulation, we always kept track of two 
generations: current and next.  When we were finished computing the next generation, next 
became current and we moved on to computing the new next generation.  

We are going to apply a similar technique here.  We have an ArrayList that keeps track of the 
current set of KochLine objects (at the start of the program, there is only one).  We will need a 
second ArrayList (let’s call it “next”) where we will place all the new KochLine objects that are 
generated from applying the Koch rules.   For every KochLine in the current ArrayList, four new 
KochLine objects are added to the next ArrayList.  When we’re done, the next ArrayList 
becomes the current one.
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Here’s how the code will look:

void generate() {
  ArrayList next = new ArrayList<KochLine>(); !$$ Create the next ArrayList

  for (KochLine l : lines) {!! ! ! $$ For every current line

    next.add(new KochLine(???,???));! ! $$ Add four new lines (we need to figure out how
    next.add(new KochLine(???,???));! !    to compute the locations of these lines!)
    next.add(new KochLine(???,???));
    next.add(new KochLine(???,???));
  }
  lines = next;! ! ! ! ! ! $$ The new ArrayList is now the one we care about!
}

By calling generate() over and over again (for example, each time the mouse is pressed) we 
recursively apply the Koch curve rules to the existing set of KochLine objects.

Of course, the above omits the real “work” here, which is figuring out those rules.  How do we 
break one line segment into four as described by the rules?   While this can be accomplished with 
some simple arithmetic and trigonometry, since our KochLine object uses PVector, this is a nice 
opportunity for us to practice our vector math.  Let’s establish how many points we need to 
compute for each KochLine object.

As you can see from the above figure, we need five points  (A, B, C, D and E) to generate the 
new KochLine objects and make the new line segments (AB, BC, CD, and DE).  

    next.add(new KochLine(a,b));! !
    next.add(new KochLine(b,c));! !    
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    next.add(new KochLine(c,d));
    next.add(new KochLine(d,e));

Where do we get these points?  Since we have a KochLine object, why not ask the KochLine 
object to compute all these points for us?   

void generate() {
  ArrayList next = new ArrayList<KochLine>();
  for (KochLine l : lines) {

    PVector a = l.kochA();! ! ! $$ The KochLine object has five functions, each return
    PVector b = l.kochB();! ! ! a PVector according to the Koch rules
    PVector c = l.kochC();
    PVector d = l.kochD();
    PVector e = l.kochE();

    next.add(new KochLine(a, b));
    next.add(new KochLine(b, c));
    next.add(new KochLine(c, d));
    next.add(new KochLine(d, e));
  }

  lines = next;
}

Now we just need to write five new functions in the KochLine class, each one returning a 
PVector according to Figure X above.  Let’s knock off kochA() and kochE() first, which are 
simply the start and end points of the original KochLine.

  PVector kochA() {
    return start.get();!! $$ Note the use of get(), which returns a copy of the PVector.
  }! ! ! ! ! As was noted in Chapter X, pg X, we want to avoid making copies
! ! ! ! ! whenever possible, but here we will need a new PVector in case we
  PVector kochE() {! ! want the segments to move independently of each other.
    return end.get();
  }

Now let’s move on to points B and D.  B is one-third of the way along the line segment and D is 
two-thirds.  Here we can make a PVector that points from start to end and shrink it to one-third 
the length for B and two-thirds the length for D to find these points.
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  PVector kochB() {
    PVector v = PVector.sub(end, start);!! $$ PVector from start to end
    v.div(3);! ! ! ! ! $$ One third the length
    v.add(start);!! ! ! ! $$ Add that PVector to the beginning of the line
    return v;! ! ! ! ! to find the new point.
  }    

  PVector kochD() {
    PVector v = PVector.sub(end, start);
    v.mult(2/3.0);! ! ! ! ! $$ Same thing here, only we need to move 2/3rds
    v.add(start);!! ! ! ! ! along the line instead of 1/3rd.
    return v;
  }

The last point, C, is the most difficult one to find.  However, if you recall that the angles of an 
equilateral triangle are all sixty degrees, this makes it a little bit easier.  If we know how to find 
point B with a PVector one-third the length of the line, what if we were to rotate that same 
PVector sixty degrees and move along that vector from point B?  We’d be at point C!

  PVector kochC() {
    PVector a = start.get(); !! ! ! $$ Start at the beginning
    
    PVector v = PVector.sub(end, start);
    v.div(3);
    a.add(v); ! ! ! ! ! ! $$ Move 1/3rd of the way to point B

    v.rotate(-radians(60));! ! ! ! $$ Rotate “above” the line 60 degrees
    a.add(v);  ! ! ! ! ! ! $$ Move along that vector to point C

    return a;
  }   

Putting it all together, if we call generate() five times in setup(), we’ll see the following result.
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Example 8.x: Koch Curve
ArrayList<KochLine> lines;

void setup() {
  size(600, 300);
  background(255);
  lines = new ArrayList<KochLine>();
  PVector start = new PVector(0, 200);
  PVector end   = new PVector(width, 200);
  lines.add(new KochLine(start, end));
  
  for (int i = 0; i < 5; i++) {! ! $$ Arbitrarily apply the Koch rules five times
    generate();
  }
}

Exercise: Draw the Koch snowflake as seen on the left (or some other 
variation of the Koch curve).

Exercise: Try animating the Koch curve.  For example, can you draw it 
from left to right?  Can you vary the visual design of the line segments?  Can you move the line 
segments using techniques from earlier chapters?

Exercise: Rewrite the Cantor set example using objects and an ArrayList.

Exercise: Draw the Sierpinski triangle (as seen in Wolfram 
elementary CA) using recursion.
[ILLUSTRATION ]

8.5  Trees

The fractals we have examined in this chapter so far are deterministic, meaning they have no 
randomness and will always produce the identical outcome each time they are run.   They are 
excellent demonstrations of classic fractals and the programming techniques behind drawing 
them, but are too precise to appear like some of the fractals found in nature.  In this next part of 
the chapter, I want to examine some techniques behind generating a stochastic (or non-
deterministic) fractal.   The example we’ll use is a branching tree.  Let’s first walk through the 
steps to create a deterministic version.  Here are our production rules:
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1. Draw a line
2. At the end of the line: (a) rotate to the left and draw a shorter line and (b) rotate to the right 

and draw a shorter line.  
3. Repeat step 2 for the new lines again and again.

Again, we have a nice fractal with a recursive definition: A branch is a line with two branches 
connected to it.  

The part that is a bit more difficult than our previous 
fractals lies in the use of the word rotate in the fractal’s 
rules.   Each new branch must rotate relative to the 
previous branch, which is rotated relative to all its 
previous branches.  Luckily for us, Processing has a 
mechanism to keep track of rotations for us—the 
transformation matrix.   If you aren’t familiar with the 
functions pushMatrix() and popMatrix(), I suggest you 
read the online Processing tutorial 2D Transformations 

(http://processing.org/learning/transform2d/), which will cover the concepts you’ll need for this 
particular example.

Let’s begin by drawing a single branch, the trunk of the tree.    Since we are going to involve the 
rotate() function, we’ll need to make sure we are continuously translating along the branches 
while we draw the tree.  And since the root starts at the bottom of the window (see above), the 
first step requires translating to that spot:

translate(width/2,height);

followed by drawing a line upwards:

line(0,0,0,-100);

Once we’ve finished the root, we just need to translate to the end and 
rotate in order to draw the next branch.  (Eventually, we’re going to need to package up what 
we’re doing right now into a recursive function, but let’s sort out the steps first.)
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Remember, when we rotate in Processing, we are always rotating around the point of origin, so 
here the point of origin must always be translated to the end of our current branch.

translate(0,-100);
rotate(PI/6);
line(0,0,0,-100);

Now that we have a branch going to the right, we need one going to the 
left.  We can use pushMatrix() to save the transformation state before 
we rotate, letting us call popMatrix() to restore that state and draw the 
branch to the left.  Let’s look at all the code together.

translate(width/2,height);
line(0,0,0,-100);!! ! $$ The root
translate(0,-100);

pushMatrix();
rotate(PI/6);! ! !
line(0,0,0,-100);!! ! $$ Branch to the right
popMatrix();

rotate(-PI/6);
line(0,0,0,-100);!! ! $$ Branch to the left

If you think of each call to the function line() as a “branch”, you can see from the above that we 
have implemented our definition of branching as a line that has two lines connected to its end.  
We could keep adding more and more calls to line() for more and more branches, but just as with 
the Cantor set and Koch curve, our code would become incredibly complicated and unwieldy.   
Instead, we can use the above logic as our foundation for writing a recursive function, replacing 
the direct calls to line() with our own function called branch().  Let’s take a look.

void branch() {
  line(0, 0, 0, -100);!! $$ Draw the branch itself
  translate(0, -100);! ! $$ Translate to the end

  pushMatrix();    
  rotate(PI/6);! ! ! $$ Rotate to the right and branch again
  branch();      
  popMatrix();
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  pushMatrix();
  rotate(-PI/6);! ! ! $$ Rotate to the left and branch again
  branch();
  popMatrix();
}

Notice how in the above code we use pushMatrix() and popMatrix() around each subsequent 
call to branch().   This is one of those elegant code solutions that feels almost like magic.  Each 
call to branch() takes a moment to remember the location of that particular branch.    If you turn 
yourself into Processing for a moment and try to follow the recursive function with pencil and 
paper, you’ll notice that it draws all of the branches to the right first.   When it gets to the end, 
popMatrix() will pop us back along all of the branches we’ve drawn and start sending branches 
out to the left. 

Exercise: Emulate the Processing code above and trace the tree diagram below in the order that 
Processing would actually draw each branch.
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You may have noticed that the recursive function we just wrote would not actually draw the 
above tree.  After all, it has no exit condition and would get stuck in infinite recursive calls to 
itself.   You’ll also probably notice that the branches of the tree get shorter at each level.   Let’s 
look at how we can shrink the length of the lines as the tree is drawn, and stop branching once 
the lines have become too short.

void branch(float len) {! $$ Each branch now receives its length as an argument

  line(0, 0, 0, -len);
  translate(0, -len);

  len *= 0.66;! ! ! $$ The length shrinks by 2/3rds before the next branches are drawn

  if (len > 2) {
    pushMatrix();    
    rotate(theta);   
    branch(len);       !! $$ Subsequent calls to branch() include the length argument
    popMatrix();     

    pushMatrix();
    rotate(-theta);
    branch(len);
    popMatrix();
  }
}

We’ve also included a variable for theta that allows us, when writing the rest of the code in setup
() and draw(), to vary the branching angle according to, say, the mouseX location.

    

Example 8.x: Recursive Tree
float theta;   

void setup() {
  size(300, 200);
}

void draw() {
  background(255);
  theta = map(mouseX,0,width,0,PI/2);! $$ Pick an angle according to the mouse location

  translate(width/2, height);!! ! $$ The first branch starts at the bottom of the window.
  stroke(0);
  branch(60);
}
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Exercise: Vary the strokeWeight() for each branch.  Make the root thick 
and each subsequent branch thinner.

Exercise: The tree structure can also be generated using the ArrayList technique demonstrated 
with the Koch curve.  Recreate the tree using a Branch object and an ArrayList to keep track of 
the branches.  Hint: you’ll want to keep track of the branch directions and lengths using vector 
math instead of Processing transformations.

Exercise: Once you have the tree built with an ArrayList of Branch objects, animate the tree’s 
growth.

8.6  Stochastic Trees

The recursive tree fractal is a nice example of a scenario in which adding a little bit of 
randomness can make the tree look more natural.  Take a look outside and you’ll notice that 
branch lengths and angles vary from branch to branch, not to mention the fact that branches don’t 
all have exactly the same number of smaller branches.   First, let’s see what happens when we 
simply vary the angle and length.  This is a pretty easy one, given that we can just ask Processing 
for a random number each time we draw the tree.

void branch(float len) {!
  float theta = random(0,PI/3);! ! $$ Start by picking a random angle for each branch

  line(0, 0, 0, -len);
  translate(0, -len);
  len *= 0.66;
  if (len > 2) {
    pushMatrix();    
    rotate(theta);   
    branch(len);
    popMatrix();     
    pushMatrix();
    rotate(-theta);
    branch(len);
    popMatrix();
  }
}
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In the above function, we always call branch() twice.  But why not pick a random number of 
branches and call branch() that number of times?

Example 8.x: Stochastic Tree
void branch(float len) {!
  
  line(0, 0, 0, -len);
  translate(0, -len);
  
  if (len > 2) {

    int n = int(random(1,4));!! $$ Call branch() a random  
    for (int i = 0; i < n; i++) {! number of times
  
      float theta = random(-PI/2, PI/2);!! $$ Each branch gets its own random angle
      pushMatrix();     
      rotate(theta);
      branch(h);
      popMatrix();
    }
  }

Exercise: Set the angles of the branches of the tree according to Perlin noise values.  Adjust the 
noise values over time to animate the tree.  See if you can get it to appear as if it is blowing in 
the wind.

Exercise:  Use toxiclibs to simulate tree physics.  Each branch of the tree should be two particles 
connected with a spring.  How can you get the tree to stand up and not fall down?

8.7  L-Systems

In 1968, Hungarian botanist Aristid Lindenmayer developed a grammar-based system to model 
the growth patterns of plants.    L-Systems (short for Lindenmayer systems) can be used to 
generate all of the recursive fractal patterns we’ve seen so far in this chapter.   We don’t need L-
Systems to do the kind of work we’re doing here; however, they are incredibly useful because 
they provide a mechanism for keeping track of fractal structures that require complex and multi-
faceted production rules.

In order to create an example that implements L-Systems in Processing, we are going to have to 
be comfortable with working with (a) recursion, (b) transformation matrices, and (c) Strings.    
So far we’ve worked with recursion and transformations, but Strings are new here.  We will 
assume the basics, but if that is not comfortable for you, I would suggest taking a look at the 
Processing tutorial “Strings and Drawing text” available here: http://www.processing.org/
learning/text/

An L-System involves three main components:
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•  Alphabet.  An L-System’s alphabet is comprised of the valid characters that can be 
included.  For example, we could say the alphabet is “ABC”, meaning that any valid 
“sentence” (a string of characters) in an L-System can only include these three characters.

• Axiom.  The axiom is a sentence (made up with characters from the alphabet) that describes  
the initial state of the system.  For example, with the alphabet “ABC”, some example 
Axioms are “AAA” or “B” or “ACBAB”.

• Rules.  The rules of an L-System are applied to the axiom and then applied recursively, 
generating new sentences over and over again.  An L-System rule includes two sentences—
a “predecessor” and a “successor.”  For example, with the Rule “A --> AB”, whenever an 
“A” is found in a string, it is replaced with “AB.”

Let’s begin with a very simple L-System.  (This is, in fact, Lindenmayer’s original L-System for 
modeling the growth of algae.)

Alphabet: A B
Axiom: A
Rules: (A --> AB)  (B --> A)

As with our recursive fractal shapes, we can consider each successive application of the L-
System rules to be a generation.  Generation 0 is, by definition, the axiom.

and so on and so forth. . .

Let’s look at how we might create these generations with code.  We’ll start by using a String 
object to store the Axiom.

String current = "A";
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And once again, just as we did with the Game of Life and the Koch curve ArrayList examples, 
we will need an entirely separate String to keep track of the “next” generation.

String next = "";

Now it’s time to apply the rules to the current generation and place the results in the next.  

for (int i = 0; i < current.length(); i++) {
  char c = current.charAt(i);
  if (c == 'A') {!! ! ! $$ Production rule A --> AB
    next += "AB";
  } else if (c == 'B') {! ! $$ Production rule B --> A
    next += "A";
  }
}

And when we’re done, current can become next.

current = next;

To be sure this is working, let’s package it into a function and and call it every time the mouse is 
pressed.

Example 8.x: Simple LSystem Sentence Generation

String current = "A";! ! $$ Start with an axiom
int count = 0;! ! ! $$ Let’s keep track of how many generations

void setup() {
  println("Generation " + count + ": " + current);
}

void draw() {
}

void mousePressed() {
  String next = "";
  for (int i = 0; i < current.length(); i++) {!! $$ Traverse the current String and make the
    char c = current.charAt(i);! ! ! ! new one.
    if (c == 'A') {
      next += "AB";
    }  else if (c == 'B') {
      next += "A";
    }
  }
  current = next;
  count++;
  println("Generation " + count + ": " + current);
}
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Since the rules are applied recursively to each generation, the length of the String grows 
exponentially.   By generation #11, the sentence is 233 characters long; by generation #22, it is 
over 46,000 characters long.   The Java String class, while convenient to use, is a grossly 
inefficient data structure for concatenating large Strings.   A String object is “immutable,” which 
means once the object is created it can never be changed.  Whenever you add on to the end of a 
String object, Java has to make a brand new String object (even if you are using the same 
variable name.)

String s = “blah”;
s += “add some more stuff”;

In most cases, this is fine, but why duplicate a 46,000 character String if you don’t have to?   For 
better efficiency in our L-System examples, we’ll use the StringBuffer, which is optimized for 
this type of task and can easily be converted into a String after concatenation is complete.

  StringBuffer next = new StringBuffer();! ! $$ A StringBuffer for the “next” sentence
  for (int i = 0; i < current.length(); i++) {
    char c = current.charAt(i);
    if (c == 'A') {
      next.append("AB");! ! ! $$ append() instead of +=
    } else if (c == 'B') {
      next.append("A");
    }
  }
  current = next.toString();!! ! $$ StringBuffer can easily be converted back to a String

You may find yourself wondering right about now: what exactly is the point of all this?  After all, 
isn’t this a chapter about drawing fractal patterns?   Yes, the recursive nature of the L-System 
sentence structure seems relevant to the discussion, but how exactly does this model plant 
growth in a visual way?

What we’ve left unsaid until now is that embedded into these L-System sentences are 
instructions for drawing.   Let’s see how this works with another example.

Alphabet: A 
Axiom: A
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Rules: (A --> ABA)  (B --> BBB)

To read a sentence, we’ll translate it in the following way:

A:  Draw a line forward.
B: Move forward without drawing.

Let’s look at the sentence of each generation and its visual 
output.

Generation 0:  A
Generation 1: ABA
Generation 2: ABABBBABA
Generation 3: ABABBBABABBBBBBBBBABABBBABA

Look familiar?  This is the Cantor Set generated with an L-System.

The following alphabet is often used with L-Systems: “FG+-[]”, meaning:

F: Draw a line and move forward
G: Move forward (without drawing a line)
+: Turn right
-: Turn left
[: Save current location
]: Restore previous location

This type of drawing framework is often referred to as “Turtle graphics” (from the old days of 
LOGO programming).   Imagine a turtle sitting on your computer screen to which you could 
issue a small set of commands: turn left, turn right, draw a line, etc.  Processing isn’t set up to 
operate this way by default, but by using translate(), rotate(), and line(), we can emulate a Turtle 
graphics engine fairly easily.

Here’s how we would translate the above L-System alphabet into Processing code.

