
Introduction

“I am two with nature.”
! —Woody Allen

Here we are: the beginning. Well, almost the beginning. This introduction is here to just get our
feet wet. If it’s been a while since you’ve done any programming in Processing (or any math, for
that matter), this will get your mind back into computational thinking before we head into some
of the more difficult and complex material.

In Chapter1, we’re going to talk about the concept of a vector and how it will serve as the
building block for simulating motion throughout this book. But before we take that step, let’s
think about what it means for something to even move around the screen. Let’s begin with one
of the best-known and simplest simulations of motion—the Random Walk.

I.1 Random Walks

Imagine you are standing in the middle of a balance beam. Every ten seconds, you flip a coin.
Heads, take a step forward. Tails, take a step backwards. This is a random walk—a path that is
defined as a series of random steps. Stepping off that balance beam and onto the floor, you
could perform a random walk by flipping that same coin twice with the following results:

Flip 1 Flip 2 Result

Heads Heads Step forward.

Heads Tails Step right.

Tails Heads Step left.

Tails Tails Step backward.

Yes, this may seem like a particularly unsophisticated algorithm. Nevertheless, random walks
can be used to model phenomena that occur in the real world, from the movements of molecules
in a gas to the behavior of a gambler spending a day at the casino. In our case, we begin the
random walk keeping three things in mind regarding this book with three goals in mind.

1) We need to review a programming concept central to this book—object-oriented
programming. The random walker will serve as a template for how we will use object-
oriented design to make things that move around a Processing window.

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 1

2) the random walk instigates the two questions that we will ask over and over again throughout
this book: “How do we define the rules that govern the behavior of our objects?” and then
“How do we implement these rules in Processing?”

3) Throughout the book, we’ll periodically need a basic understanding of randomness,
probability, and Perlin noise. The random walk will allow us to demonstrate a few key points
that will come in handy later.

I.2 The Random Walker Class

Let’s review a bit of object-oriented programming (“OOP”) first by building a “Walker” object.
This will be only a cursory review. If you have never worked with OOP before, you may want
something more comprehensive. I’d suggest stopping here and reviewing the basics on the
Processing web site before continuing: http://processing.org/learning/objects/.

An object in Processing is an entity that has both data and functionality. We are looking to
design a Walker object that both keeps track of its data (where it exists on the screen) and has the
capability to perform certain actions (such as draw itself or take a step).

A class is the template for building actual instances of objects. Think of a class as the cookie
cutter where the objects are the cookies themselves. Let’s begin by defining this template—
what it means to be a Walker object.

The Walker only needs two pieces of data—a number for its x-location and one for its y-location.

class Walker {! ! $$ Objects have data
 int x;
 int y;

Every class must have a constructor, a special function that is called when the object is first
created. You can think of it as the object’s setup(). There, we’ll initialize the Walker’s starting
location (in this case, the center of the window).

 Walker() {! ! $$ Objects have a constructor where they are initialized
 x = width/2;
 y = height/2;
 }

Finally, in addition to data, classes can be defined with functionality. In this example, a Walker
has two functions. We first write a function to display itself (as a white dot).

 void display() {! ! $$ Objects have functions
 stroke(255);
 point(x,y);
 }

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 2

http://processing.org/learning/objects/
http://processing.org/learning/objects/

The second function directs the object to take a step. Now, this is where things get a bit more
interesting. Remember that floor on which we were taking random steps? Well, now we can
use a Processing window in that same capacity. There are four possible steps—a step to the right
can be simulated by incrementing x (x++); to the left by decrementing x (x--); a step forward by
going down a pixel (y++) and a step backwards as up a pixel (y--). How do we pick from these
four choices? Earlier we stated that we could flip two coins. In Processing, however, when we
want to randomly choose from a list of options, we can pick a random number using random().

 void step() {

 int choice = int(random(4));! $$ 0, 1, 2, or 3

The above line of code picks a random floating point number between 0 and 4 and converts it to
an integer, resulting in 0, 1, 2, or 3. Technically speaking, the highest number will never be 4.0,
but rather 3.999999999 (with as many 9’s as there are decimal places); since the conversion
process to an integer lops off the decimal place, the highest int we can get is 3. Next, we take the
appropriate step (left, right, up, or down) depending on which random number was picked.

 if (choice == 0) {! ! ! $$ The random “choice” determines our step
 x++;
 } else if (choice == 1) {
 x--;
 } else if (choice == 2) {
 y++;
 } else {
 y--;
 }
 }
}

Now that we’ve written the the template for making a Walker object, it’s time to make an actual
Walker object in the main part of our sketch—setup() and draw(). Assuming we are looking to
model a single random walk, we declare one global variable of type Walker.