F: line(0,0,0,len); translate(0,len);
G: translate(0,len);
+: rotate(angle);
-: rotate(-angle);
[: pushMatrix();
]: popMatrix();
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Assuming we have a sentence generated from the L-System, we can walk through the sentence 
character by character and call the appropriate function as outlined above.

for (int i = 0; i < sentence.length(); i++) {

  char c = sentence.charAt(i);! $$ Looking at each character one at a time.

  if (c == 'F') {!! ! ! $$ Performing the correct task for each character.  This
    line(0,0,len,0);! ! ! could also be written with a ‘case’ statement, which might
    translate(len,0);! ! ! be nicer to look at, but leaving it as an if/else if structure
  } else if (c == 'F') {! ! helps readers not familiar with case statements.
   translate(len,0);
  } else if (c == '+') {
    rotate(theta);
  } else if (c == '-') {
    rotate(-theta);
  } else if (c == '[') {
    pushMatrix();
  } else if (c == ']') {
    popMatrix();
  }
} 

Here is an example that draws a more elaborate 
structure with the following L-System.

Alphabet:  FG+-[]
Axiom: F
Rules: F --> FF+[+F-F-F]-[-F+F+F]

The example available for download on the 
book’s web site takes all of the L-System code 
provided in this section and organizes it into 
three classes:

• class Rule:  A class that stores the predecessor 
and successor Strings for an L-System rule.

• class L-System: A class to iterate a new L-
System generation (as demonstrated with the 
StringBuffer technique).

• class Turtle: A class to manage reading the L-System sentence and following its instructions to 
draw on the screen.  

We won’t write out these classes here since they simply duplicate the code we’ve already worked 
out in this chapter. However, let’s see how they are put together in the main tab.

LSystem lsys;
Turtle turtle;
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void setup() {
  size(600,600);
  
  Rule[] ruleset = new Rule[1];! ! ! ! $$ A ruleset is an array of Rule objects
  ruleset[0] = new Rule('F',"FF+[+F-F-F]-[-F+F+F]");
  
  lsys = new LSystem("F",ruleset);!! ! ! $$ The L-System is created with an axiom 
! ! ! ! ! ! ! ! !    and a ruleset

  turtle = new Turtle(lsys.getSentence(),width/4,radians(25));
! ! ! ! ! ! $$ The Turtle graphics renderer is given a sentence,
}! ! ! ! ! ! a starting length, and an angle for rotations

void draw() {
  background(255);  
  translate(width/2,height);!! $$ Start at the bottom of the window
  turtle.render();! ! ! and draw
}

void mousePressed() {
  lsys.generate();! ! ! $$ Generate a new sentence when the mouse is pressed
  turtle.setToDo(lsys.getSentence());

  turtle.changeLen(0.5);! ! $$ The length shrinks each generation
}

Exercise: Use an L-System as a set of instructions for creating objects stored in an ArrayList.  
Use trigonometry and vector math to perform the rotations instead of matrix transformations 
(much like we did in the KochCurve example).

Exercise: The seminal work in L-Systems and plant structures, The Algorithmic Beauty of Plants 
by Przemyslaw Prusinkiewicz and Aristid Lindenmayer, was published in 1990.  It is available 
for free in its entirety online at: http://algorithmicbotany.org/papers/#abop.  Chapter 1 describes 
many sophisticated L-Systems with additional drawing rules and available alphabet characters.  
In addition, it describes several methods for generating Stochastic L-Systems.   Expand the L-
System example to include one or more additional features described by Prusinkiewicz and 
Lindenmayer.

Exercise: In this chapter, we emphasized using fractal algorithms for generating visual patterns. 
However, fractals can be found in other creative mediums.  For example, fractal patterns are 
evident in Johann Sebastian Bach’s Bach's Cello Suite No. 3.  The structure of David Foster 
Wallance’s novel Infinite Jest was inspired by fractals.  Consider using the examples in this 
chapter to generate audio or text. 

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 28

http://algorithmicbotany.org/papers/#abop
http://algorithmicbotany.org/papers/#abop


Chapter 9.  The Evolution of Code

“The fact that life evolved out of nearly nothing, some 10 billion years after the universe evolved out of literally nothing, is a fact 
so staggering that I would be mad to attempt words to do it justice.”
! —Richard Dawkins

Let’s take a moment to think back to a simpler time, when you wrote your first Processing 
sketches and life was free and easy.  What is one of programming’s fundamental concepts that 
you likely used in those first sketches and continue to use over and over again?  Variables.  
Variables allow you to save data and reuse that data while a program runs.   This, of course, is 
nothing new to us.  In fact, we have moved far beyond a sketch with just one or two variables 
and onto more complex data structures—variables made from custom data types (objects) that 
include both data and functionality.  We’ve made our own little worlds of movers and particles 
and vehicles and cells and trees.

In each and every example in this book, the variables of these objects have to be initialized.  
Perhaps you made a whole bunch of particles with random colors and sizes or a list of vehicles 
all starting at the same XY location on screen.   But  instead of acting as “intelligent designers” 
and assigning the properties of our objects through randomness or thoughtful consideration, we 
can let a process found in nature—evolution—decide for us.  

Can we think of the variables of an object as its DNA?  Can objects make other objects and pass 
down their DNA to a new generation?  Can our simulation evolve?

The answer to all these questions is yes.  After all, we wouldn’t be able to face ourselves in the 
mirror as nature-of-coders without tackling a simulation of one of the most powerful algorithmic 
processes found in nature itself.  This chapter is dedicated to examining the principles behind 
biological evolution and finding ways to apply those principles in code.

9.1  Genetic Algorithms: Inspired by Actual Events

It’s important for us to clarify the goals of this chapter.   We will not go into depth about the 
science of genetics and evolution as it happens in the real world.  We won’t be making Punnett 
squares (sorry to disappoint) and there will be no discussion of nucleotides, protein synthesis, 
RNA, and other topics related to the actual biological processes of evolution.  Instead, we are 
going to look at the big picture and core principles behind Darwinian evolutionary theory and 
develop a set of algorithms inspired by these principles.   We don’t care so much about an 
accurate simulation of evolution; rather, we care about methods for applying evolutionary 
strategies in software. 

This is not to say that a project with more scientific depth wouldn’t have value, and I encourage 
all readers with a particular interest in this topic to explore possibilities for expanding the 
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examples provided with additional evolutionary features.  Nevertheless, for the sake of keeping 
things manageable, we’re going to stick to the basics, which will be plenty complex and exciting.

9.2 Evolutionary Code

The term “Genetic Algorithm” refers to a specific algorithm implemented in a specific way to 
solve specific sorts of problems.   While the formal Genetic Algorithm itself will serve as the 
foundation for all of the examples we create in this chapter, we needn’t worry about 
implementing the algorithm with perfect accuracy, given that we are looking for creative uses of 
evolutionary theories in our code.   To that end, I’m going to use the more general term 
“Evolutionary Code” to describe what we are doing in this chapter, which will be broken down 
into three parts.

1. Traditional Genetic Algorithm.  We’ll begin with the traditional computer science 
genetic algorithm.  This algorithm was developed to solve problems in which the solution 
space is so fast that a “brute force” algorithm would simply take too long.   Here’s an 
example: I’m thinking of a number.  A number between one and one billion.  How long 
will it take for you to guess it?  Solving a problem with “brute force” refers to the process 
of checking every possible solution.  Is it one?  Is it two?  Is it three?  Is it four? And so 
and and so forth.  Though luck does play a factor here, with brute force we would often 
find ourselves here for years while you count to one billion.   However, what if I could 
tell you if an answer you gave was good or bad?  Warm or cold?   Very warm?  Hot?  
Super, super cold?  If you could evaluate how “fit” a guess is, you could pick other 
numbers closer to that guess and arrive at the answer more quickly.  Your answer could 
evolve.

2. Interactive Selection.  Once we establish the traditional computer science algorithm, 
we’ll look at other applications of genetic algorithms in the visual arts.  Interactive 
selection refers to the process of evolving something (often an computer-generated 
image) through user interaction.  Let’s say you walk into a museum gallery and see ten 
paintings.   With interactive selection, you would pick your favorites and allow an 
algorithmic process to generate (or “evolve”) new paintings based on your preferences.

3. Ecosystem Simulation.  The traditional computer science genetic algorithm and 
interactive selection technique are what you will likely find if you search online or read a 
textbook about artificial intelligence.  But as we’ll soon see, they don’t really simulate the 
process of evolution as it happens in the real world.   In this chapter, I want to also 
explore techniques for simulating the process of evolution in an ecosystem of pseudo-
living beings.  How can our objects that move about the screen meet each other, mate, 
and pass their genes onto a new generation? [I’m going to add something to the end of 
each chapter which is an assignment about building up an ecosystem step by step with 
all the elements we are learning, will want to refer to that here]  
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9.3 Why the Genetic Algorithm

While computer simulations of evolutionary processes date back to the 1950s, much of what we 
think of as genetic algorithms (also known as “GAs”) today was developed by John Holland, a 
professor at University of Michigan whose book Adaptation in Natural and Artificial Systems 
pioneered GA research.

To help illustrate the traditional genetic algorithm, we are going to start with monkeys.  No, not 
tour evolutionary ancestors.  We’re going to start with some present-day monkeys that are 
banging away on keyboards with the goal of typing out the complete works of Shakespeare.  

[ILLUSTRATION OF A LOT OF MONKEYS AND TYPEWRITERS??]

The “infinite monkey theorem” is stated as follows:  A monkey hitting keys randomly on a 
typewriter for will eventually type the complete works of Shakespeare (given an infinite amount 
of time).   The problem with this theory is that the probability of said monkey actually typing 
Shakespeare is so low that even if that monkey started at the Big Bang, it’s unbelievably unlikely 
we’d even have Hamlet at this point.   Let’s consider a monkey named George.

George types on a reduced typewriter containing only twenty-seven characters: twenty-six letters 
and one space bar.  So the probability of George hitting any given key is one in twenty-seven.

Let’s consider the phrase “to be or not to be that is the question” (we’re simplifying it from the 
original “To be, or not to be: that is the question”).  The phrase is 39 characters long. If George 
starts typing, the chance he’ll get the first character right is 1 in 27. Since the probability he’ll get 
the second character right is also 1 in 27, he has a 1 in 27*27 chance of landing the first two 
characters in correct order. It follows that the probability that George will type the full phrase is:

(1/27) multiplied by itself 33 times, i.e. (1 / 27) 39

which equals a 1 in 
66,555,937,033,867,822,607,895,549,241,096,482,953,017,615,834,735,226,163 chance of 
getting it right!  

Needless to say, even hitting just this one phrase, not to mention an entire play, is highly unlikely.   
Even if George is a computer simulation and can type one million random phrases per second, 
for George to have a 99% probability of eventually getting it right, he would have to type for 
9,719,096,182,010,563,073,125,591,133,903,305,625,605,017 years. (Note that the age of the 
universe is estimated at a mere 13,750,000,000 years.)

The point of all these unfathomably large numbers is not to give you a headache, but to 
demonstrate that a brute force algorithm (typing every possible random phrase) is not a 
reasonable strategy for arriving randomly at “to be or not to be that is the question”.   Enter 
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genetic algorithms, which will show that we can still start with random phrases and find the 
solution through simulated evolution.

Now, it’s worth noting that this problem (arrive at the phrase “to be or not to be”) is a ridiculous 
one.  Since we know the answer, all we need to do is type it.  Here’s a Processing sketch that 
solves the problem.

String s = “To be, or not to be: that is the question”
println(s);

Nevertheless, the point here is that solving a problem with a known answer allows us to easily 
test our code.   Once we’ve successfully solved the problem, we can feel more confident in using 
genetic algorithms to do some actual useful work: solving problems with unknown answers.   So 
this first example serves no real purpose other than to demonstrate how genetic algorithms work.  
If we test the GA results against the known answer and get “to be or not to be”, then we’ve 
succeeded in writing our genetic algorithm.

9.4  Darwinian Natural Selection

Before we begin walking through the genetic algorithm, let’s take a moment to describe three 
core principles of Darwinian evolution that will be required as we implement our simulation.   In 
order for natural selection to occur as it does in nature, all three of these elements must be 
present.

• Heredity.  There must be a process in place by which children receive the properties of 
their parents. If creatures live long enough to reproduce, then their traits are passed down to 
their children in the next generation of creatures.

• Variation.  There must be a variety of traits present in the population or a means with 
which to introduce variation.   For example, let’s say there is a population of beetles in 
which all the beetles are exactly the same: same color, same size, same wingspan, same 
everything.   Without any variety in the population, the children will always be identical to 
the parents and to each other.  New combinations of traits can never occur and nothing can 
evolve.

• Selection.  There must be a mechanism by which some members of a population have the 
opportunity to be parents and pass down their genetic information and some do not.  This is 
typically referred to as “survival of the fittest.”   For example, let’s say a population of 
gazelles is chased by lions every day.  The faster gazelles are more likely to escape the 
lions and are therefore more likely to live longer and have a chance to reproduce and pass 
their genes down to their children.   The term fittest, however, can be a bit misleading.  
Generally, we think of it as meaning bigger, faster, or stronger.   This may be the case in 
some instances, but natural selection operates on the principle that some traits are better 
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adapted for the creature’s environment and therefore produce a greater likelihood of 
surviving and reproducing.    It has nothing to do with a given creature being “better” (after 
all, this is a subjective term) or more “physically fit.”    In the case of our typing monkeys, 
for example, a more “fit” monkey is one that has typed a phrase closer to “to be or not to 
be.”

9.5  The Genetic Algorithm Itself

Before we move on to the code implementation and all of the details, I’d like to take a macro 
view of the narrative of the genetic algorithm.  We’ll do this in the context of the typing monkey.  
The algorithm itself will be divided into two parts: a set of conditions for initialization (i.e. 
Processing’s setup()) and the steps that are repeated over and over again (i.e. Processing’s draw
()) until we arrive at the correct answer.

Part 1. Initialization

• Create a population.   In the context of the typing monkey example, we will create a 
population of phrases.  (Note we are using the term “phrase” rather loosely, meaning a 
String of characters.)   This begs the question: How do we create this population?  Here is 
where the Darwinian principle of variation applies.  Let’s say, for simplicity, that we are 
trying to evolve the phrase “cat”.  And we have a population of three phrases.

   hug
	 	 	 rid
	 	 	 won

Sure, there is variety in the three phrases above, but try to mix and match the characters 
every which way and you will never get “cat”.  There is not enough variety here to evolve 
the optimal solution.  However, if we had a population of thousands of phrases, all 
generated randomly, chances are that at least one member of the population will have a ‘c’ 
as the first character, one will have an ‘a’ as the second, and one a ‘t’ as the third.  A large 
population will most likely give us enough variety to generate the desired phrase (and in 
Part 2 of the algorithm, we’ll have another opportunity to introduce even more variation in 
case there isn’t enough in the first place.)   So we can be more specific in describing step 1 
and say: 

Create a population of randomly generated elements.  

This brings up another important question.   What is the element itself?   As we move 
through the examples in this chapter, we’ll see several different scenarios; we might have a 
population of images or a population of vehicles (à la Chapter 6).   The key, and the part 
that is new for us in this chapter, is that each member of the population has a virtual 
“DNA”, a set of properties (we can call them “genes”) that describe how a given element 
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looks or behaves.   In the case of the typing monkey, for example, the DNA is simply a 
String of characters.

In the field of genetics, there is an important distinction between the concepts genotype and 
phenotype.  The actual genetic code—in our case, the digital information itself—is an 
element’s genotype.   This is what gets passed down from generation to generation.  The 
phenotype, however, is the expression of that data.   This is one of the primary keys to your 
use of genetic algorithms in your work.  What are the objects in your world?   How will 
you design the genotype for your objects (the data structure to store each object’s 
properties) as well as the phenotype (what are you using these variables to express?).   We 
do this all the time in graphics programming.   The simplest example is probably color.

Genotype Phenotype

int c = 255;

int c = 127;

int c = 0;

 As we can see, the genotype is the digital information.  Each color is a variable that stores 
an integer and we choose to express that integer as a color.  But how we choose to express 
the data is arbitrary.   In a different approach, we could have used the integer to describe the 
length of a line, the weight of a force, etc.  

Same Genotype Different Phenotype (line length)

int c = 255;

int c = 127;

int c = 0;
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The nice thing about our monkey-typing example is that its simplicity means there is no 
difference between genotype and phenotype.   The DNA data itself is a String of characters 
and the expression of that data is that very String.  

So, we can finally end the discussion of this first step and be more specific with its 
description, saying:

Create a population of N elements, each with randomly generated DNA.

Part 2. Loop

•  Selection.  Here is where we apply the Darwinian principle of selection.   We need to 
evaluate the population and determine which members are fit to be selected as parents for 
the next generation.  The process of selection can be divided into two steps.

• Evaluate fitness.   For our genetic algorithm to function properly, we will need to 
design what is referred to as a fitness function, which will produce a numeric score to 
describe the fitness of a given member of the population.   This, of course, is not how 
the real world works at all.  Creatures are not given a score; they simply survive or not.  
But in the case of the traditional genetic algorithm, where we are trying to evolve an 
optimal solution to a problem, we need to be able to numerically evaluate any given 
possible solution.

Let’s examine our current example, the typing monkey.   Again, let’s simplify the 
scenario and say we are attempting to evolve the word “cat”.   We have three members 
of the population: “hut”, “car”, and “box”.   Car is obviously the most fit, given that it 
has two correct characters; hut has only one; and box has zero.   And there it is, our 
fitness function:

fitness = the number of correct characters

DNA Fitness

hut 1

car 2

box 0

We will eventually want to look at examples with more sophisticated fitness functions, 
but this is a good place to start.
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• Create a Mating Pool.   Once the fitness has been calculated for all members of the 
population, we can then select which members are fit to become parents and place them 
in a mating pool.  There are several different approaches we could take here.  For 
example, we could employ what is know as the elitist method and say “Which two 
members of the population scored the highest?  You two will make all the children for 
the next generation.”    This is probably one of the easier methods to program; however, 
it flies in the face of the principle of variation.  If two members of the population (out 
of perhaps thousands) are the only ones available to reproduce, the next generation will 
have little variety and this may stunt the evolutionary process.   We could instead make 
a mating pool out of a larger number—for example, the top 50% of the population, 500 
out of 1,000.   This is also just as easy to program, but it will not produce optimal 
results.   In this case, the high-scoring top elements would have the same chance of 
being selected as a parent as the ones toward the middle.  And why should element 
number 500 have a solid shot of reproducing, while element number 501 has no shot?   

A better solution for the mating pool is to use a probabilistic method, which we’ll call 
the “wheel of fortune” (also known as the “roulette wheel”).    To illustrate this method, 
let’s consider a simple example where we have a population of five elements, each with 
a fitness score.

Element Fitness
A   3
B   4
C   0.5
D   1.5
E   1

The first thing we’ll want to do is normalize all the scores.  Remember normalizing a 
vector?  That involved taking an vector and standardizing its length, setting it to one.   
When we normalize a set of fitness scores, we are standardizing their range to between 
0 and 1, as a percentage of total fitness.   Let’s add up all the fitness scores.

total fitness = 2 + 4 + 1 + 2 +1 = 10

Then let’s divide each score by the total fitness, giving us the normalized fitness.

Element Fitness Normalized Fitness Expressed as a Percentage
A   3  0.3    30%
B   4  0.4    40%
C   0.5  0.05    5%
D   1.5  0.15    15%
E   1  0.1    10%
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Now it’s time for the wheel of fortune. 

Spin the wheel and you’ll notice that Element B has the highest chance of being 
selected, followed by A, then D, then E, and finally C.  This probability-based selection 
according to fitness is an excellent approach.  One, it guarantees that the highest-
scoring elements will be most likely to reproduce.  Two, it does not entirely eliminate 
any variation from the population.   Unlike with the elitist method, even the lowest-
scoring element (in this case C) has a chance to pass its information down to the next 
generation.    It’s quite possible (and often the case) that even low-scoring elements 
have a tiny nugget of genetic code that is truly useful and should not entirely be 
eliminated from the population.   For example, in the case of evolving “to be or not to 
be”, we might have the following elements.

 A:	 to be or not to go
	 B:	 to be or not to pi
	 C:	 xxxxxxxxxxxxxxxxbe

As you can see, elements A and B are clearly the most fit and would have the highest 
score.  But neither contains the correct characters for the end of the phrase.  Element C, 
even though it would receive a very low score, happens to have the genetic data for the 
end of the phrase.  And so while we would want A and B to be picked to generate the 
majority of the next generation, we would still want C to have a small chance to 
participate in the reproductive process.

•  Reproduction.  Now that we have a strategy for picking parents, we need to figure out how   
make the population’s next generation, keeping in mind the Darwinian principle of heredity
—that children inherit properties from their parents.  Again, there are a number of different 
techniques we could employ here.  For example, one reasonable (and easy to program) 
strategy is asexual reproduction, meaning we pick just one parent and create a child that is 
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an exact copy of that parent.   The standard approach with genetic algorithms, however, is 
to pick two parents and create a child in two steps.

• Crossover.  Crossover involves creating a child out of the genetic code of two parents.   
In the case of the monkey-typing example, let’s assume we’ve picked two phrases from 
the mating pool (as outlined in our selection step).

   Parent A    Parent B
	 	 	 FORK	 	 	 	 PLAY

It’s now up to us to make a child phrase from these two.  Perhaps the most obvious way 
(let’s call this the 50/50 method) would be to take the first two characters from A and 
the second two from B, leaving us with:

A variation of this technique is to pick a random midpoint.  In other words, we don’t 
have to pick exactly half of the code from each parent.  We could sometimes end up 
with FLAY, and sometimes with FORY.  This is preferable to the 50/50 approach, since 
we increase the variety of possibilities for the next generation.

[REVISE ILLUSTRATION TO POINT OUT RANDOM MIDPOINT]

Another possibility is to randomly select a parent for each character in the child String.  
You can think of this as flipping a coin four times: heads take from parent A, tails from 
parent B.    Here we could end up with many different results such as: PLRY, FLRK, 
FLRY, FORY, etc.
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[REVISE ILLUSTRATION TO SAY HEADS OR TAILS]

This strategy will produce essentially the same results as the random midpoint method; 
however, if the order of the genetic information plays some role in expressing the 
phenotype, you may prefer one solution over the other.

• Mutation.  Once the child DNA has been created via crossover, we apply one final 
process before adding the child to the next generation—mutation.   Mutation is an 
optional step, as there are some cases in which it is unnecessary.  However, it exists 
because of the Darwinian principle of variation.  We created an initial population 
randomly, making sure that we start with a variety of elements.  However, there can 
only be so much variety when seeding the first generation, and mutation allows us to 
introduce additional variety throughout the evolutionary process itself.  

Mutation is described in terms of a rate.  A given genetic algorithm might have a 
mutation rate of 5% or 1% or 0.1%, etc.  Let’s assume we just finished with crossover 
and ended up with the child FORY.  If we have a mutation rate of 1%, this means that 
for each character in the phrase generated from crossover, there is a 1% chance that it 
will mutate.  What does it mean for a character to mutate?  In this case, we define 
mutation as picking a new random character.    A 1% probability is fairly low, and most 
of the time mutation will not occur at all in a four character String (96% of the time to 
be more precise).   However, when it does, the mutated character is replaced with a 
randomly generated one.  For example:
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As we’ll see in some of the examples, the mutation rate can greatly affect the behavior 
of the system.   Certainly, a very high mutation rate (such as, say, 80%) would negate 
the evolutionary process itself.  If the majority of a child’s genes are generated 
randomly, then we cannot guarantee that the more “fit” genes occur with greater 
frequency with each successive generation.

The process of selection (picking two parents) and reproduction (crossover and mutation) 
is applied over and over again N times until we have a new population of N elements.  At 
this point, the new population of children becomes the current population and we loop 
back to evaluate fitness and perform selection and reproduction again.

Now that we have described all the steps of the genetic algorithm in detail, it’s time to translate 
these steps into Processing code.  Because the previous description was a bit longwinded, let’s 
look at an overview of the algorithm first.  We’ll then cover each of the three steps in its own 
section, working out the code.

SETUP

Step 1: Initialize: Create a population of N elements, each with randomly generated DNA.
 
LOOP

Step 2: Selection: Evaluate the fitness of each element of the population and build a mating pool.

Step 3: Reproduction: Repeat N times:
 a. Pick two parents with probability according to relative fitness.
 b. Crossover — create a “child” by combining the DNA of these two parents.
 c. Mutation — mutate the child’s DNA based on a given probability.
 d. Add the new child to a new population.

Step 4. Replace the old population with the new population and return to Step 2.
 
9.6  Code for Creating the Population

Step 1: Initialize Population

If we’re going to create a population, we need a data structure to store a list of members of the 
population.   In most cases (such as our typing-monkey example), the number of elements in the 
population can be fixed, and so we use an array.  Later we’ll see examples that involve a 
growing/shrinking population and we’ll use an ArrayList.   But an array of what?   We need an 
object that stores the genetic information for a member of the population.  Let’s call it DNA.

class DNA {
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}

The population will then be an array of DNA objects.

DNA[] population = new DNA[100];! $$ A population of 100 DNA objects

But what stuff goes in the DNA class?   For a typing monkey, its DNA is the random phrase it 
types, a String of characters.    

class DNA {
  String phrase;
}

While this is perfectly reasonable for this particular example, we’re not going to use an actual 
String object as the genetic code.  Instead, we’ll use an array of characters.  

class DNA {
  char[] genes = new char[19];! $$ Each “gene” is one element of the array
! ! ! ! ! ! $$ We need 18 genes because “To be or not to be.” is 19 
! ! ! ! ! ! characters long
}

By using an array, we’ll be able to extend all the code we write into other examples.  For 
example, the DNA of a creature in a physics system might be an array of PVectors—or for an 
image, an array of integers (RGB colors).   We can describe any set of properties in an array and 
even though a String is convenient for this particular sketch, an array will serve as a better 
foundation for future evolutionary examples.

Our genetic algorithm dictates that we create a population of N elements, each with randomly 
generated DNA.  Therefore, in the object’s constructor, we randomly create each character of the 
array.

class DNA {
  char[] genes = new char[18];

  DNA() {
    for (int i = 0; i < genes.length; i++) {
      genes[i] = (char) random(32,128);   ! $$ Picking randomly from a range of characters
    }!! ! ! ! ! ! ! with ASCII values between 32 and 128.
  }! ! ! ! ! ! ! ! For more about ASCII:
}! ! ! ! ! ! ! ! http://en.wikipedia.org/wiki/ASCII 
! ! !
Now that we have the constructor, we can return to setup() and initialize each DNA object in the 
population array.

DNA[] population = new DNA[100];

void setup() {
  for (int i = 0; i < population.length; i++) {
    population[i] = new DNA();! ! ! $$ Initializing each member of the population
  }
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}

Our DNA class is not at all complete. We’ll need to add functions to it to perform all the other 
tasks in our genetic algorithm, which we’ll do as we walk through steps 2 and 3.

Step 2: Selection

Step 2 reads “evaluate the fitness of each element of the population and build a mating pool.”  
Let’s first evaluate each object’s fitness.   Earlier we stated that one possible fitness function for 
our typed phrases is the total number of correct characters.  Let’s revise this fitness function a 
little bit and state it as the percentage of correct characters—i.e., the total number of correct 
characters divided by the total characters.

Fitness = Total # Characters Correct  /  Total # Characters

Where should we calculate the fitness?   Since the DNA class contains the genetic information 
(the phrase we will test against the target phrase), we can write a function inside the DNA class 
itself to score its own fitness.  Let’s assume we have a target phrase:

String target = “To be or not to be.”;

We can now compare each “gene” against the corresponding character in the target phrase, 
incrementing a counter each time we get a correct character.

class DNA {
  float fitness; !! ! $$ We are adding another variable to DNA class to track fitness

  void fitness () {! ! $$ Function to score fitness
    int score = 0;! !
    for (int i = 0; i < genes.length; i++) {
      if (genes[i] == target.charAt(i)) {    ! $$ Is the character correct?
        score++;! ! ! ! ! ! $$ If so, increment the score
      }
    }
    fitness = float(score)/target.length();! $$ Fitness is percentage correct
  }

In the main tab’s draw(), the very first step we’ll take is to call the fitness function for each 
member of the population.

void draw() {

  for (int i = 0; i < population.length; i++) {
    population[i].fitness();
  }

After we have all the fitness scores, we can build the “mating pool” that we’ll need for the 
reproduction step.  The mating pool is a data structure from which we’ll continuously pick two 
parents.   Recalling our description of the selection process, we want to pick parents with 
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probabilities calculated according to fitness.  In other words, the members of the population that 
have the highest fitness scores should be most likely to be picked; those with the lowest scores, 
least likely.  

In this book’s prologue [OK, NOW I HAVE TO WRITE THIS], we covered the basics of 
probability and generating a custom distribution of random numbers.    We’re going to use those 
techniques to assign a probability to each member of the population.   Remember the wheel of 
fortune? 

It might be fun to do something ridiculous and actually program a simulation of a spinning wheel  
as depicted above.  But this is quite unnecessary.  We can pick from the five options (ABCDE) 
according to their probabilities by filling an ArrayList with multiple instances of each parent.  In 
other words, let’s say you had a bucket of wooden letters—30 As, 40 Bs, 5 Cs, 15 Ds, and 10 Es. 

If you pick a random letter out of that bucket, there’s a 30% chance you’ll get an A, a 5% chance 
you’ll get a C, and so on.  For us, that bucket is an ArrayList, and each wooden letter is a 
potential parent.  We add each parent to the ArrayList N number of times where N is equal to its 
percentage score.

  
  ArrayList<DNA> matingPool = new ArrayList<DNA>();  $$ Start with an empty mating pool
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  for (int i = 0; i < population.length; i++) {

    int n = int(population[i].fitness * 100);   ! $$ n is equal to fitness times 100, 
! ! ! ! ! ! ! ! ! which leaves us with an integer between 0
! ! ! ! ! ! ! ! ! and 100
    for (int j = 0; j < n; j++) {
      matingPool.add(population[i]);! ! ! $$ Add each member of the population to
    }!! ! ! ! ! ! ! ! the mating pool N times
  }

Exercise: One of the other methods we used to generate a custom distribution of random 
numbers is called the “Monte Carlo method” (see p. XXX).  This technique involved picking two 
random numbers, with the second number acting as a qualifying number and determining if the 
first random number should be kept or thrown away.  Rewrite the above mating pool algorithm 
to use the Monte Carlo method instead. 

Step 3: Reproduction

With the mating pool ready to go, it’s time to make some babies.  The first step is to pick two 
parents.  Again, it’s somewhat of an arbitrary decision to pick two parents.  It certainly mirrors 
human reproduction and is the standard means in the traditional GA, but in terms of your work, 
there really aren’t any restrictions here.  You could choose to perform “asexual” reproduction 
with one parent, or come up with a scheme for picking three or four parents from which to 
generate child DNA.   For this code demonstration, we’ll stick to two parents and call them 
“partnerA” and “partnerB.” 

First thing we need are two random indices into the mating pool—random numbers between zero 
and the size of the ArrayList.  

  int a = int(random(matingPool.size()));
  int b = int(random(matingPool.size()));

We can use these indices to retrieve an actual DNA instance from the mating pool.

  DNA partnerA = matingPool.get(a);
  DNA partnerB = matingPool.get(b);

Because we have multiple instances of the same DNA objects in the mating pool (not to mention 
that we could pick the same random number twice), it’s possible that partnerA and partnerB 
could be the same DNA object.  If we wanted to be strict, we could write some code to ensure 
that we haven’t picked the same parent twice, but we would gain very little efficiency for all all 
that extra code.  Still, it‘s worth trying this as an exercise.

Exercise: Add code to the above to guarantee that you have picked two unique“partners.”
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Once we have the two parents, we can perform crossover to generate the child DNA, followed 
by mutation.  

  DNA child = partnerA.crossover(partnerB);! $$ A function for crossover
  child.mutate();!! ! ! ! ! $$ A function for mutation

Of course, the functions crossover() and mutate() don’t magically exist in our DNA class; we 
have to write them.   The way we called crossover() above indicates that the function receives an 
instance of DNA as an argument and returns a new instance of DNA, the child.

  DNA crossover(DNA partner) {! $$ Function receives one argument (DNA) and returns DNA

    DNA child = new DNA();! ! $$ The child is a new instance of DNA
! ! ! ! ! ! Note the DNA is generated randomly in the constructor
! ! ! ! ! ! but we will overwrite it below with DNA from parents
    

    int midpoint = int(random(genes.length));! $$ Picking a random “midpoint” in the genes array
    
    for (int i = 0; i < genes.length; i++) {
      if (i > midpoint) child.genes[i] = genes[i];! !  $$ Before midpoint copy genes from
      else              child.genes[i] = partner.genes[i];! one parent, after midpoint!   
    }!! ! ! ! ! ! ! ! !  copy genes from the other parent

    return child;!! ! ! ! ! $$ Return the new child DNA
  }

The above crossover function uses the “random midpoint” method of crossover, in which the 
first section of genes is taken from parent A and the second section from parent B.  

Exercise: Rewrite the crossover function to use the “coin flipping” method instead, in which 
each gene has a 50% chance of coming from parent A and a 50% chance of coming from parent 
B. 

The mutate() function is even simpler to write than crossover().   All we need to do is loop 
through the array of genes and for each randomly pick a new character according to the mutation 
rate.   With a mutation rate of 1%, for example, we would pick a new character one time out of a 
hundred.

float mutationRate = 0.01;

if (random(1) < mutationRate) {
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  // pick a new character! ! $$ Any code here would be executed 1% of the time
}

The entire function therefore reads:

  void mutate() {
    for (int i = 0; i < genes.length; i++) {! $$ Looking at each gene in the array
      if (random(1) < mutationRate) {
        genes[i] = (char) random(32,128);! $$ Mutation, a new random character
      }
    }
  }

9.7  Genetic Algorithm: Putting It All Together

You may have noticed that we’ve essentially walked through the steps of the genetic algorithm 
twice, once describing it in narrative form and another time with code snippets implementing 
each of the steps.    What I’d like to do in this section is condense the previous two sections into 
one page, with the algorithm described in just three steps and the corresponding code alongside. 

Example 8.1: Genetic Algorithm, Evolving Shakespeare

! ! ! ! ! ! ! $$ Variables we need for our GA
float mutationRate;           ! ! $$ Mutation rate
int totalPopulation = 150;! ! ! $$ Population Total

DNA[] population;         ! ! ! $$ population array
ArrayList<DNA> matingPool;! ! ! $$ mating pool ArrayList
String target;! ! ! ! ! $$ Target phrase

void setup() {
  size(200, 200);

  target = "To be or not to be.";! ! ! $$ Initializing target phrase and mutation rate
  mutationRate = 0.01;

  population = new DNA[totalPopulation];!! $$ STEP 1: INITIALIZE POPULATION
  for (int i = 0; i < population.length; i++) {
    population[i] = new DNA();
  }
}

void draw() {
! ! ! ! ! ! ! ! ! $$ STEP 2: SELECTION

  for (int i = 0; i < population.length; i++) {! $$ Step 2a: calculate fitness
    population[i].fitness();
  }

  ArrayList<DNA> matingPool = new ArrayList<DNA>();! $$ Step 2b: build mating pool  
  
  for (int i = 0; i < population.length; i++) {
    int n = int(population[i].fitness * 100);  ! $$ Add each member n times according
    for (int j = 0; j < n; j++) {              ! to fitness score
      matingPool.add(population[i]);
    }
  }

  for (int i = 0; i < population.length; i++) {! $$ STEP 3: REPRODUCTION
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    int a = int(random(matingPool.size()));
    int b = int(random(matingPool.size()));
    DNA partnerA = matingPool.get(a);
    DNA partnerB = matingPool.get(b);
    DNA child = partnerA.crossover(partnerB);! ! $$ Step 3a: Crossover
    child.mutate(mutationRate);! ! ! ! $$ Step 3b: Mutation

    population[i] = child;! ! $$ Note we are overwriting the population with the new
  }! ! ! ! ! ! children.  When draw() loops, we will perform all the same 
  ! ! ! ! ! ! steps with the new population of children.
}

The main tab precisely mirrors the steps of the genetic algorithm.  However, most of the 
functionality called upon is actually present in the DNA class itself.

class DNA {

  char[] genes;! ! ! ! ! ! ! $$ Genetic data—GENOTYPE
  float fitness;
  
  DNA() {! ! ! ! ! ! ! ! $$ Create DNA randomly
    genes = new char[target.length()];
    for (int i = 0; i < genes.length; i++) {
      genes[i] = (char) random(32,128);
    }
  }
  
  void fitness() {! ! ! ! ! ! $$ Calculate fitness
     int score = 0;
     for (int i = 0; i < genes.length; i++) {
        if (genes[i] == target.charAt(i)) {
          score++;
        }
     }
     fitness = float(score)/target.length();
  }
  
  DNA crossover(DNA partner) {! ! ! ! $$ Crossover
    DNA child = new DNA(genes.length);
    int midpoint = int(random(genes.length));
    for (int i = 0; i < genes.length; i++) {
      if (i > midpoint) child.genes[i] = genes[i];
      else              child.genes[i] = partner.genes[i];
    }
    return child;
  }
  
  void mutate(float mutationRate) {! ! ! $$ Mutation
    for (int i = 0; i < genes.length; i++) {
      if (random(1) < mutationRate) {
        genes[i] = (char) random(32,128);
      }
    }
  }

  String getPhrase() {!! ! ! $$ convert to String—PHENOTYPE
    return new String(genes);
  }

}
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Exercise: Add features to the above example to report more information about the progress of the 
genetic algorithm itself.   For example, show the phrase closest to the target each generation, as 
well as report on the number of generations, average fitness, etc.  Stop the genetic algorithm 
once it has solved the phrase.  Consider writing a Population class to manage the GA (instead of 
including all the code in draw()).

 
9.8  Genetic Algorithm: Make It Your Own

The nice thing about using genetic algorithms in a project is that example code can easily be 
ported from application to application.  The core mechanics of selection and reproduction don’t 
need to change.  There are, however, three key components to genetic algorithms that you, the 
developer, will have to customize for each use.  This is crucial to moving beyond trivial 
demonstrations of evolutionary simulations (as in the Shakespeare example) to creative uses in 
projects that you make in Processing and other creative programming environments.