Walker w;! ! ! $$ A Walker object

Then we create the object in setup() by calling the constructor with the new operator.

Example: Traditional Random Walk
void setup() {
 size(640,360);
 w = new Walker();! $$ Create the Walker
 background(0);
}

Finally, during each cycle through draw(), we ask the Walker to take a step and draw a dot.

void draw() {
 w.step();!! ! $$ Call functions on the Walker
 w.display();

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 3

}

Since we only draw the background once in setup() (rather than clearing it continually each time
through draw()), we see the trail of the random walk in our Processing window.

There are a couple improvements we could make with the random walker. For one, this walker’s
step choices are limited to four—up, down, left, and right. But any given pixel in the window
has eight possible neighbors, and a ninth possibility is to stay in the same place.

To implement a walker that can step to any neighboring pixel (or stay put) we could then pick a
number between zero and eight (nine possible choices). However, a more efficient way to write
the code would be to simply pick from three possible steps along the x-axis (-1, 0, or 1) and three
possible steps along the y-axis.

 void step() {
 int stepx = int(random(3))-1; $$ Yields -1, 0, or 1
 int stepy = int(random(3))-1;
 x += stepx;
 y += stepy;
 }

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 4

Taking this a step further, we could use floating point numbers (i.e. decimal numbers) for x and y
instead and move according to an arbitrary random value between -1 and 1.

 void step() {
 float stepx = random(-1, 1);
 float stepy = random(-1, 1);
 x += stepx;
 y += stepy;
 }

All of these variations on the “traditional” random walk have one thing in common: at any
moment in time, the probability that the walker will take a step in a given direction is equal to the
probability that the walker will take a step in any direction. In other words, if there are four
possible steps, there is a one in four (or 25%) chance the walker will take any given step. With
nine possible steps, it’s a one in nine (or 11.1%) chance.

Conveniently, this is how the random() function works. Processing’s random number generator
(which operates behind the scenes) produces what is known as a “uniform” distribution of
numbers. We can test this distribution with a Processing sketch that counts each time a random
number is picked and graphs it as the height of a rectangle.

Example: Random Number Distribution
int[] randomCounts; $$ An array to keep track of how often random numbers are picked

void setup() {
 size(640,240);
 randomCounts = new int[20];
}

void draw() {
 background(255);

 int index = int(random(randomCounts.length)); $$ Pick a random number and increase the count
 randomCounts[index]++;

 stroke(0); $$ Graphing the results
 fill(175);
 int w = width/randomCounts.length;
 for (int x = 0; x < randomCounts.length; x++) {
 rect(x*w,height-randomCounts[x],w-1,randomCounts[x]);
 }
}

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 5

The above screenshot shows the result of the sketch running for a few minutes. Notice how
each bar of the graph differs in height. Our sample size (i.e. the number of random numbers
we’ve picked) is rather small and there are some random discrepancies, where certain numbers
are picked more often. Over time, with a good random number generator, this would even out.

Pseudo-Random Numbers
The random numbers we get from the random() function are not truly random and are therefore known as
“pseudo-random.” They are the result of a mathematical function that simulates randomness. This function
would yield a pattern over time, but that time period is so long that for us, it’s just as good as pure randomness!

I.3 Probability and Non-Uniform Distributions

Remember when you first started programming in Processing? Perhaps you wanted to draw a lot
of circles on the screen. So you said to yourself: “Oh, I know. I’ll draw all these circles at
random locations, with random sizes, and random colors.” In a computer graphics system, it’s
often easiest to seed a system with randomness. In this book, however, we’re looking to build
systems modeled on what we see in nature. Defaulting to randomness is not a particularly
thoughtful solution to every design problem—in particular, the kind of problems that involve
creating an organic or natural-looking design.

With a few tricks, we can change the way we use random() to produce “non-uniform”
distributions of random numbers. This will come in handy throughout the book as we look at a
number of different scenarios. When we examine genetic algorithms, for example, we’ll need a
methodology for performing “selection”—which members of our population should be selected
to pass their DNA down to the next generation. Remember the concept of survival of the fittest?
Let’s say we have a population of monkeys evolving. Not every monkey will have a equal
chance of reproducing. To simulate Darwinian evolution, we can’t simply pick two random
monkeys to be parents. We need the more “fit” ones to be more likely to be chosen. We need to
define the “probability of the fittest.” For example, perhaps a particularly fast and strong
monkey has a 90% chance of procreating, while a weaker one has only a 10% chance.