Key #1: Varying the variables

There aren’t a lot of variables to the genetic algorithm itself.   In fact, if you look at the previous 
example’s code, you’ll see only two global variables (not including the arrays and ArrayLists to 
store the population and mating pool).

float mutationRate = 0.01; 
int totalPopulation = 150;

These two variables can greatly affect the behavior of the system, and it’s not such a good idea to 
arbitrarily assign them values (though tweaking them through trial and error is a perfectly 
reasonable way to arrive at optimal values).

The values I chose for the Shakespeare demonstration were picked to virtually guarantee that the 
genetic algorithm would solve for the phrase, but not too quickly (approximately 1,000 
generations on average) so as to demonstrate the process over a reasonable period of time.    A 
much larger population, however, would yield faster results (if the goal were algorithmic 
efficiency rather than demonstration).  Here is a table of some results.

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 20



Total Population Mutation Rate Number of Generations 
until Phrase Solved

Total Time 
(in seconds) until 

Phrase Solved

150 1% 1089 18.8

300 1% 448 8.2

1,000 1% 71 1.8

50,000 1% 27 4.3

Notice how increasing the population size drastically reduces the number of generations needed 
to solve for the phrase.  However, it doesn’t necessarily reduce the amount of time.  Once our 
population balloons to fifty thousand elements, the sketch runs slowly, given the amount of time 
required to process fitness and build a mating pool out of so many elements. (There are, of 
course, optimizations that could be made should you require such a large population). 

In addition to the population size, the mutation rate can greatly affect performance.

Total Population Mutation Rate Number of Generations 
until Phrase Solved

Total Time 
(in seconds) until 

Phrase Solved

1,000 0% 37 or never? 1.2 or never?

1,000 1% 71 1.8

1,000 2% 60 1.6

1,000 10% never? never?

Without any mutation at all (0%), you just have to get lucky.  If all the correct characters are 
present somewhere in some member of the initial population, you’ll evolve the phrase very 
quickly.  If not, there is no way for the sketch to ever reach the exact phrase.  Run it a few times 
and you’ll see both instances.  In addition, once the mutation rate gets high enough (10%, for 
example), there is so much randomness involved (1 out of every 10 letters is random in each new 
child), that the simulation is pretty much back to a random typing monkey.  In theory, it will 
eventually solve the phrase, but you may be waiting much, much longer than reasonable.

Key #2: The fitness function

Playing around with the mutation rate or population total is pretty easy and involves little more 
than typing numbers in your sketch.  The real hard work of a developing a genetic algorithm is in 
writing a fitness function.  After all, if you cannot define your problem’s goals and evaluate 
numerically how well those goals have been achieved, then you will not have successful 
evolution in your simulation.
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Before we think about other scenarios with other fitness functions, let’s look at flaws in our 
Shakespearean fitness function.   Consider solving for a phrase that is not nineteen characters 
long, but one thousand.  Now, let’s say there are two members of the population, one with eight 
hundred characters correct and one with eight hundred and one.  Here are their fitness scores:

Phrase A: 800 characters correct	 	 fitness = 80%
Phrase B: 801 characters correct	 	 fitness = 80.1%

There are a couple of problems here.  First, we are adding elements to the mating pool N 
numbers of times where N equals fitness multiplied by one hundred.  Objects can only be added 
to an ArrayList a whole number of times, and so A and B will both be added 80 times, giving 
them an equal probability of being selected.  Even with an improved solution that takes floating 
point probabilities into account, 80.1% is only a teeny tiny bit higher than 80%.  But getting 801 
characters right is a whole lot better than 800 in the evolutionary scenario.  We really want to 
make that additional character count.   We want the fitness score for 801 characters to be  
exponentially better than the score for 800.

To put it another way, let’s graph the fitness function.

This is a linear graph; as the number of characters goes up, so does the fitness score.   However, 
what if the fitness increased exponentially as the number of correct characters increased?  Our 
graph could then look something like:
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The more correct characters, the even greater the fitness.  We can achieve this type of result in a 
number of different ways.  For example, we could say:

fitness = (number of correct characters) * (number of correct characters)

Let’s say we have two members of the population, one with 5 correct characters and one with 6.   
The number 6 is a 20% increase over the number 5.   Let’s look at the fitness scores squared.

Characters correct	 	 Fitness
5	 	 	 	 	 25
6	 	 	 	 	 36

The fitness scores increase exponentially relative to the number of correct characters.  36 is a 
44% increase over 25.

Here’s another formula.

fitness = 2(number of correct characters) 

Characters correct	 	 Fitness
1	 	 	 	 	 2
2	 	 	 	 	 4
3	 	 	 	 	 8
4	 	 	 	 	 16

Here, the fitness scores increase at a faster rate, doubling with each additional correct character.

Exercise: Rewrite the fitness function to increase exponentially according to the number of 
correct characters.  Note you will also have to normalize the fitness values to a range between 0 
and 1 so they can be added to the mating pool a reasonable number of times.

While this rather specific discussion of exponential vs. linear fitness functions is an important 
detail in the design of a good fitness function, I don’t want us to miss the more important point 
here: Design your own fitness function!    I seriously doubt that any project you undertake in 
Processing with genetic algorithms will actually involve counting the correct number of 
characters in a String.   In the context of this book, it’s more likely you will be looking to evolve 
a creature that is part of a physics system.  Perhaps you are looking to optimize the weights of 
steering behaviors so a creature can best escape a predator or avoid an obstacle or make it 
through a maze.   You have to ask yourself, what are you looking to evaluate?   

Let’s consider a racing simulation in which a vehicle is evolving a design optimized for speed.

fitness = total number of frames required for vehicle to reach target
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How about a cannon that is evolving the optimal way to shoot a target?

fitness = cannonball distance to target

The design of computer-controlled players in a game is also a common scenario.  Let’s say you 
are programming a soccer game in which the user is the goalie.   The rest of the players are 
controlled by your program and have a set of parameters that determine how they kick a ball 
towards the goal.  What would the fitness score for any given player be?

fitness = total goals scored

This, obviously, is a simplistic take on the game of soccer, but it illustrates the point.  The more 
goals a player scores, the higher its fitness, and the more likely its genetic information will 
appear in the next game.   Even with a fitness function as simple as the one described here, this 
scenario is demonstrating something very powerful—the adaptability of a system.  If the players 
continue to evolve from game to game to game, when a new human user enters the game with a 
completely different strategy, the system will quickly discover that the fitness scores are going 
down and evolve a new optimal strategy.  It will adapt.  (Don’t worry, there is very little danger 
in this resulting in sentient robots that will enslave all humans.)

In the end, if you do not have a fitness function that effectively evaluates the performance of the 
individual elements of your population, you will not have any evolution.  And the fitness 
function from one example will likely not apply to a totally different project.  So this is the part 
where you get to shine.  You have to design a function, sometimes from scratch, that works for 
your particular project.   And where do you do this?   All you have to edit are those few lines of 
code inside the function that computes the fitness variable.

void fitness() {
  ????????????
  ????????????
  fitness = ?????????? 
}

Key #3: Genotype and Phenotype

The final key to designing your own genetic algorithm relates to how you choose to encode the 
properties of your system.  What are you trying to express, and how can you translate that 
expression into a bunch of numbers?   What is the genotype and phenotype?

When talking about the fitness function, we happily assumed we could create computer-
controlled kickers that each had a “set of parameters that determine how they kick a ball towards 
the goal.”   However, what those parameters are and how you choose to encode them is up to 
you.
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We started with the Shakespeare example because of how easy it was to design both the 
genotype (an array of characters) and its expression, the phenotype (the String drawn in the 
window).  

The good news is—and we hinted at this at the start of this chapter—you’ve really been doing 
this all along.  Anytime you write a class in Processing, you make a whole bunch of variables.

class Vehicle {
  float maxspeed;
  float maxforce;
  float size;
  float separationWeight;
  // etc.

All we need to do to evolve those parameters is to turn them into an array, so that the array can 
be used with all of the functions—crossover(), mutate(), etc.—found in the DNA class.  One 
common solution is to use an array of floating point numbers between 0 and 1.

class DNA {

  float[] genes;  ! ! $$ An array of floats

  DNA(int num) {
    genes = new float[num];
    for (int i = 0; i < genes.length; i++) {
      genes[i] = float(1);! $$ always pick a number between 0 and 1
    }
  }

Notice how we’ve now put the genetic data (genotype) and its expression (phenotype) into two 
separate classes.  The DNA class is the genotype and the Vehicle class uses a DNA object to 
drive its behaviors and express that data visually—it is the phenotype.  The two can be linked by 
creating a DNA instance inside the vehicle class itself.

class Vehicle {
  DNA dna;! ! ! ! $$ A DNA object embedded into the Vehicle class

  float maxspeed;
  float maxforce;
  float size;
  float separationWeight;
  // etc.

  Vehicle() {
    DNA = new DNA(4);
    maxspeed = dna.genes[0];!$$ Using the genes to set variables
    maxforce = dna.genes[1];
    size = dna.genes[2];
    separationWeight = dna.genes[3];
    // etc.
  }

Of course, you most likely don’t want all your variables to have a range between 0 and 1.  But 
rather than try to remember how to adjust those ranges in the DNA class itself, it’s easier to pull 
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the genetic information from the DNA object and use Processing’s map() function to change the 
range.  For example, if you want a size variable between 10 and 72, you would say:

    size = map(dna.genes[2],0,1,10,72);

In other cases, you will want to design a genotype that is an array of objects.   Consider the 
design of a rocket with a series of “thruster” engines.   You could describe each thruster with a 
PVector that outlines its direction and relative strength.

class DNA {

  PVector[] genes;  ! ! $$ The genotype is an array PVectors

  DNA(int num) {
    genes = new float[num];
    for (int i = 0; i < genes.length; i++) {
      float angle = random(TWO_PI);
      genes[i] = new PVector(cos(angle),sin(angle));!$$ A PVector pointing in a random direction
      genes[i].mult(random(10)); ! ! ! ! $$ And scaled randomly
    }
  }

The phenotype would be a Rocket class that participates in a physics system.

class Rocket {
  DNA dna;
  // etc.

What’s great about this technique of dividing the genotype and phenotype into separate classes 
(DNA and Rocket for example) is that when it comes time to build all of the code, you’ll notice 
that the DNA class we developed earlier remains intact.   The only thing that changes is the 
array’s data type (float, PVector, etc.) and the expression of that data in the phenotype class.   

In the next section, we’ll follow this idea a bit further and walk through the necessary steps for 
an example that involves moving bodies and an array of PVectors as DNA.

9.9  Evolving Forces: Smart Rockets

We picked the Rocket idea for a specific reason.  In 2009, Jer Thorp (http://blprnt.com) released 
a great genetic algorithms example on his blog entitled “Smart Rockets.”   Jer points out that 
NASA uses evolutionary computing techniques to solve all sorts of problems, from satellite 
antenna design to rocket firing patterns. This inspired him to create a Flash demonstration of 
evolving rockets.  Here is a description of the scenario:

A population of rockets launches from the bottom of the screen with the goal of hitting a target at 
the top of the screen (with obstacles blocking a straight line path).   
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Each rocket is equipped with five thrusters of variable strength and direction.    The thrusters 
don’t fire all at once and continuously; rather, they fire one at a time in a custom sequence.

In this section, we’re going to evolve our own simplified Smart Rockets, inspired by Jer Thorp’s.   
When we get to the end of the section, we’ll leave implementing some of Jer’s additional 
advanced features as an exercise.  

Our rockets will have only one thruster, and this thruster will be able to fire in any direction with 
any strength in every single frame of animation.  This isn’t particularly realistic, but it will make 
building out the framework a little easier. (We can always make the rocket and its thrusters more 
advanced and realistic later.)   

Let’s start by taking our basic Mover class from Chapter 2 examples and renaming it Rocket.

class Rocket {

  PVector location;! ! $$ A Rocket has three vectors: location, velocity, acceleration
  PVector velocity;
  PVector acceleration;

  void applyForce(PVector f) {! $$ Accumulating forces into acceleration (Newton’s 2nd law)
    acceleration.add(f);
  }

  void update() {!! ! ! $$ Our simple physics model (Euler integration)
    velocity.add(acceleration);! $$ velocity changes according to acceleration
    location.add(velocity);! ! $$ location changes according to velocity
    acceleration.mult(0);
  }
}
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Using the above framework, we can implement our smart rocket by saying that for every frame 
of animation, we call applyForce() with a new force.   The “thruster” applies a single force to the 
rocket each time through draw().

Considering this example, let’s go through the three keys to programming our own custom 
genetic algorithm example as outlined in the previous section.

Key #1: Population size and mutation rate

We can actually hold off on this first key for the moment.  Our strategy will be to pick some 
reasonable numbers (a population of 100 rockets, mutation rate of 1%) and build out the system, 
playing with these numbers once we have our sketch up and running.

Key #2: The fitness function

We stated the goal of a rocket reaching a target.   In other words, the closer a rocket gets to the 
target, the higher the fitness.    Fitness is inversely proportional to distance: the smaller the 
distance, the greater the fitness; the greater the distance, the smaller the fitness.

Let’s assume we have a PVector target.

  void fitness() {
    float d = PVector.dist(location,target);! $$ How close did we get?   
    fitness = 1/d;! ! ! ! ! $$ Fitness is inversely proportional to distance
  }

This is perhaps the simplest fitness function we could write.  By using one divided by distance, 
large distances become small numbers and small distances become large.

distance    1 / distance
300	 	 	 	 	 1 / 300 = 0.0033
100	 	 	 	 	 1 / 100 = 0.01
5	 	 	 	 	 1 / 5   = 0.2
1	 	 	 	 	 1 / 1   = 1.0
0.1	 	 	 	 	 1 / 0.1 = 10

And if we wanted to use our exponential trick from the previous section, we could use one 
divided by distance squared.

distance    1 / distance   (1 / distance)2

300	 	 	 	 	 1 / 400 = 0.0025	 	 0.00000625
100	 	 	 	 	 1 / 100 = 0.01	 	 0.0001
5	 	 	 	 	 1 / 5   = 0.2		 	 0.04	
1	 	 	 	 	 1 / 1   = 1.0		 	 1.0
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0.1	 	 	 	 	 1 / 0.1 = 10	 	 	 100

There are several additional improvements we’ll want to make to the fitness function, but this 
simple one is a good start.

void fitness() {
  float d = PVector.dist(location,target);!   
  fitness = pow(1/d,2);!! ! $$ Squaring 1 divided by distance
}

Key #3: Genotype and Phenotype

We stated that each Rocket has a thruster that fires in a variable direction with a variable 
magnitude in each frame.   And so we need a PVector for each frame of animation.  Our 
genotype, the data required to encode the Rocket’s behavior, is therefore an array of PVectors.

class DNA {
  PVector[] genes;

The happy news here is that we don’t really have to do anything else to the DNA class.  All of 
the functionality we developed for the typing monkey (crossover and mutation) applies here.  
The one difference we do have to consider is how we initialize the array of genes.  With the 
typing monkey, we had an array of characters and picked a random character for each element of 
the array.   Here we’ll do exactly the same thing and initialize a DNA sequence as an array of 
random PVectors.   Now, your instinct in creating a random PVector might be as follows:

PVector v = new PVector(random(-1,1),random(-1,1));

This is perfectly fine and will likely do the trick.  However, if we were to draw every single 
possible vector we might pick, we would get the following:

It’s a square.  In this case, it probably doesn’t matter, but there is a slight bias to diagonals here 
given that a PVector from the center of a square to a corner is longer than a purely vertical or 
horizontal one.

What would be better here is to pick a random angle and make a PVector of length one from that 
angle, giving us a circle.
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This is easy to do with polar to Cartesian coordinates (see p. XXX, chapter 3)

for (int i = 0; i < genes.length; i++) {
  float angle = random(TWO_PI);
  genes[i] = new PVector(cos(angle), sin(angle));! $$ Making a PVector from a random angle
}

A PVector of length one is actually going to be quite a large force.  Remember, forces are applied 
to acceleration, which accumulates into velocity thirty times per second.   So, for this example, 
we can also add one more variable to the DNA class: a maximum force that scales all the 
PVectors.    This will control the thruster power.

class DNA {

  PVector[] genes;! ! $$ The genetic sequence is an array of PVectors

  float maxforce = 0.1;!! $$ How strong can the thrusters be?

  DNA() {
    genes = new PVector[lifetime];!! ! $$ We need a PVector for every frame of the
    ! ! ! ! ! ! ! ! rocket’s life!
    for (int i = 0; i < genes.length; i++) {
      float angle = random(TWO_PI);
      genes[i] = new PVector(cos(angle), sin(angle));
      genes[i].mult(random(0, maxforce));! ! $$ Scaling the PVectors randomly, but no
    }!! ! ! ! ! ! ! ! stronger than maximum force
  }

Notice also that we created an array of PVectors with length “lifetime.”   We need a PVector for 
each frame of the Rocket’s life, and the above assumes the existence of a global variable 
“lifetime” that stores the total number of frames in each generation’s life cycle.

The expression of this array of PVectors, the phenotype, is a Rocket class modeled on our basic 
PVector and forces examples from Chapter 2.   All we need to do is add an instance of a DNA 
object to the class.  The fitness variable will also live here.   Only the Rocket object knows how 
to compute its distance to the target, and therefore the fitness function will live here in the 
phenotype as well.

class Rocket {

  DNA dna;! ! ! $$ A Rocket has DNA
  float fitness;! ! $$ A Rocket has fitness

  PVector location;
  PVector velocity;
  PVector acceleration;

What are we using the DNA for?  We are marching through the array of PVectors and applying 
them one at a time as a force to the rocket.  To do this, we’ll also have to add an integer that acts 
as a counter to walk through the array.

  int geneCounter = 0;
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  void run() {
    applyForce(dna.genes[geneCounter]);! $$ Apply a force from the genes array
    geneCounter++;! $$ Go to the next force in the genes array 
    update();! ! $$ Update the Rocket’s physics! !
  }

Putting it all together

We now have our DNA class (genotype) and our Rocket class.  The last piece of the puzzle is a 
Population class, which manages an array of Rockets and has the functionality for selection and 
reproduction.   Again, the happy news here is that we barely have to change anything from the 
Shakespeare monkey example.  The process for building a mating pool and generating a new 
array of child Rockets is exactly the same as what we did with our population of Strings.

class Population {

  float mutationRate; !! ! $$ Population has variables to keep track of mutation rate,        
  Rocket[] population;        ! current population array, mating pool, and number of
  ArrayList<Rocket> matingPool;   !generations
  int generations;            

  void fitness() {}! ! ! $$ These functions haven’t changed so no need to go through
  void selection() {}! ! ! the code again
  void reproduction() {}

There is one fairly significant change, however.   With typing monkeys, a random phrase was 
evaluated as soon as it was created.  The String of characters had no lifespan; it existed purely for 
the purpose of calculating its fitness and then we moved on.   The rockets, however, we need to 
allow to exist for a period of time.  They need to live for a while in order to make their attempt to 
reach the target.   Therefore, we need to add one more function to the Population class that runs 
the physics simulation itself.   This is identical to what we did in the run() function of a particle 
system—update all the particle locations and draw them.

  void live () {
    for (int i = 0; i < population.length; i++) {
      population[i].run();! ! $$ The run function takes care of the forces,
    }!! ! ! ! ! updating the Rocket’s location, and displaying it
  }

Finally, we’re ready for setup() and draw().   Here in the main tab, our primary responsibility is 
implement the steps of the genetic algorithm in the appropriate order by calling the functions in 
the Population class.    

    population.fitness();
    population.selection();
    population.reproduction();

However, unlike the Shakespeare example, we don’t want to do this every frame.  Rather, our 
steps work as follows:
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1. Create a population of Rockets
2. Let the Rockets live for N frames
3. Evolve the next generation

a. Selection
b. Reproduction

4. Return to step #2

Example 9.x: Simple Smart Rockets
int lifetime; ! $$ How many frames does! ! !
! ! ! a generation live for?

int lifeCounter;! $$ What frame are we on?

Population population; ! $$ The population 

void setup() {
  size(640, 480);
  lifetime = 500;
  lifeCounter = 0;
 
  float mutationRate = 0.01;
  population = new Population(mutationRate, 50);
}! ! ! ! $$ Step 1. Create the population.
! ! ! ! Here is where we could play with the mutation rate and population size 

void draw() {
  background(255);
! ! ! ! ! ! ! $$ The revised genetic algorithm
  if (lifeCounter < lifetime) {! ! !
    population.live();!! ! ! $$ Step 2. The rockets live their life until lifeCounter 
    lifeCounter++;! ! ! ! reaches lifetime
  } else {
    lifeCounter = 0;! ! ! ! $$ When lifetime is reached, reset lifeCounter
    population.fitness();! ! ! and evolve the next generation (Steps 3 and 4, selection
    population.selection();! ! ! and reproduction)
    population.reproduction();! !
  }
}

The above example works, but it isn’t particularly interesting.  After all, the rockets simply 
evolve to having DNA with a bunch of vectors that point straight upwards.   In the next section, 
we’re going to talk through two suggested improvements for the example and provide code 
snippets that implement these improvements.

9.10 Smarter Rockets

Improvement #1: Obstacles
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Adding obstacles that the rockets must avoid will make the system 
more complex and demonstrate the power of the evolutionary 
algorithm more effectively.  We can make rectangular, stationary 
obstacles fairly easily by creating a class that stores a location and 
dimensions.

class Obstacle {! !

  PVector location;! $$ An obstacle is a location (top left corner of rectangle) with a
  float w,h;! ! width and height

  
We can also write a contains() function that returns true or false to determine if a Rocket has hit 
the obstacle. 

  boolean contains(PVector v) {
    if (v.x > location.x && v.x < location.x + w && v.y > location.y && v.y < location.y + h) {
      return true;
    } else {
      return false;
    }
  }

Assuming we make an ArrayList of Obstacles, we can then have each Rocket check to see if it 
has collided with an Obstacle and set a Boolean flag to be true if it does, adding a function to the 
Rocket class.

  void obstacles() {! ! ! ! $$ This new function lives in the Rocket
    for (Obstacle obs : obstacles) {! class and checks if a Rocket has hit an
      if (obs.contains(location)) {! obstacle
        stopped = true;
      }
    }
  }

If the Rocket hits an obstacle, we choose to stop it from updating its location.

  void run() {
    if (!stopped) {! ! ! ! ! $$ Only run the Rocket if it doesn’t hit
      applyForce(dna.genes[geneCounter]);! an obstacle.
      geneCounter = (geneCounter + 1) % dna.genes.length;
      update();
      obstacles();
    }
  } 

And we also have an opportunity to adjust the Rocket’s fitness.  We consider it to be pretty 
terrible if the Rocket hits an obstacle, and so and its fitness should be greatly reduced.

  void fitness() {
    float d = dist(location.x, location.y, target.location.x, target.location.y);
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    fitness = pow(1/d, 2);
    if (stopped) fitness *= 0.1;! $$ Lose 90% of your fitness if you hit an obstacle
  }

Exercise: Create a more complex obstacle course.   As you make it more difficult for the Rockets 
to reach the target, do you need to improve other aspects of the GA—for example, the fitness 
function?

Improvement #2: Evolve reaching the target faster

If you look closely at our first Smart Rockets example, you’ll notice that the rockets are not 
rewarded for getting to the target faster.  The only variable in their fitness calculation is the 
distance to the target at the end of the generation’s life.  In fact, in the event that the rockets get 
very close to the target but overshoot it and fly way past it, they may actually be penalized for 
getting to the target faster.   Slow and steady wins the race in this case.

We could improve the algorithm to optimize for speed a number of ways.  First, instead of using 
the distance to the target at the end of the generation, we could use the distance that is the closest 
to the target at any point during the rocket’s life.  We would call this the Rocket’s “record” 
distance.  (All of the code snippets in this section live inside the Rocket class.)
 
  void checkTarget() {
    float d = dist(location.x, location.y, target.location.x, target.location.y);
    if (d < recordDist) recordDist = d;! ! $$ Every frame, we check its distance and
! ! ! ! ! ! ! ! see if it’s closer than the “record” distance.
! ! ! ! ! ! ! ! If it is, we have a new record.

In addition, a Rocket should be rewarded according to how quickly it reaches the target.  The 
faster it reaches the target, the higher the fitness.   The slower, the lower.  To accomplish this, we 
can increment a counter every cycle of the Rocket’s life until it reaches the Rocket.  This counter 
is then the amount of time it takes to reach the target.  

    if (target.contains(location)) {! ! $$ If the object reaches the target, set a 
      hitTarget = true;!! ! ! ! Boolean flag to true
    } else if (!hitTarget) {!! !
      finishTime++;! ! ! ! ! $$ As long as we haven’t yet reached the target,
    }!! ! ! ! ! ! ! keep incrementing the counter.
}

Fitness is also inversely proportional to finishTime, and so we can improve our fitness function 
as follows:

  void fitness() {

    fitness = (1/(finishTime*recordDist));! $$ Finish time and record distance!
    fitness = pow(fitness, 2);! ! ! $$ Make it exponential

    if (stopped) fitness *= 0.1; 
    if (hitTarget) fitness *= 2; ! $$ You are rewarded for reaching the target
  }
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These improvements can both be incorporated into the code of example 9.x: Smart Rockets.

Exercise: Implement the rocket firing pattern of Jer Thorp’s Smart Rockets.  Each Rocket only 
gets five thrusters (of any direction and strength) that follow a firing sequence (of arbitrary 
length).   Jer’s simulation also gives the Rockets a finite amount of fuel.  To see Jer’s example, 
visit: http://www.blprnt.com/smartrockets/

Exercise: Visualize the rockets differently.  Can you draw a line for the shortest path to the 
target?  Can you add particle systems that act as smoke in the direction of the rocket thrusters?  

Exercise: Another way to achieve a similar result is to evolve a flow field.  Can you make the 
genotype of a Rocket a flow field of PVectors?   

Exercise: One of the more famous implementations of genetic algorithms in computer graphics is 
Karl Sims’ s“Evolved Virtual Creatures.”   In Sims’ work, a population of digital creatures (in a 
simulated physics environment) are evaluated for their ability to perform tasks, such as 
swimming, running, jumping, following, and competing for a green cube.  

One of the innovations in Sims’ s work is a node-based genotype.  In other words, the creature’s 
DNA is not a linear list of PVectors or numbers, but a map of nodes.  (For an example of this, 
take a look at toxiclibs‘ Force Directed Graph example, p. XXX).   The phenotype is the 
creature’s design itself, a network of limbs connected with muscles.    
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or other computer programs can be useful in expanding the set of
possible results beyond a predefined genetic space of fixed dimen-
sions. Genetic languages such as these allow new parameters and
new dimensions to be added to the genetic space as an evolution
proceeds, and therefore define rather a hyperspace of possible
results. This approach has been used to genetically program solu-
tions to a variety of problems [1,9], as well as to explore procedur-
ally generated images and dynamical systems [18,19].

In the spirit of unbounded genetic languages, directed graphs
are presented here as an appropriate basis for a grammar that can
be used to describe both the morphology and nervous systems of
virtual creatures. New features and functions can be added to crea-
tures, or existing ones removed, so the levels of complexity can
also evolve.

The next two sections explain how virtual creatures can be rep-
resented by directed graphs. The system used for physical simula-
tion is summarized in section 4, and section 5 describes how
specific behaviors can be selected. Section 6 explains how evolu-
tions are performed with directed graph genotypes, and finally a
range of resulting creatures is shown.

2  Creature Morphology
In this work, the phenotype embodiment of a virtual creature is a
hierarchy of articulated three-dimensional rigid parts. The genetic
representation of this morphology is a directed graph of nodes and
connections. Each graph contains the developmental instructions
for growing a creature, and provides a way of reusing instructions
to make similar or recursive components within the creature. A
phenotype hierarchy of parts is made from a graph by starting at a

(segment)

(leg
segment)

(body
segment)

(head)

(body)
(limb
segment)

Genotype: directed graph. Phenotype: hierarchy of 3D parts.

Figure 1: Designed examples of genotype graphs and correspond-
ing creature morphologies.

defined root-node and synthesizing parts from the node informa-
tion while tracing through the connections of the graph. The graph
can be recurrent. Nodes can connect to themselves or in cycles to
form recursive or fractal like structures. They can also connect to
the same child multiple times to make duplicate instances of the
same appendage.

Each node in the graph contains information describing a rigid
part. The dimensions determine the physical shape of the part. A
joint-type determines the constraints on the relative motion
between this part and its parent by defining the number of degrees
of freedom of the joint and the movement allowed for each degree
of freedom. The different joint-types allowed are: rigid, revolute,
twist, universal, bend-twist, twist-bend, or spherical. Joint-limits
determine the point beyond which restoring spring forces will be
exerted for each degree of freedom. A recursive-limit parameter
determines how many times this node should generate a phenotype
part when in a recursive cycle. A set of local neurons is also
included in each node, and will be explained further in the next
section. Finally, a node contains a set of connections to other
nodes.

Each connection also contains information. The placement of a
child part relative to its parent is decomposed into position, orien-
tation, scale, and reflection, so each can be mutated independently.
The position of attachment is constrained to be on the surface of
the parent part. Reflections cause negative scaling, and allow simi-
lar but symmetrical sub-trees to be described. A terminal-only flag
can cause a connection to be applied only when the recursive limit
is reached, and permits tail or hand-like components to occur at the
end of chains or repeating units.

Figure 1 shows some simple hand-designed graph topologies
and resulting phenotype morphologies. Note that the parameters in
the nodes and connections such as recursive-limit are not shown
for the genotype even though they affect the morphology of the
phenotype. The nodes are anthropomorphically labeled as “body,”
“leg,” etc. but the genetic descriptions actually have no concept of
specific categories of functional components.

3  Creature Control
A virtual “brain” determines the behavior of a creature. The brain
is a dynamical system that accepts input sensor values and pro-
vides output effector values. The output values are applied as
forces or torques at the degrees of freedom of the body’s joints.
This cycle of effects is shown in Figure 2.

Sensor, effector, and internal neuron signals are represented
here by continuously variable scalars that may be positive or nega-
tive. Allowing negative values permits the implementation of sin-
gle effectors that can both push and pull. Although this may not be
biologically realistic, it simplifies the more natural development of
muscle pairs.

Figure 2: The cycle of effects between brain, body and world.

Physical simulationControl system

Body

3D World

Brain

Effectors

Sensors

[Should I redraw my own figure demonstration?  Can I get permission to use this figure from 
Sims’ paper?]

Using toxiclibs or box2d as the physics model, can you create a simplified 2D version of Sims’ s 
creatures?   For a lengthier description of Sims’ s techniques, I suggest you watch the National 
Geographic-style video and read Sims’ s paper here: http://www.karlsims.com/evolved-virtual-
creatures.html.   In addition, you can find a similar example that uses box2d to evolve a “car” 
online at: http://boxcar2d.com/.

9.11 Interactive Selection

In addition to Evolved Virtual Creatures, Sims is also well-known for his museum installation 
Galapagos.  Originally installed in the Intercommunication Center in Tokyo in 1997, the 
installation consists of twelve monitors displaying computer-generated images.  These images 
evolve over time, following the genetic algorithm steps of selection and reproduction.  The 
innovation here is not the use of the genetic algorithm itself, but rather the strategy behind the 
fitness function.    In front of each monitor is a sensor on the floor that can detect the presence of 
a user viewing the screen.  The fitness of an image is tied to the length of time that viewers look 
at the image.  This is known as interactive selection, a genetic algorithm with fitness values 
assigned by users.
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Think of all the rating systems you’ve ever used.  Could you evolve the perfect movie by scoring 
all films according to your Netflix ratings?  The perfect singer according to American Idol 
voting?  

To illustrate this technique, we’re going to build a population of simple faces.  Each face will 
have a set of properties: head size, head color, eye location, eye size, mouth color, mouth 
location, mouth width, and mouth height.

The face’s DNA (genotype) is an array of floating point numbers between zero and one, with a 
single value for each property.

class DNA {

  float[] genes;
  int len = 20;   $$ We need 20 numbers to draw the face
  
  DNA() {
    genes = new float[len];
    for (int i = 0; i < genes.length; i++) {
      genes[i] = random(0,1);!! $$ Each gene is a random float between 0 and 1
    }
  }

The phenotype is a Face class that includes an instance of a DNA object.

class Face {

  DNA dna;         
  float fitness;

When it comes time to draw the Face on screen, we can use Processing’s map() function to 
convert any gene value to the appropriate range for pixel dimensions or color values. (In this 
case,  we are also using colorMode() to set the RGB ranges between zero and one.)

  void display() {
    float r          = map(dna.genes[0],0,1,0,70);! ! ! ! ! $$ Using map() to
    color c          = color(dna.genes[1],dna.genes[2],dna.genes[3]);!! convert the genes
    float eye_y      = map(dna.genes[4],0,1,0,5);! ! ! ! ! to a range for drawing
    float eye_x      = map(dna.genes[5],0,1,0,10);! ! ! ! ! the face.
    float eye_size   = map(dna.genes[5],0,1,0,10);
    color eyecolor   = color(dna.genes[4],dna.genes[5],dna.genes[6]);
    color mouthColor = color(dna.genes[7],dna.genes[8],dna.genes[9]);
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    float mouth_y    = map(dna.genes[5],0,1,0,25);
    float mouth_x    = map(dna.genes[5],0,1,-25,25);
    float mouthw     = map(dna.genes[5],0,1,0,50);
    float mouthh     = map(dna.genes[5],0,1,0,10);

So far, we’re not really doing anything new.  This is what we’ve done in every GA example so 
far.   What’s new is that we are not going to write a fitness() function in which the score is 
computed based on a math formula.   Instead, we are going to ask the user to assign the fitness.  

Now, how best to ask a user to assign fitness is really more of an interaction and GUI design 
problem, and it isn’t really within the scope of this book.    So we’re not going to launch into an 
elaborate discussion of how to program sliders or build your own hardware dials or build a web 
app for users to submit online scores.  How you choose to acquire fitness scores is really up to 
you and the particular application you are developing.

For this simple demonstration, we’ll increase fitness whenever a user rolls the mouse over a face.  
The next generation is created when the user presses a button with an “evolve next generation” 
label.

Let’s look at how the steps of the Genetic Algorithm are applied in the main tab, noting how 
fitness is assigned according to mouse interaction and the next generation is created on a button 
press.  The rest of the code for checking mouse locations, button interactions, etc. can be found 
in the accompanying example code.

Example 9.x: Interactive Selection
Population population;
Button button;

void setup() {
  size(780,200);
  float mutationRate = 0.05;  
  population = new Population(mutationRate,10);
  button = new Button(15,150,160,20, "evolve new generation");!
}

void draw() {

  population.display();
  population.rollover(mouseX,mouseY);! $$ The mouse location is passed to the population, which
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! ! ! ! ! ! ! will score each Face according to rollover time
  button.display();
}

void mousePressed() {
  if (button.clicked(mouseX,mouseY)) {! $$ When a button is pressed, the new generation is
    population.selection();! ! ! created via selection and reproduction
    population.reproduction();
  }
}

This example, it should be noted, is really just a demonstration of the idea of interactive selection 
and does not achieve a particularly meaningful result.  For one, we didn’t take much care in the 
visual design of the faces; they are just a few simple shapes with sizes and colors.  Sims, for 
example, used more elaborate mathematical functions as his images’ genotype.  You might also 
consider a vector-based approach, in which a design’s genotype is a set of points and/or paths.

The more significant problem here, however, is one of time.  In the natural world, evolution 
occurs over millions of years.  In the computer simulation world of our previous examples, we 
were able to evolve behaviors relatively quickly because we were producing new generations 
algorithmically.  In the Shakespeare monkey example, a new generation was born in each frame 
of animation (approximately sixty per second).   Since the fitness values were computed 
according to a math formula, we could also have arbitrarily large populations that increased the 
speed of evolution.  In the case of interactive selection, however, we have to sit and wait for a 
user to rate each and every member of the population before we can get to the next generation.   
A large population would be unreasonably tedious to deal with—not to mention, how many 
generations could you stand to sit through?

There are certainly clever solutions around this.  Sims’s Galapagos exhibit concealed the rating 
process from the users, as it occurred through the normal behavior of looking at artwork in a 
museum setting.  Building a web application that would allow many users to rate a population in 
a distributed fashion is also a good strategy for achieving many ratings for large populations 
quickly.

In the end, the key to a successful interactive selection system boils down to the same keys we 
previously established.   What is the genotype and phenotype?  And how do you calculate fitness, 
which in this case we can revise to say: “What is your strategy for assigning fitness according to 
user interaction?”

Exercise: Build your own interactive selection project.   In addition to a visual design, consider 
evolving sounds—for example, a short sequence of tones.  Can you devise a strategy, such as a 
web application or physical sensor system, to acquire ratings from many users over time?

9.12  Ecosystem Simulation
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You may have noticed something a bit odd about every single evolutionary system we’ve built so 
far in this chapter.   After all, in the real world, a population of babies isn’t born all at the same 
time.  Those babies don’t then grow up and all reproduce at exactly the same time, then instantly 
dying to leave the population size perfectly stable.   That would be ridiculous.  Not to mention 
the fact that there is certainly no one running around the forest with a calculator crunching 
numbers and assigning fitness values to all the creatures. 

In the real world, we don’t really have “survival of the fittest”; we have “survival of the 
survivors.”  Things that happen to live longer, for whatever reason, have a greater chance of 
reproducing.   Babies are born, they live for a while, maybe they themselves have a baby, maybe 
they don’t, and then they die. 

You won’t necessarily find simulations of “real-world” evolution in artificial intelligence 
textbooks.  Genetic algorithms are generally used in the more formal manner we outlined in this 
chapter.   However, since we are reading this book to develop simulations of natural systems, it’s 
worth looking at some ways we might extend the genetic algorithm into what we’ll call an 
“Ecosystem simulation.”