Let’s review the basic principles of probability, first looking at “Single Event Probability,” i.e.
the likelihood of something to occur.

Given a system with a certain number of possible outcomes, the probability of any given event
occurring is the number of outcomes that qualify as that event divided by the total number of
possible outcomes. The simplest example is a coin toss. There are a total of two possible
outcomes (heads or tails). There is only one way to flip heads. Therefore, the probability of heads
is one divided by two, i.e. 1/2 or 50%.

Consider a deck of fifty-two cards. The probability of drawing an ace from that deck is:

number of aces / number of cards = 4 / 52 = 0.077 = ~ 8%

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 6

The probability of drawing a diamond is:

number of diamonds / number of cards = 13 / 52 = 0.25 = 25%

We can also calculate the probability of multiple events occurring in sequence as the product of
the individual probabilities of each event.

The probability of a coin coming up heads three times in a row is:

(1 / 2) * (1 / 2) * (1 / 2) = 1 / 8 (or 0.125).

In other words, a coin will land heads three times in a row one out of eight times (with each
“time” being three tosses.)

Exercise: What is the probability of drawing two aces in a row from the deck of cards?

There are a few different techniques for using the random() function with probability in code.
For example, if we fill an array with a selection of numbers (some repeated), we can randomly
pick from that array and generate events based on what we select.

int[] stuff = new int[5];
stuff[0] = 1;! ! ! $$ 1 is stored in the array twice to increase its likelihood
stuff[1] = 1;! ! ! of being picked
stuff[2] = 2;
stuff[3] = 3;
stuff[4] = 3;
int index = int(random(stuff.length)); $$ Picking a random element from an array
if (stuff[index] == 1) {

If you run this code, there will be a 40% chance of printing the value 1, a 20% chance of printing
2, and a 40% chance of printing 3.

Another strategy is to ask for a random number (for simplicity, we consider random floating
point values between 0 and 1) and allow an event to occur only if the random number we pick is
within a certain range. For example:

float prob = 0.10; $$ A probability of 10%
float r = random(1); $$ A random floating point value between 0 and 1
if (r < prob) { $$ If our random number is less than 0.1
 // DO SOMETHING!
}

This same technique can also be applied to multiple outcomes.

Outcome A — 60% | Outcome B — 10% | Outcome C — 30%

To implement this in code, we pick one random float and check where it falls.

! between 0.00 and 0.60 (60%) –> outcome A
! between 0.60 and 0.70 (10%) –> outcome B

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 7

! between 0.70 and 1.00 (30%) –> outcome C

 float num = random(1);

 if (num < 0.6) { $$ If random number is less than .6
 // Outcome A
 } else if (num < 0.7) { $$ Between 0.6 or 0.7
 // Outcome B
 } else { $$ Greater than 0.7
 // Outcome C
 }
}

We could use the above methodology to create a random walker that tends to move to the right.
Here is an example of a Walker with the following probabilities:

• chance of moving up: ! ! 20%
• chance of moving down: ! 20%
• chance of moving left: ! ! 20%
• chance of moving right: ! 40%

 Example: Walker that tends to move to the right
 void step() {

 float r = random(1);

 if (r < 0.4) {! ! $$ A 40% of moving to the right!
 x++;
 } else if (r < 0.6) {
 x--;
 } else if (r < 0.8) {
 y++;
 } else {
 y--;
 }
 }

Exercise: Create a random walker with dynamic probabilities. For example, can you give it a
50% chance of moving in the direction of the mouse?

I.4 A Normal Distribution of Random Numbers

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 8

Let’s go back to that population of simulated Processing monkeys. Your program generates a
thousand “Monkey” objects with each monkey setting a value for height in the constructor—
between 200 and 300 (this is a world of monkeys that have heights between 200 and 300 pixels).

float h = random(200,300);

Does this accurately depict the heights of real-world beings? Think of a crowded sidewalk in
New York City. Pick a random person and it may appear that their height is random.
Nevertheless, it’s not the kind of random that the random() produces. People’s heights are not
uniformly distributed; there are a great deal more people of average height than there are very
tall or very short ones. To simulate nature, we may want it to be more likely that our monkeys
are of average height (250 pixels), yet allow them to still on occasion be very short or very tall.

A distribution of values that cluster around an average (referred to as the “mean”) is known as a
“normal” distribution. It is also called the Gaussian distribution (named for mathematician Carl
Friedrich Gauss) or, if you are French, the Laplacian distribution (named for Pierre-Simon
Laplace). Both mathematicians were working concurrently in the early nineteenth century on
defining such a distribution.

When you graph the distribution, you get something that looks like the following, informally
known as the bell curve.