Let’s begin by developing a very simple scenario.  We’ll create a creature called a Bloop, a circle 
that moves about the screen according to Perlin noise.  The creature will have a radius and a 
maximum speed.  The bigger it is, the slower it moves; the smaller, the faster.

class Bloop {
  PVector location;! ! $$ A location  
  
  float r;! ! ! ! $$ Variables for size and speed
  float maxspeed;

  float xoff, yoff;      ! $$ Some variables for Perlin noise calculations

  void update() {
    float vx = map(noise(xoff),0,1,-maxspeed,maxspeed);
    float vy = map(noise(yoff),0,1,-maxspeed,maxspeed);
    PVector velocity = new PVector(vx,vy);! $$ A little Perlin noise algorithm
    xoff += 0.01;!! ! ! ! ! to calculate a velocity
    yoff += 0.01;

    location.add(velocity);! ! ! ! $$ The Bloop moves
  }

  void display() {! ! ! ! ! $$ A bloop is a circle
    ellipse(location.x, location.y, r, r);
  }
}

The above is missing a few details (such as initializing the variables in the Constructor), but you 
get the idea.  

For this example, we’ll want to store the population of Bloops in an ArrayList, rather than an 
array, as we expect the population to grow and shrink according to how often Bloops die or are 
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born.  We can store this ArrayList in a class called “World,” which will manage all the elements 
of the Bloops’ world.

class World {

  ArrayList<Bloop> bloops; ! ! $$ A list of Bloops

  World(int num) {
    bloops = new ArrayList<Bloop>();

    for (int i = 0; i < num; i++) {
      bloops.add(new Bloop());! ! $$ Making an initial population of Bloops
    }
  }

So far, what we have is just a rehashing of our ParticleSystem example from Chapter 5.  We have 
an entity (Bloop) that moves around the window and a class (World) that manages a variable 
quantity of these entities.   To turn this into a system that evolves, we need to add two additional 
features to our world:

•  Bloops die.
• Bloops are born.

Bloops dying is our replacement for a fitness function, the process of “selection.” If a Bloop dies, 
it cannot be selected to be a parent, because it simply no longer exists!   One way we can build a 
mechanism to ensure Bloop deaths into our world is by adding a health variable to the Bloop 
class.

class Bloop {
  float health = 100;! $$ A Bloop is born with 100 health points.

In each frame of animation, a Bloop loses some health.

  void update() {
    // All that other stuff for movement

    health -= 1;! $$ Death is always looming!
  }

If the health drops below zero, the Bloop dies.

  boolean dead() {! ! $$ We add a function to the Bloop class to test
    if (health < 0.0) {!! if the Bloop is alive or dead.
      return true;
    } else {
      return false;
    }
  }

This is a good first step, but we haven’t really achieved anything.  After all, if all Bloops start 
with 100 health points and lose 1 point per frame, then all Bloops will live for the exact same 
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amount of time and die together.   If every single Bloop lives the same amount of time, they all 
have equal chances of reproducing and therefore nothing will evolve.

There are myriad ways we could achieve variable lifespans with a more sophisticated world.  For 
example, we could introduce predators that eat Bloops.  Perhaps the faster Bloops would be able 
to escape being eaten more easily, and therefore our world would evolve to have faster and faster 
Bloops.  Another option would be to introduce food.  When a Bloop eats food, it increases its 
health points, and therefore extends its life.  

Let’s assume we have an ArrayList of PVector locations for food, named “food.”  We could test 
each Bloop’s proximity to each food location.  If the Bloop is close enough, it eats the food 
(which is then removed from the world) and increases its health.

  void eat() {
    for (int i = food.size()-1; i >= 0; i--) {
      PVector foodLocation = food.get(i);
      float d = PVector.dist(location, foodLocation);
      if (d < r/2) {! ! $$ Is the Bloop close to the food?

        health += 100; !! $$ If so, it gets 100 more health points
        food.remove(i);!! $$ The food is no longer available for other Bloops
      }
    }
  }

Now we have a scenario in which Bloops that eat more food live longer and have a greater 
likelihood of reproducing.  Therefore, we expect that our system would evolve Bloops with an 
optimal ability to find and eat food.

Now that we have built our world, it’s time to add the components required for evolution.  First 
we should establish our genotype and phenotype.

Genotype and Phenotype

The ability for a Bloop to find food is tied to two variables—size and speed.  Bigger Bloops will 
find food more easily simply because their size will allow them to intersect with food locations 
more often. And faster Bloops will find more food because they can cover ground more easily.
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[THIS ILLUSTRATION IS UNCLEAR]

Since size and speed are inversely related (large Bloops are slow, small Bloops are fast), we only 
need a genotype with a single number. 

class DNA {

  float[] genes;! ! ! !
  
  DNA() {
    genes = new float[1];! ! ! ! $$ It may seem absurd to use an array
    for (int i = 0; i < genes.length; i++) {! when all we have is a single value
      genes[i] = random(0,1);!! ! ! but we stick with an array in case
    }!! ! ! ! ! ! ! we make the Bloops more sophisticated later
  }

The phenotype then is the Bloop itself, whose size and speed is assigned by adding an instance of 
a DNA object to the Bloop class.

class Bloop {
  PVector location;
  float health;
  
  DNA dna;! ! ! ! $$ A Bloop now has DNA
  float r;
  float maxspeed;

  Bloop(DNA dna_) {
    location = new PVector(width/2,height/2);
    health = 200;
    dna = dna_;

    maxspeed = map(dna.genes[0], 0, 1, 15, 0);!! $$ maxspeed and r (radius) are mapped
    r        = map(dna.genes[0], 0, 1, 0, 50);!! to values according to the DNA
  }

Notice that with maxspeed, the range is mapped to between fifteen and zero, meaning a Bloop 
with a gene value of zero moves at a speed of fifteen and a Bloop with a gene value of one 
doesn’t move at all (speed of zero).

Selection and Reproduction

Now that we have the genotype and phenotype, we need to move on to devising a means for 
Bloops to be selected as parents.  We stated before that the longer a Bloop lives, the more 
chances it has to reproduce.    The length of life is the Bloop’s fitness.  

One option would be to say that whenever two Bloops come into contact with each other, they 
make a new Bloop.  The longer a Bloop lives, the more likely it is to come into contact with 
another Bloop.  (This would also affect the evolutionary outcome given that, in addition to eating 
food, their ability to find other Bloops is a factor in increasing the likelihood of having a baby.)   
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A simpler option would be to have “asexual” reproduction, meaning a Bloop does not require a 
partner.  It can, at any moment, make a clone of itself, another Bloop with the same genetic 
makeup.   If we state this selection algorithm as follows:

At any given moment, a Bloop has a 1% chance of reproducing.

then the longer a Bloop lives, the more likely it will make at least one (if not more) children.  
This is equivalent to saying the more times you play the lottery, the greater the likelihood you’ll 
win (though I’m sorry to say your chances are still essentially zero).

To implement this selection algorithm, we can write a function in the Bloop class that picks a 
random number every frame. If the number is less than 0.01 (1%), a new Bloop is born.

  Bloop reproduce() {! ! ! $$ This function will return a new Bloop, the child

    if (random(1) < 0.01) {! ! $$ A 1% chance of executing the code in this!
      // Make the Bloop baby!! conditional, i.e. a 1% chance of reproducing
    } 
  }

How does a Bloop reproduce?   In our previous examples, the reproduction process involved 
calling the crossover() function in the DNA class and making a new object from the newly made 
DNA.  Here, since we are making a child from a single parent, we’ll call a function called copy() 
instead.

  Bloop reproduce() {
    if (random(1) < 0.0005) {
      DNA childDNA = dna.copy();! ! ! $$ Make a copy of the DNA
      childDNA.mutate(0.01);!! ! ! $$ 1% mutation rate
      return new Bloop(location, childDNA);! $$ Make a new Bloop at the same location
! ! ! ! ! ! ! ! with the new DNA
    } else {! ! ! ! ! !
      return null;! ! ! ! ! $$ If the Bloop does not reproduce, return null
    }
  }

Note also that we’ve reduced the probability of reproducing from 1% to 0.05%.  This value 
makes quite a difference; with a high probability of reproducing, the system will quickly tend 
towards overpopulation.   Too low, everything will likely quickly die out.

Writing the copy() function into the DNA class is easy since Processing includes a function 
arraycopy() that copies the contents of one array into another.  

class DNA {

  DNA copy() {! ! $$ This copy() function replaces crossover() for this example

    float[] newgenes = new float[genes.length];! $$ Make a new array the same length
    arraycopy(genes,newgenes);! ! ! ! and copy its contents
    return new DNA(newgenes);
  }
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}

Now that we have all the pieces in place for selection and reproduction, we can finalize the 
World class that manages the list of all Bloop objects (as well as a Food object, which itself is a 
list of PVector locations for food).

Before you run the example, take a moment to guess what size and speed of Bloops the system 
will evolve towards.  We’ll discuss following the code. 

World world;

void setup() {! ! ! $$ setup() and draw() do nothing more than create
  size(600,400);! ! ! and run a World object
  world = new World(20);
}

void draw() {
  background(255);
  world.run();
}

class World {

  ArrayList<Bloop> bloops;! ! $$ The World object keeps track of the population 
  Food food;! ! ! ! Bloops as well as the food

  World(int num) {
    food = new Food(num);
    bloops = new ArrayList<Bloop>();

    for (int i = 0; i < num; i++) {! ! $$ Creating the population
      PVector location = new PVector(random(width),random(height));
      DNA dna = new DNA();
      bloops.add(new Bloop(l,dna));
    }
  }

  void run() {
    food.run();
    
    for (int i = bloops.size()-1; i >= 0; i--) {
      Bloop b = bloops.get(i);! ! ! $$ The Bloops live their life
      b.run();
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      b.eat(food);
      if (b.dead()) {! ! ! ! ! $$ If one dies, it is removed from
        bloops.remove(i);! ! ! ! the population and food is added at its
        food.add(b.location);!! ! ! location.
      }

      Bloop child = b.reproduce();!! ! $$ Here is where each living Bloop has a 
      if (child != null) bloops.add(child);! chance to reproduce.  As long as a child
    }!! ! ! ! ! ! ! is made (i.e. not null) it is added to
  }! ! ! ! ! ! ! ! the population.
}

If you guessed medium-sized Bloops with medium speed, you were right.   With the design of 
this system, Bloops that are large are simply too slow to find food.  And Bloops that are fast are 
too small to find food.   The ones that are able to live the longest tend to be in the middle, large 
enough and fast enough (but not too large or too fast) to find food.  There are also some 
anomalies.     For example, if it so happens that a bunch of large Bloops end up in the same 
location (and barely move because they are so large) they may all die out suddenly, leaving a lot 
of food for one large Bloop who happens to be there to eat and allowing a mini-population of 
large Bloops to sustain themselves for a period of time in one location.

This example is rather simplistic given its single gene and asexual reproduction.   Below are 
some exercises with suggestions for making a more elaborate ecosystem simulation.

Exercise: Add a population of predators to the Bloop world.   Biological evolution between 
predators and prey (or parasites and hosts) is often referred to as an “arms race,” in which the 
creatures continuously adapt and counter-adapt to each other.   Can you achieve this behavior in 
a system of multiple creatures?

Exercise: What happens if two Bloops are needed to make a child?  Try implementing an 
algorithm so that Bloops meet and mate when within a certain proximity.   Can you make Bloops 
with gender?

Exercise: Try using the weights of multiple steering forces as a creature’s DNA.   Can you create 
a scenario in which creatures evolve to cooperate with each other?

Exercise:  One of the greatest challenges in ecosystem simulations is achieving a nice balance.  
You will likely find that most of your attempts result in either mass overpopulation (followed by 
mass extinction) or simply mass extinction straight away.  What techniques can you employ to 
achieve balance?  Consider using the genetic algorithm itself to evolve optimal parameters for 
an ecosystem.
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Chapter 10.  Neural Networks

“You can't process me with a normal brain.”
! —Charlie Sheen

We’re at the end of our story.   This is the last “official” chapter of this book (though I envision 
additional supplemental material for the web site and perhaps other new chapters in the future.)    
We began with inanimate objects living in a world of forces and gave those objects desires and 
autonomy, the ability to take action according to a system of rules.  Next, we allowed those 
objects to live in a population and evolve over time.  Now, we ask, what is each object’s 
decision-making process?  How can it adjust its choices by learning over time?  Can a 
computational entity process its environment and generate a decision?

The human brain can be described as a biological neural network—an interconnected web of 
neurons transmitting elaborate patterns of electrical signals.   Dendrites receive input signals and, 
based on those inputs, fire an output signal via an axon.  Or something like that.  How the human 
brain actually works is an elaborate and complex mystery, one that we certainly are not equipped 
to tackle in rigorous detail at the moment.  

[A BETTER ILLUSTRATION OF BIOLOGICAL NEURAL NETWORK?]

Of course, the good news is that developing engaging animated systems with code does not 
required scientific rigor or accuracy, as we’ve learned throughout this book.   We can simply be 
inspired by the idea of brain function.

10.1  Artificial Neural Networks

Computer scientists have long been inspired by the human brain.   In 1943, Warren S. 
McCulloch, a neuroscientist, and Walter Pitts, a logician, developed the first conceptual model of 
an artificial neural network.  In their paper, "A logical calculus of the ideas imminent in nervous 
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activity,” they describe the concept of a neuron, a single cell living in a network of cells that 
receives inputs, processes those inputs, and generates an output.

Their work, and the work of many scientists and researchers that followed, was not meant to 
accurately describe how the biological brain works.  Rather, an artificial neural network (which 
we will now simply refer to as a “neural network”) was designed as a computational model based 
on the brain that can solve certain kinds of problems.

It’s probably pretty obvious to you that there are certain problems that are incredibly simple for a 
computer to solve, but difficult for you.  Take the square root of 964,324, for example.  A quick 
line of code produces the value 982, a number Processing computed in less than a millisecond.   
There are, on the other hand, problems that are incredibly simple for you or me to solve, but not 
so easy for a computer.   Show any toddler a picture of a kitten or puppy and they’ll be able to 
tell you very quickly which one is which.   Say hello and shake my hand one morning and you 
should be able to pick me out of a crowd of people the next day.  But need a machine to perform 
one of these tasks?  People have already spent careers researching and implementing complex 
solutions.

The most common application of neural networks in computing today is to perform one of these 
easy-for-a-human, difficult-for-a-machine” tasks, often referred to as pattern classification.   
Applications range from optical character recognition (turning printed or handwritten scans into 
digital text) to facial recognition.  We don’t have the time or need to use some of these more 
elaborate artificial intelligence algorithms here, but if you are interested in researching neural 
networks, I’d recommend the books Artificial Intelligence: A Modern Approach by Stuart J. 
Russell and Peter Norvig and AI for Game Developers by David M. Bourg and Glenn Seemann.

In this chapter, we’ll instead begin with a conceptual overview of the properties and features of 
neural networks and build the simplest example possible of one (a network that consists of a 
singular neuron).  Afterwards, we’ll examine strategies for building a “Brain” object that can be 
inserted into our Vehicle class and used to determine steering.   Finally, we’ll also look at 
techniques for visualizing and animating a network of neurons.

10.2 Neural Networks: Introduction and Application

A neural network is a “connectionist” computational system.   When we write a procedural 
program, it starts at the first line of code, executes it, and goes onto the next, following 
instructions in a linear fashion.   A true neural network does not follow a linear path.  Rather, 
information is processed collectively, in parallel throughout a network of nodes (the nodes, in 
this case, being neurons).
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Here we have yet another example of a complex system, much like the ones we examined in 
chapters six, seven, and eight.   The individual elements of the network, the neurons, are 
incredibly simple.  They read an input, process it, and generate an output.   A network of many 
neurons, however, can exhibit incredibly rich and intelligent behaviors.

One of the key elements of a neural network is its ability to learn.  A neural network is not just a 
complex system, but a complex adaptive system, meaning it can change its internal structure 
based on the information flowing through it.  Typically, this is achieved through the adjusting of 
weights.  In the diagram above, each line represents a connection between two neurons and 
indicates the pathway for the flow of information.    Each connection has a weight, a number that  
controls the signal between the two neurons.   If the network generates a “good” output (which 
we’ll define later), there is no need to adjust the weights. However, if the network generates a 
“poor” output—an error, so to speak—then the system adapts, altering the weights in order to 
improve subsequent results.

There are several strategies for learning, and we’ll examine two of them in this chapter.

• Supervised Learning—Essentially, a strategy that involves a teacher that is smarter than 
the network itself.  For example, let’s take the facial recognition example.  The teacher 
shows the network a bunch of faces, and the teacher already knows the name associated 
with each face.  The network makes its guesses, then the teacher provides the network with 
the answers.   The network can then compare its answers to the known “correct” ones and 
make adjustments according to its errors.  Our first neural network in the next section will 
follow this model.

• Unsupervised Learning—Required when there isn’t an example data set with known 
answers.    Imagine searching for a hidden pattern in a data set.   An example application of 
this is clustering, i.e. dividing a set of elements into groups according to some unknown 
pattern.   We won’t be looking at any examples of unsupervised learning in this chapter, as 
this strategy is less relevant for our examples.
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• Reinforcement Learning—A strategy built on observation.   Think of a little mouse 
running through a maze. If it turns left, it gets a piece of cheese; if it turns right, it receives 
a little shock. (Don’t worry, this is just a pretend mouse.)   Presumably, the mouse will 
learn over time to turn left.  Its neural network makes a decision with an outcome (turn left 
or right) and observes its environment (yum or ouch).   If the observation is negative, the 
network can adjust its weights in order to make a different decision the next time.    
Reinforcement learning is common in robotics.  At time t, the robot performs a task and 
observes the results.   Did it crash into a wall or fall off a table?  Or is it unharmed?  We’ll 
look at reinforcement learning in the context of our simulated steering vehicles.

This ability of a neural network to learn, to make adjustments to its structure over time, is what 
makes it so useful in the field of artificial intelligence.  Here are some standard uses of neural 
networks in software today.

• Pattern Classification—We’ve mentioned this several times already and its probably the 
most common application.   Examples are facial recognition, optical character recognition, 
etc.

• Time Series Prediction—Neural networks can be used to make predictions.  Will the stock 
rise or fall tomorrow?  Will it rain or be sunny?

• Signal Processing—Cochlear implants and hearing aids need to filter out unnecessary 
noise and amplify the important sounds.   Neural networks can be trained to process an 
audio signal and filter it appropriately.

• Control—You may have read about recent research advances in self-driving cars.   Neural 
networks are often used to manage steering decisions of physical vehicles (or simulated 
ones).

• Soft Sensors—A soft sensor refers to the process of analyzing a collection of many 
measurements.   A thermometer can tell you the temperature of the air, but what if you also 
knew the humidity, barometric pressure, dewpoint, air quality, air density, etc.?  Neural 
networks can be employed to process the input data from many individual sensors and 
evaluate them as a whole.

• Anomaly Detection—Because neural networks are so good at recognizing patterns, they 
can also be trained to generate an output when something occurs that doesn’t fit the pattern.  
Think of a neural network monitoring your daily routine over a long period of time.  After 
learning the patterns of your behavior, it could alert you when something is amiss.