The curve is generated by a mathematical function that defines the probability of any given value
occurring as a function of the mean (often written as !, the Greek letter mu) and standard
deviation (", the Greek letter sigma).

The mean is pretty easy to understand. In the case of our height values between 200 and 300, we
can intuitively have a sense of the mean (i.e. average) as 250. However, what if I were to say
that the standard deviation is 3 or 15? The graphs above should give us a hint. The graph on the
left shows us the distribution with a very low standard deviation, where the majority of the
values cluster closely around the mean. The graph on the right shows us a higher standard
deviation, where the values are more evenly spread out from the average.

The numbers work out as follows. Given a population, 68% of the members of that population
will have values in the range of one standard deviation from the mean, 98% within two standard

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 9

deviations, 99.7% within three standard deviations. Given a standard deviation of five pixels,
only 0.3% of the monkey heights will be less than 235 pixels (three standard deviations below
the mean of 250) or greater than 265 pixels (three standard deviations above the mean of 250).

Calculating Mean and Standard Deviation

Consider a class of ten students who receive the following scores (out of 100) on a test:

85, 82, 88, 86, 85, 93, 98, 40, 73, 83

The mean is the average: 81.3

The standard deviation is calculated as the square root of the average of the squares of deviations aroundthe mean.
In other words, take the difference from the mean for each person and square it (variance). Calculate the average of
all these values and take the square root as our standard deviation.

Score Difference from Mean Variance

85 85-81.3 = 3.7 (3.7)2 = 13.69

40 40-81.3 = -41.3 (-41.3)2 = 1705.69

etc.

Average Variance: 254.23

The standard deviation is the square root of the average variance = 15.13

Luckily for us, to use a normal distribution of random numbers in a Processing sketch, we don’t
have to do any of these calculations ourselves. Instead, we can make use of a class known as
Random, which we get for free as part of the default Java libraries imported into Processing (see:
http://docs.oracle.com/javase/6/docs/api/java/util/Random.html for more information).

To use the Random class, we must first declare a variable of type Random and create the
Random object in setup().

Random generator;! ! ! $$ We use the variable name “generator” as what we
! ! ! ! ! have here can be thought of as a random number generator
void setup() {
 size(640,360);
 generator = new Random();
}

If we want to produce a random number with a normal (or Gaussian) distribution each time we
run through draw(), it’s as easy as calling the function nextGaussian().

void draw() {
 float num = generator.nextGaussian();! $$ Asking for a Gaussian random number
}

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 10

http://docs.oracle.com/javase/6/docs/api/java/util/Random.html
http://docs.oracle.com/javase/6/docs/api/java/util/Random.html

Here’s the thing. What are we supposed to do with this value? What if we wanted to use it to,
for example, assign the x-position of a shape we draw on screen?

The nextGaussian() function returns a normal distribution of random numbers with the
following parameters: a mean of zero and a standard deviation of one. Let’s say we want a
mean of 360 (the center horizontal pixel in a window of width 640) and a standard deviation of
60 pixels. We can adjust the value to our parameters by multiplying it by the standard deviation
and adding the mean.

Example: Gaussian Distribution

void draw() {
 float num = (float) generator.nextGaussian();! $$ Note nextGaussian() returns a double
 float sd = 60;
 float mean = 360;

 float x = sd*num + mean;! ! $$ Multiply by standard deviation and add the mean

 noStroke();
 fill(255,10);
 ellipse(x,180,16,16);
}

By drawing the ellipses on top of each other with some transparency, we can see the distribution
visually. The brightest spot is near the center, where most of the values cluster, but every so
often circles are drawn farther to the right or left of the center.

Exercise: Consider a simulation of paint splatter drawn as a collection of colored dots. Most of
the paint clusters around a central location, but some dots do splatter out towards the edges.
Can you use a normal distribution of random numbers to generate the locations of the dots?
Can you also use a normal distribution of random numbers to generate a palette of color?

Exercise: A Gaussian random walk is defined as one in which the step size (how far you move in
a given direction) is generated with a normal distribution. Implement this variation of our
random walk.

I.5 A Custom Distribution of Random Numbers

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 11

There will come a time in your life where you do not want a uniform distribution of random
values or a Gaussian one. Let’s imagine for a moment that you are a random walker in search of
food. Moving randomly around a space seems like a reasonable strategy for finding something
to eat. After all, you don’t know where the food is, so you might as well search randomly until
you find it. The problem, as you may have noticed, is that random walkers return to previously
visited locations many times (this is known as “oversampling”). One strategy to avoid such a
problem is to, every so often, take a very large step. This allows the walker to forage randomly
around a specific location while periodically jumping very far away to reduce the amount of
oversampling. This variation on the random walk (known as a Lévy flight) requires a custom set
of probabilities. Though not an exact implementation of a Lévy flight, we could state the
probability distribution as follows: the longer the step, the less likely it is to be picked; the
shorter the step, the more likely.