This is by no means a comprehensive list of applications of neural networks.   But hopefully it 
gives you an overall sense of the features and possibilities.   The thing is, neural networks are 
complicated, and difficult.  They involve all sorts of fancy mathematics.   While this is all totally 
fascinating (and incredibly important to scientific research), a lot of the techniques are not very 
practical in the world of building interactive, animated Processing sketches.   Not to mention that 
in order to cover all this material, we would need another book—or more likely, a series of 
books.
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So instead, we’ll begin our last hurrah in the nature of code with the simplest of all neural 
networks to understand the how the overall concepts are applied in code, and look at some 
Processing sketches that generate visual results inspired by these concepts.  

10.3  The Perceptron

Invented in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt, a perceptron is the 
simplest neural network possible.   A computational model of a single neuron, a perceptron 
consists of one or more inputs, a processor, and a single output. 

A perceptron follows the “feed-forward” model, meaning inputs are sent into the neuron, are 
processed, and result in an output.  In the diagram above, this means the network (one neuron) 
reads from left to right: inputs come in, output goes out.

Let’s follow each of these steps in more detail.

Step 1. Receive inputs.

Say we have a perceptron with two inputs—let’s call them x and y.   

Input 0:  ! x = 12
Input 1: ! y = 4

Step 2. Weight inputs.

Each input that is sent into the neuron must first be weighted, i.e. multiplied by some value 
(often a number between -1 and 1).   Let’s give the inputs the following weights:

Weight 0: ! ! 0.5
Weight 1:! !  -1

We take each input and multiply it by its weight.

Input 0 = Input 0 * Weight 0 ==> 12 * 0.5 ==>  6
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Input 1 = Input 1 * Weight 1 ==>  4 *  -1 ==> -4

Step 3. Sum inputs.

The weighted inputs are then summed. 

Sum = 6 + -4 = 2

Step 4. Generate output

The output of a perceptron is generated by passing that sum through an activation function.    In 
the case of a simple binary output, the activation function is what tells the perceptron whether to 
“fire” or not.   You can envision an LED connected to the output signal: if it fires, the light goes 
on; if not, it stays off.

Activation functions can get a little bit hairy.   If you start reading one of those artificial 
intelligence textbooks looking for more info about activation functions, next you may find 
yourself reaching for a calculus textbook.    However, with our friend the simple perceptron, 
we’re going to do something really easy.  Let’s make the activation function the sign of the sum.   
In other words, if the sum is a positive number, the output is 1; if it is negative, the output is -1.

Output = sign(sum) ==> sign(2) ==> +1

Let’s review and condense these steps so we can implement them with a code snippet.

The Perceptron Algorithm:

1. For every input, multiply that input by its weight.
2. Sum all of the weighted inputs.
3. Compute the output of the perceptron based on that sum passed through an 

activation function (the sign of the sum).

Let’s assume we have two arrays of numbers, the inputs and the weights.   For example:

float[] inputs  = {12 , 4};
float[] weights = {0.5,-1};

“For every input” implies a loop that multiplies each input by its corresponding weight.  Since 
we need the sum, we can add up the results in that very loop.

float sum = 0;! ! ! ! ! ! $$ Steps 1 and 2: add up all the weighted inputs
for (int i = 0; i < inputs.length; i++) {
  sum += inputs[i]*weights[i];
}
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Once we have the sum we can compute the output.

float output = activate(sum);!! $$ Step 3: passing the sum through an activation function

int activate(float sum) {! ! $$ The activation function
  if (sum > 0) return 1;! ! $$ return a 1 if positive, -1 if negative
  else return -1; 
}

10.4  Simple Pattern Classification using a Perceptron

Now that we understand the computational process of a perceptron, we can look at an example of 
one in action.   We stated that neural networks are often used for pattern classification 
applications, such as facial recognition.   Even simple perceptrons can demonstrate the basics of 
classification.  Let’s take the following example:

Consider a line in two-dimensional space. Points in that space can be classified as living on 
either one side of the line or another. While this is a somewhat silly example (since there is 
clearly no need for a neural network; we can determine on which side a point lies with some 
simple algebra), it shows how a perceptron can be trained to recognize points on one side versus 
another.

Let’s say a perceptron has 2 inputs (the x and y coordinates of a point). Using a sign activation 
function, the output will either be a -1 or 1—i.e., the input data is classified according to the sign 
of the output.  In the above diagram, we can see how each point is either below the line (-1) or 
above (+1).

The perceptron itself can be diagrammed as follows:
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We can see how there are two inputs (x and y), a weight for each input (weightx and weighty), as 
well as a processing neuron that generates the output.

There is a pretty significant problem here, however.  Let’s consider the point (0,0).  What if we 
send this point into the perceptron as its input:  x = 0 and y = 0.  What will the sum of its 
weighted inputs be?  No matter what the weights are, the sum will always be 0!  But this can’t be 
right—after all, the point (0,0) could certainly be above or below various lines in our two-
dimensional world.

To avoid this dilemma, our Perceptron will require a third input, typically referred to as a bias 
input.   A bias input always has the value of 1 and is also weighted.  Here is our Perceptron with 
the addition of the bias:

10.5  Coding the Perceptron

We’re now ready to assemble the code for a Perceptron class.  The only data the Perceptron 
needs to track are the input weights, and we could use an array of floats to store these.

class Perceptron {
  float[] weights;

  
The constructor could receive an argument indicating the number of inputs (in this case three: x, 
y, and a bias) and size the array accordingly.

  Perceptron(int n) {
    weights = new float[n];
    for (int i = 0; i < weights.length; i++) {
      weights[i] = random(-1,1); ! ! ! $$ The weights are picked randomly to start
    }
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  }

A Perceptron needs to be able to receive inputs and generate an output.  We can package these 
requirements into a function called feedforward().   In this example, we’ll have the Perceptron 
receive its inputs as an array (which should be the same length as the array of weights) and return 
the output as an int.

  int feedforward(float[] inputs) {
    float sum = 0;
    for (int i = 0; i < weights.length; i++) {
      sum += inputs[i]*weights[i];
    }
    return activate(sum);! ! $$ Result is the sign of the sum, -1 or +1.
  }! ! ! ! ! ! $$ Here the Perceptron is making a guess.  Is it on one side
! ! ! ! ! !    of the line or the other?

Presumably, we could now create a Perceptron object and ask it to make a guess for any given 
point:

Perceptron p = new Perceptron(3);! ! $$ Create the Perceptron
float[] point = {50,-12,1};! ! ! $$ The input is 3 values: x,y and bias
int result = p.feedforward(point);!! $$ The answer!

Did the Perceptron get it right?    At this point, the Perceptron has no better than a 50/50 chance 
of arriving at the right answer.  Remember, when we created it, we gave each weight a random 
value.    A neural network isn’t magic.   It’s not going to be able to guess anything 
correctlyunless we teach it how to!   

To train a neural networkto answer correctly, we’re going to employ the method of supervised 
learning that we described in section 10.2.   

With this method, the network is provided with inputs for which there is a known answer.  This 
way the network can find out if it has made a correct guess.  If it’s incorrect, the network can 
learn from its mistake and adjust its weights.  The process is as follows:

1. Provide the Perceptron with inputs for which there is a known answer.
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2. Ask the Perceptron to guess an answer.
3. Compute the error.  (Did it get the answer right or wrong?)
4. Adjust all the weights according to the error.
5. Return to step 1 and repeat!

Steps 1 through 4 can be packaged into a function.  Before we can write the entire function, 
however, we need to examine steps 3 and 4 in more detail.  How do we define the Perceptron’s 
error?  And how should we adjust the weights according to this error?

The Perceptron’s error can be defined as the difference between the desired answer and its guess.

ERROR = DESIRED OUTPUT - GUESS OUTPUT

The above formula may look familiar to you.  In Chapter 6, we computed a steering force as the 
difference between our desired velocity and our current velocity. 

STEERING = DESIRED VELOCITY - CURRENT VELOCITY

This was also an error calculation.  The current velocity acts as a guess and the error (the steering 
force) tells us how to adjust the velocity in the right direction.   In a moment, we’ll see how 
adjusting the vehicle’s velocity to follow a target is just like adjusting the weights of a neural 
network to arrive at the right answer.

In the case of the Perceptron, the output has only two possible values: +1 or -1.   This means 
there are only three possible errors.  

If the Perceptron guesses the correct answer, then the guess equals the desired output and the 
error is zero.  If the correct answer is -1 and we’ve guessed +1, then the error is -2.  If the correct 
answer is +1 and we’ve guessed -1, then the error is +2.

Desired Guess Error

-1 -1 0

-1 +1 -2

+1 -1 +2

+1 +1 0

The error is the determining factor in how the Perceptron’s weights should be adjusted.   For any 
given weight, what we are looking to calculate is the change in weight, often called !weight (or 
“delta” weight, delta being the greek letter !).
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NEW WEIGHT = WEIGHT + ΔWEIGHT

!weight is calculated as the error multiplied by the input.

ΔWEIGHT = ERROR * INPUT

Therefore:

NEW WEIGHT = WEIGHT + ERROR * INPUT

To understand why this works, we can again return to the steering example.  A steering force is 
essentially an error in velocity.  If we apply that force as our acceleration (!velocity) then we 
adjust our velocity to move in the correct direction.  This is what we want to do with our neural 
network’s weights.  We want to adjust them in the right direction, as defined by the error.

With steering, however, we had an additional variable that controlled the vehicle’s ability to 
steer: the maximum force.   With a high maximum force, the vehicle was able to accelerate and 
turn very quickly; with a lower force, the vehicle would take longer to adjust its velocity.  The 
neural network will employ a similar strategy with a variable called the “learning constant.”  
We’ll add in the learning constant as follows:

NEW WEIGHT = WEIGHT + ERROR * INPUT * LEARNING CONSTANT

Notice that a high learning constant means the weight will change more drastically.  This may 
help us arrive at a solution more quickly, but with such large changes in weight it’s possible we 
will overshoot the optimal weights.  With a small learning constant, the weights will be adjusted 
slowly, requiring more training time but allowing the network to make very small adjustments 
that could improve the network’s overall accuracy.

Assuming the addition of a variable “c” for learning constant, we can now write a training 
function for the Perceptron following the above steps.

float c = 0.01;! ! $$ A new variable is introduced to control the learning rate

void train(float[] inputs, int desired) {! $$ Step 1 is providing the inputs and known answer
! ! ! ! ! ! ! !    These are passed in as arguments to train() 

  int guess = feedforward(inputs);!! ! $$ Step 2 is guess according to those inputs

  float error = desired - guess;! ! ! $$ Step 3 is compute the error (difference between
! ! ! ! ! ! !   !    answer and guess)

  for (int i = 0; i < weights.length; i++) {! $$ Step 4 is adjust all the weights according to 
    weights[i] += c * error * inputs[i];   !    the error and learning constant
  }
}
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We can now see the Perceptron class as a whole.

class Perceptron {
  float[] weights;  ! ! $$ The Perceptron stores its weights and learning constants
  float c = 0.01;          

  Perceptron(int n) {
    weights = new float[n];
    for (int i = 0; i < weights.length; i++) {!! $$ Weights start off random
      weights[i] = random(-1,1); 
    }
  }

  int feedforward(float[] inputs) {! ! ! $$ Return an output based on inputs
    float sum = 0;! ! ! ! ! !
    for (int i = 0; i < weights.length; i++) {!!
      sum += inputs[i]*weights[i];
    }
    return activate(sum);
  }

  int activate(float sum) {! ! ! ! ! $$ Output is a +1 or -1
    if (sum > 0) return 1;
    else return -1; 
  }

  void train(float[] inputs, int desired) {! ! $$ Train the network against known data
    int guess = feedforward(inputs);
    float error = desired - guess;
    for (int i = 0; i < weights.length; i++) {
      weights[i] += c * error * inputs[i];         
    }
  }
}

To train the Perceptron, we need a set of inputs with a known answer.   We could package this up 
in a class like so:

class Trainer {
  
  float[] inputs;!! ! $$ A “Trainer” object stores the inputs and the correct answer.
  int answer; ! ! ! ! !   

  Trainer(float x, float y, int a) {
    inputs = new float[3];
    inputs[0] = x;
    inputs[1] = y;
    inputs[2] = 1;
    answer = a;
  }
}

Now the question becomes, how do we pick a point and know whether it is above or below a 
line?   Let’s start with the formula for a line, where y is calculated as a function of x:
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y = f(x)

In generic terms, a line can be described as:

y = ax + b;

Here’s a specific example:

y = 2*x + 1

We can then write a Processing function with this in mind.

float f(float x) {! ! $$ A function to calculate y based on x along a line
  return 2*x+1;
}

So, if we make up a point:

float x = random(width);
float y = random(height);

Is it above or below a line?

int answer = 1;
if (y < f(x)) answer = -1;

We can then make a Trainer object with the inputs and the correct answer.

Trainer t = new Trainer(x, y, answer);

Assuming we had a Perceptron object “ptron,” we could then train it!

ptron.train(t.inputs,t.answer);

Let’s look at how we would do this with an array of many Training points.

Example 10-1: The Perceptron
Perceptron ptron;!! ! ! ! ! $$ The Perceptron
Trainer[] training = new Trainer[2000];! ! $$ 2,000 training points
int count = 0;

float f(float x) {! ! ! ! ! $$ The formula for a line 
  return 2*x+1;
}

void setup() {
  size(400, 400);

  ptron = new Perceptron(3);!! ! ! $$ Make the Perceptron

  for (int i = 0; i < training.length; i++) {! $$ Make 2,000 training points
    float x = random(-width/2,width/2);
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    float y = random(-height/2,height/2);
    int answer = 1;
    if (y < f(x)) answer = -1;! ! ! $$ Is the correct answer 1 or -1
    training[i] = new Trainer(x, y, answer);
  }
}

void draw() {
  background(255);
  translate(width/2,height/2);

  ptron.train(training[count].inputs, training[count].answer);!
  count = (count + 1) % training.length;!! ! !
! ! ! ! ! ! $$ For animation we are training one point at a time.

  for (int i = 0; i < count; i++) {! !
    stroke(0);
    int guess = ptron.feedforward(training[i].inputs);
    if (guess > 0) noFill();!! $$ Show the classification, noFill for -1, fill(0) for +1
    else           fill(0);
    ellipse(training[i].inputs[0], training[i].inputs[1], 8, 8);!!
  }
}

Exercise:  Instead of using the supervised learning model above, can you train the neural 
network to find the right weights by using a genetic algorithm?

Exercise: Visualize the perceptron itself. Draw the inputs, the processing node, and the output.

10.6  A Steering Perceptron

While classifying points according to their position above or below a line was a useful 
demonstration of the Perceptron in action, it doesn’t have much practical relevance to the other 
examples throughout this book.  In this section, we’ll take the concepts of a Perceptron (array of 
inputs, single output), apply it to steering behaviors, and demonstrate reinforcement learning 
along the way.

We are now going to take significant creative license with the concept of a neural network; this 
will allow us to stick with the basics and avoid some of the highly complex algorithms associated 
with more sophisticated neural networks.   Here we’re not so concerned with following rules 
outlined in artificial intelligence textbooks—we’re just hoping to make something interesting 
and brain-like.

Remember our good friend, the Vehicle?  You know, that object with a location, velocity, and 
acceleration?  That could obey Newton’s laws with an applyForce() function and move around 
the window according to a variety of steering rules?

What if we added one more variable to our Vehicle class?

class Vehicle {
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  Perceptron brain;! ! ! $$ Giving the Vehicle a brain!
  
  PVector location;
  PVector velocity;
  PVector acceleration; 
  etc. . . 

Here’s our scenario.  Let’s say we have a Processing sketch with an ArrayList of targets and a 
single Vehicle.

Let’s say that the Vehicle seeks all of the targets.   According to the principles of Chapter 6, we 
would next write a function that calculates a steering force towards each target, applying each 
force one at a time to the object’s acceleration.   Assuming the targets are an ArrayList of PVector 
objects, it would look something like:

  void seek(ArrayList<PVector> targets) {
    for (PVector target : targets) {
      PVector force = seek(targets.get(i));! ! $$ For every target, apply a steering force
      applyForce(force);! ! ! ! ! towards the target
    }
  }

In Chapter 6, we also examined how we could create more dynamic simulations by weighting 
each steering force according to some rule.  For example, we could say that the further you are 
from a target, the stronger the force.

 void seek(ArrayList<PVector> targets) {
    for (PVector target : targets) {
      PVector force = seek(targets.get(i));
      float d = PVector.dist(target,location);
      float weight = map(d,0,width,0,5);
      force.mult(weight);! ! ! ! $$ Weighting each steering force individually
      applyForce(force);! ! ! ! !
    }
  }
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But what if instead we could ask our brain (i.e. Perceptron) to take in all the forces as an input, 
process them according to weights of the Perceptron inputs, and generate an output steering 
force?   What if we could instead say:

  void seek(ArrayList<PVector> targets) {

    PVector[] forces = new PVector[targets.size()];! $$ Make an array of inputs for our brain

    for (int i = 0; i < forces.length; i++) {
      forces[i] = seek(targets.get(i));! ! ! $$ Fill the array with a steering force
    }!! ! ! ! ! ! ! ! for each target

    PVector output = brain.process(forces);    ! $$ As our brain for a result and apply that
    applyForce(output);!! ! ! ! ! as the force!
  } 

In other words, instead of weighting and accumulating the forces inside our Vehicle object, we 
simply pass an array of forces to the Vehicle’s “brain” object and allow the brain to weight and 
sum the forces for us.  The result is then applied as an output.   This is how our line classification 
Perceptron worked, with one important difference—the inputs are not single numbers, but 
vectors!   

Let’s look at how the feedforward() function works in our Vehicle’s perceptron, alongside the 
one from our previous example.

Vehicle PVector inputs Line float inputs

PVector feedforward(PVector[] forces) {
  // Sum is a PVector
  PVector sum = new PVector();
  for (int i = 0; i < weights.length; i++) {
    // Vector addition and multiplication
    forces[i].mult(weights[i]);
    sum.add(forces[i]);
  }
  return sum;   // No activation function
}

int feedforward(float[] inputs) {
  // Sum is a float
  float sum = 0;
  for (int i = 0; i < weights.length; i++) {
    // Scalar addition and multiplication
    sum += inputs[i]*weights[i];
  
  }
  return activate(sum);
}

Note how these two functions implement nearly identical algorithms, with two differences.

1) Summing PVectors.  Instead of a series of numbers added together, each input is a PVector 
and must be multiplied by the weight and added to a sum according the mathematical PVector 
functions.

2) No activation function.   In this case, we’re taking the result and applying it directly as a 
steering force for the vehicle, so we’re not asking for a simple boolean value that classifies it 
in one of two categories.  Rather, we’re asking for raw output itself, the resulting overall force.

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 16



Once the resulting steering force has been applied, it’s time to give feedback to the brain, i.e. 
reinforcement learning.   Was the decision to steer in that particular direction a good one or a bad 
one?  Presumably if some of the targets were predators (resulting in being eaten) and some of the 
targets were food (resulting in greater health), the network would adjust its weights in order to 
steer away from the predators and towards the food.  

Let’s take a simpler example, where the Vehicle simply wants to stay close to the center of the 
window.    We’ll train the brain as follows:

    PVector desired = new PVector(width/2,height/2);
    PVector error = PVector.sub(desired, location);
    brain.train(forces,error);

    

Here we are passing the brain a copy of all the inputs (which it will need for error correction) as 
well as an observation about its environment: a PVector that points from its current location to 
where it desires to be.  This PVector essentially serves as the error—the longer the PVector, the 
worse the Vehicle is performing; the shorter, the better.

The brain can then apply this “error” vector (which has two error values, one for x and one for y) 
as a means for adjusting the weights, just as we did in the line classification example.

Training the Vehicle Training the Line Classifier

void train(PVector[] forces, PVector error) {
  

  for (int i = 0; i < weights.length; i++) {
    weights[i] += c*error.x*forces[i].x;         
    weights[i] += c*error.y*forces[i].y;
  }
}

void train(float[] inputs, int desired) {

  int guess = feedforward(inputs);
  float error = desired - guess;

  for (int i = 0; i < weights.length; i++) {
    weights[i] += c * error * inputs[i];         

  }
}

 

Because the Vehicle observes its own error, there is no need to calculate one; we can simply 
receive the error as an argument.  Notice how the change in weight is processed twice, once for 
the error along the x-axis and once for the y-axis.

weights[i] += c*error.x*forces[i].x;         
weights[i] += c*error.y*forces[i].y;         
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We can now look at the Vehicle class and see how the steer function uses a Perceptron to control 
the overall steering force.   The new content from this chapter is highlighted.

Example 10-2: Perceptron Steering
class Vehicle {
  
  Perceptron brain;! ! $$ The Vehicle now has a brain
  
  PVector location;! ! $$ Same old variables for physics
  PVector velocity;
  PVector acceleration;
  float maxforce; 
  float maxspeed; 

  Vehicle(int n, float x, float y) {! ! $$ The Vehicle creates a Perceptron with n inputs
    brain = new Perceptron(n,0.001);! ! and a learning constant
    acceleration = new PVector(0,0);
    velocity = new PVector(0,0);
    location = new PVector(x,y);
    maxspeed = 4;
    maxforce = 0.1;
  }

  void update() {!! ! ! ! ! $$ Same old update() function
    velocity.add(acceleration);
    velocity.limit(maxspeed);
    location.add(velocity);
    acceleration.mult(0);
  }

  void applyForce(PVector force) {!! ! $$ Same old applyForce() function
    acceleration.add(force);
  }
  
  void steer(ArrayList<PVector> targets) {
    PVector[] forces = new PVector[targets.size()];
    
    for (int i = 0; i < forces.length; i++) {
      forces[i] = seek(targets.get(i));
    }
    PVector result = brain.feedforward(forces);! ! $$ All the steering forces are inputs
    
    applyForce(result);!! ! ! ! ! ! $$ The result is applied
    
    PVector desired = new PVector(width/2,height/2);!! $$ The brain is trained according
    PVector error = PVector.sub(desired, location);! ! to distance to center
    brain.train(forces,error);
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  }
  

  PVector seek(PVector target) {! ! ! $$ Same old seek() function
    PVector desired = PVector.sub(target,location);      
    desired.normalize();
    desired.mult(maxspeed);
    PVector steer = PVector.sub(desired,velocity);
    steer.limit(maxforce);
    return steer;
  }
    
}

Exercise:  Visualize the weights of the network.  Try mapping each target’s corresponding weight 
to its brightness.

Exercise: Try different rules for reinforcement learning.  What if some targets are desirable and 
some are undesirable?

10.7  It’s a “network,” remember?

Yes, a perceptron can have multiple inputs, but it is still a lonely neuron.  The power of neural 
networks comes in the networking itself.   Perceptrons are, sadly, incredibly limited in their 
abilities.    If you read an AI textbook, it will say that a Perceptron can only solve linearly 
separable problems.  What’s a linearly separable problem?  Let’s take a look at our first example, 
which determined whether points were on one side of a line or the other.

On the left, we have classic linearly separable data.  Graph all of the possibilities; if you can 
classify the data with a straight line, then it is linearly separable.  On the right, however, is non-
linearly separable data.  You can’t draw a straight line to separate the black dots from the gray 
ones.  

One of the simplest examples of a non-linearly separable problem is XOR, or “exclusive or.”  
We’re all familiar with AND.  For A AND B to be true, both A and B must be true.  With OR, 
either A or B can be true for A OR B to evaluate as true. These are both linearly separable 
problems.  Let’s look at the solution space, a “truth table.”
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See how you can draw a line to separate the true outputs from the false ones?

XOR is the equivalent of  OR and NOT AND.  In other words, A XOR B only evaluates to true if 
one of them is true.  If both are false or both are true, then we get false.  Take a look at the 
following truth table.

This is not linearly separable.  Try to draw a line to separate the true outputs from the false ones 
—you can’t!  

So perceptrons can’t even solve something as simple as XOR.  But what if we made a network 
out of two Perceptrons?

The above diagram is known as a multi-layered Perceptron, a network of many neurons.   Some 
are input neurons and receive the inputs; some are part of what’s called a “hidden” layer (as they 
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are connected to neither the inputs or outputs of the network directly); and then there are the 
output neurons, from which we read the results.

Training these networks is much more complicated.  With the simple perceptron, we could easily 
evaluate how to change the weights according to the error. But here there are so many different 
connections, each in a different layer of the network. How does one know how much each 
neuron or connection contributed to the overall error of the network?

The solution to optimizing weights of a multi-layered network is known as backpropagation.  
The output of the network is generated in the same manner as a Perceptron.   The inputs 
multiplied by the weights are summed and fed forward through the network.  The difference here 
is that they pass through additional layers of neurons before reaching the output. Training the 
network (i.e. adjusting the weights) also involves taking the error (desired result - guess).  The 
error, however, must be fed backwards through the network. The final error ultimately adjusts the 
weights of all the connections.  

Backpropagation is a bit beyond the scope of this book and involves a fancier activation function 
(called the sigmoid function) as well as some basic calculus.  If you are interested in how 
backpropagation works, check the book website (and github repository) for an example that 
solves XOR using a multi-layered feed forward network with backpropagation.

Instead, here we’ll focus on a code framework for building the visual architecture of a network.  
We’ll make Neuron objects and Connection objects from which a Network object can be created 
and animated to show the feed forward process.   This will closely resemble some of the force-
directed graph examples we examined in Chapter 5 (toxiclibs).

10.8  Neural Network Diagram

Our goal will be to create the following simple network diagram:

The primary building block for the diagram is a neuron.   A neuron is a simple object, an entity 
with an (x,y) location.

class Neuron {! ! ! ! ! $$ An incredibly simple neuron class
  PVector location;! ! ! !    Stores and displays the location of a single Neuron

  Neuron(float x, float y) {
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    location = new PVector(x, y);
  }

  void display() {
    stroke(0);
    fill(0);
    ellipse(location.x, location.y, 16, 16);
  }
}

The Network class can then manage an ArrayList of neurons, as well as have its own location (so 
that each Neuron is drawn relative to the Network’s center.)  This is Particle Systems 101.  We 
have a single element (a Neuron) and a Network (a “system” of many Neurons).

class Network {! ! ! ! ! $$ A Network is a list of neurons
  ArrayList<Neuron> neurons;
  PVector location;

  Network(float x, float y) {
    location = new PVector(x,y);
    neurons = new ArrayList<Neuron>();
  }
  
  void addNeuron(Neuron n) {!! ! $$ We can add an neuron to the network
    neurons.add(n);
  }
  
  void display() {! ! ! ! ! $$ We can draw the entire network
    pushMatrix();
    translate(location.x, location.y);
    for (Neuron n : neurons) {
      n.display();
    }
    popMatrix();
  }
}

Now, we can pretty easily make the diagram above.

Network network;! ! ! ! ! !

void setup() {
  size(640, 360); 
  network = new Network(width/2,height/2);! $$ Make a Network
  
  Neuron a = new Neuron(-200,0);! ! ! $$ Make the Neurons!
  Neuron b = new Neuron(0,100);
  Neuron c = new Neuron(0,-100);
  Neuron d = new Neuron(200,0);
  
  network.addNeuron(a);!! ! ! ! $$ Add the Neurons to the network
  network.addNeuron(b);
  network.addNeuron(c);
  network.addNeuron(d);
}

void draw() {
  background(255);
  network.display();! ! ! ! ! $$ Show the network
}
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The above example yields:

What’s missing, of course, is the connection.   We can consider a Connection object to be made 
up of three elements, two Neurons (from Neuron “a” to neuron “b”) and a weight.

class Connection {
  Neuron a;!! ! $$ The Connection is between two neurons
  Neuron b;
  float weight;! ! $$ The Connection has a weight

  Connection(Neuron from, Neuron to,float w) {
    weight = w;
    a = from;
    b = to;
  }

  void display() {! $$ The connection is drawn as a line
    stroke(0);
    strokeWeight(weight*4);
    line(a.location.x, a.location.y, b.location.x, b.location.y);
  }
}

Once we have the idea of a Connection object, we can write a function (let’s put it inside the 
Network class) that connects two neurons together.—the goal being that in addition to making 
the Neurons in setup(), we can also connect them.

void setup() {
  size(640, 360); 
  network = new Network(width/2,height/2);
  
  Neuron a = new Neuron(-200,0);
  Neuron b = new Neuron(0,100);
  Neuron c = new Neuron(0,-100);
  Neuron d = new Neuron(200,0);
  
  network.connect(a,b);!! ! ! $$ Making connections between the Neurons
  network.connect(a,c);
  network.connect(b,d);
  network.connect(c,d);
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  network.addNeuron(a);
  network.addNeuron(b);
  network.addNeuron(c);
  network.addNeuron(d);  
}

The Network class therefore needs a new function called connect(), which makes a Connection 
object between the two specified Neurons.

  void connect(Neuron a, Neuron b) {
    Connection c = new Connection(a, b, random(1));! $$ Connection has a random weight

    $$ But what do we do with the Connection object?
  } 

Presumably, we might think that the Network should store an ArrayList of Connection objects, 
just like it stores an ArrayList of Neurons.  While useful, in this case such an ArrayList is not 
necessary and is missing an important feature that we need.  Ultimately we plan to “feed 
forward” through the network.  So the Neuron objects themselves need to know to which 
Neurons they are connected in the “forward” direction.  In other words, each Neuron should have 
its own list of Connection objects.   When A connects to B, we want A to store a reference of that 
connection so that it can pass its output to B when the time comes.

  void connect(Neuron a, Neuron b) {
    Connection c = new Connection(a, b, random(1));
    a.addConnection(c);
  } 

In some cases, we also might want Neuron b to know about this Connection object, but in this 
particular example we are only going to pass information in one direction.

For this to work, we have to add an ArrayList of Connection objects to the Neuron class. Then 
we implement the addConnection() function that stores the Connection in that ArrayList.

class Neuron {
  PVector location;

  ArrayList<Connection> connections;! ! ! $$ The Neuron stores its connections

  Neuron(float x, float y) {
    location = new PVector(x, y);
    connections = new ArrayList<Connection>();
  }

  void addConnection(Connection c) {! ! ! $$ Adding a Connection to this Neuron
    connections.add(c);
  } 

The Neuron’s display() function can draw the connections as well.

  void display() {
    stroke(0);
    strokeWeight(1);
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    fill(0);
    ellipse(location.x, location.y, 16, 16);

    for (Connection c : connections) {! ! $$ Drawing all the Connections
      c.display();
    }
  }
}

Finally, we have our Network diagram.

Example 10-x: Neural Network Diagram

10.9  Animating Feed Forward

An interesting problem to consider is how to visualize the flow of information as it travels 
throughout a neural network.    Our network is built on the feed forward model, meaning an input 
arrives at the first neuron (drawn on the lefthand side of the window) and the output of that 
neuron flows across the connections to the right until it exits as output from the network itself.

Our first step is to add a function to the network to receive this input, which we’ll make a 
random number between zero and one.

void setup() {
  // all our old network set up code

  network.feedforward(random(1));! ! $$ A new function to send in an input
}

The network, which manages all the neurons, can choose to which neurons it should apply that 
input.  In this case, we’ll do something simple and just feed a single input into the first neuron in 
the ArrayList, which happens to be the left-most one.

class Network {

  void feedforward(float input) {! ! $$ A new function to feed an input into the Neuron
    Neuron start = neurons.get(0);
    start.feedforward(input);
  }
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What did we do?  Well, we made it necessary to add a function called feedforward() in the 
Neuron class that will receive the input and process it.

class Neuron

  void feedforward(float input) {
     // What do we do with the input?
  }

If you recall from working with our Perceptron unit, the standard task that the processing unit 
performs is to sum up all of its inputs.  So if our neuron class adds a variable called sum, it can 
simply accumulate the inputs as they are received.

class Neuron

  int sum = 0;

  void feedforward(float input) {
    sum += input;!! ! ! ! $$ Accumulate the sums
  }

The neuron should then decide whether it should “fire,” or pass an output through any of its 
connections to the next layer in the network.  Here we can create a really simple activation 
function: if the sum is greater than one, fire!

 void feedforward(float input) {
    sum += input;!
    if (sum > 1) {! ! $$ Activate the neuron and fire the outputs?
      fire();
      sum = 0;! ! ! $$ If we’ve fired off our output, we can reset our sum to 0.
    }
  }

Now, what do we do in the fire() function?  If you recall, each neuron keeps track of its 
connections to other neurons.  So all we need to do is loop through those connections and 
feedforward() the Neuron’s output.  For this simple example, we’ll just take the Neuron’s sum 
variable and make it the output.

  void fire() {
    for (Connection c : connections) {
       c.feedforward(sum);! ! $$ The Neuron sends the sum out through all of its connections
    } 
  }

Here’s where things get a little tricky.  After all, our job here is not to actually make a 
functioning neural network, but to animate a simulation of one.  If the neural network were just 
continuing its work, it would instantly pass those inputs (multiplied by the connection’s weight) 
along to the connected Neurons.  We’d say something like:

class Connection {
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  void feedforward(float val) {
    b.feedforward(val*weight);
  }

 
But this is not what we want. What we want to do is draw something that we can see traveling 
along the connection from Neuron A to Neuron B.  

Let’s first think about how we might do that. We know the location of Neuron A; it’s the PVector 
a.location.  Neuron B is located at b.location.    What we need to do is start something 
moving from Neuron A by creating another PVector that will store the path of our traveling data.  

  PVector sender = a.location.get();

Once we have a copy of that location, we can use any of the motion algorithms that we’ve 
studied throughout this book to move along this path.  Here—let’s pick something very simple 
and just interpolate from A to B.

  sender.x = lerp(sender.x, b.location.x, 0.1);
  sender.y = lerp(sender.y, b.location.y, 0.1);

Along with the connection’s line, we can then draw a circle at that location:

  stroke(0);
  line(a.location.x, a.location.y, b.location.x, b.location.y);
  fill(0);
  ellipse(sender.x, sender.y, 8, 8);

This resembles the following:

[DIAGRAM, LABEL A and B Neurons]

Ok, so that’s how we might move something along the connection.  But how do we know when 
to do so?   We start this process the moment the Connection object receives the “feedforward” 
signal.   We can keep track of this process by employing a simple boolean to know whether the 
connection is sending or not.    Before, we had:

  void feedforward(float val) {
    b.feedforward(val*weight);
  }

Now, instead of sending the value on straight away, we’ll trigger an animation:

class Connection {
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  boolean sending = false;
  PVector sender;
  float output;

  void feedforward(float val) {
    sending = true;! ! ! ! $$ Sending is now true
    sender = a.location.get();! ! $$ Start the animation at location of Neuron A
    output = val*weight;! ! ! $$ Store the output for when it is actually time to
  }! ! ! ! ! ! ! feed it forward

Notice how our connection class now needs three new variables.  We need a boolean “sending” 
that starts as false and that will track whether or not the Connection is actively sending (i.e. 
animating).  We need a PVector “sender” for the location where we’ll draw the traveling dot.  
And since we aren’t passing the output along this instant, we’ll need to store it in a variable that 
will do the job later.

The feedforward() function is called the moment the Connection becomes active.  Once it’s 
active, we’ll need to call another function continuously (each time through draw()), one that will 
update the location of the traveling data.

 void update() {
    if (sending) {
      sender.x = lerp(sender.x, b.location.x, 0.1);! ! $$ As long as we’re sending interpolate 
      sender.y = lerp(sender.y, b.location.y, 0.1);! ! our points
    }
  }

We’re missing a key element, however.  We need to check if the sender has arrived at location B, 
and if it has, feed forward that output to the next Neuron.

  void update() {
    if (sending) {
      sender.x = lerp(sender.x, b.location.x, 0.1);! !
      sender.y = lerp(sender.y, b.location.y, 0.1);! !

      float d = PVector.dist(sender, b.location);! ! $$ How far are we from Neuron b

      if (d < 1) {! ! ! ! $$ If we’re close enough (within one pixel)
        b.feedforward(output);! !    Pass on the output.
        sending = false;! ! !    Turn off sending.
      }
    }
  }

 Let’s look at the Connection class all together, as well as our new draw() function.
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Example 10.x: Animating Neural Network Diagram

void draw() {
  background(255);
  network.update();! ! ! ! $$ The Network now has a new update() method
  network.display();! ! ! !    that updates all of the Connection objects

  if (frameCount % 30 == 0) {
    network.feedforward(random(1));! $$ We are choosing to send in an input every 30 frames
  }
}

class Connection {
  float weight;! ! ! $$ The Connection’s data
  Neuron a;
  Neuron b;

  boolean sending = false;! $$ Variables to track the animation
  PVector sender;
  float output = 0;

  Connection(Neuron from, Neuron to, float w) {
    weight = w;
    a = from;
    b = to;
  }

  void feedforward(float val) {! $$ The Connection is active with data traveling from A to B
    output = val*weight;
    sender = a.location.get();
    sending = true;
  }

  void update() {!! ! ! $$ Update the animation if it is sending
    if (sending) {
      sender.x = lerp(sender.x, b.location.x, 0.1);
      sender.y = lerp(sender.y, b.location.y, 0.1);
      float d = PVector.dist(sender, b.location);
      if (d < 1) {
        b.feedforward(output);
        sending = false;
      }
    }
  }

  void display() {! ! ! $$ Draw the connection as a line and traveling circle
    stroke(0);
    strokeWeight(1+weight*4);
    line(a.location.x, a.location.y, b.location.x, b.location.y);
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    if (sending) {
      fill(0);
      strokeWeight(1);
      ellipse(sender.x, sender.y, 16, 16);
    }
  }
}

Exercise:  The Network in the above example was manually configured by setting the location of 
each Neuron and its connections with hard-coded values.  Rewrite this example to generate the 
network’s layout via an algorithm.  Can you make a circular network diagram? A random one?

Exercise: Rewrite the example so that each Neuron keeps track of its forward and backward 
connections.  Can you feed inputs through the network in any direction?

Exercise: Create a moving body (a Vehicle) that features a visualization of its brain inside the 
object itself.  Can you actually make the brain function—control the movement of the Vehicle 
itself?
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