Earlier in this prologue, we saw that we could generate custom probability distributions by filling
an array with values (some duplicated so that they would be picked more frequently) or by
testing the result of random(). Certainly, we could implement a Levy flight by saying there is a
1% chance of the walker taking a large step.

float r = random(1);
if (r < 0.01) {! ! $$ A 1% chance of taking a large step
 xstep = random(-100,100);
 ystep - random(-100,100);
} else {
 xstep = random(-1,1);
 ystep - random(-1,1);
}

However, this reduces the probabilities to a fixed number of options. What if we wanted to make
a more general rule—the higher a number, the more likely it is to be picked? 3.145 would be
more likely to be picked than 3.144, even if that likelihood is just a tiny bit greater. In other
words, if x is the random number, we could map the likelihood on the y-axis with y = x.

If we can figure out how to generate a distribution of random numbers according to the above
graph, then we will be able to apply the same methodology to any curve for which we have a
formula.

One solution is to pick two random numbers instead of one. The first random number is just that,
a random number. The second one, however, is what we’ll call a “qualifying random value.” It

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 12

will tell us whether to use the first one or throw it away and pick another one. Numbers that
have an easier time “qualifying” will be picked more often, and numbers that rarely qualify will
be picked infrequently. Here are the steps (let’s consider for now only random values between 0
and 1).

1. Pick a random number: R1
2. Compute a probability P that R1 should qualify. Let’s try: P = R1.
3. Pick another random number: R2
4. If R2 is less than P, then we have found our number—R1!
5. If R2 is not less than P, go back to step 1 and start over.

Here we are saying that the likelihood that a random value will qualify is equal to the random
number itself. Let’s say we pick 0.1 for R1. This means that R1 will have a 10% chance of
qualifying. If we pick 0.83 for R1 then it will have a 83% chance of qualifying. The higher the
number, the greater the likelihood that we will actually use it.

Here is a function (named for the Monte Carlo method, which was named for the Monte Carlo
casino) that implements the above algorithm, returning a random value between zero and one.

float montecarlo() {
 while (true) {! $$ We do this “forever” until we find a qualifying random value

 float r1 = random(1);! $$ Pick a random value
 float probability = r1;! $$ Assign a probability

 float r2 = random(1);! $$ Pick a second random value
 if (r2 < probability) {! $$ Does it qualify? If so, we’re done!
 return r1;
 }
 }
}

Exercise: Use a custom probability distribution to vary the size of a step taken by the random
walker. The step size can be achieved by affecting the range of values picked. Can you map the
probability exponentially—i.e. making the likelihood a value is picked equal to the value
squared?

 float stepsize = random(-10,10); $$ A uniform distribution of step sizes. Change this!

 float stepx = random(-stepsize,stepsize);
 float stepy = random(-stepsize,stepsize);

 x += stepx;
 y += stepy;

(Later we’ll see how to do this more efficiently using vectors.)

I.6 Perlin Noise (A Smoother Approach)

One of the qualities of a good random number generator is that the numbers produced have no
relationship. If they exhibit no discernible pattern, they are considered random.

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 13

As we are beginning to see, a little bit of randomness can be a good thing when programming
organic, life-like behaviors. However, randomness as the single guiding principle is not
necessarily natural. An algorithm known as “Perlin noise,” named for its inventor Ken Perlin,
takes this concept into account. Perlin developed the noise function while working on the
original Tron movie in the early 1980s. It was originally designed to create procedural textures
for computer generated effects; in 1997 Perlin won an Academy Award in Technical
Achievement for this work. Perlin noise can be used to generate a variety of interesting effects
such as clouds, landscapes, and patterned textures like marble.

“Perlin noise” has a more organic quality because it produces a naturally ordered (i.e. “smooth”)
sequence of pseudo-random numbers. The graph on the left below shows Perlin noise over
time (the x-axis represents time; note how the curve is smooth) while the graph on the right
shows pure random numbers over time. (The code for generating these graphs is available with
the accompanying book downloads.)

Perlin Noise Random

Noise Detail
If you visit the Processing.org noise reference, you’ll find that noise is calculated over several “octaves.” You can change the
number of octaves and their relative importance by calling the noiseDetail() function. This in turn changes how the noise
function behaves . http://processing.org/reference/noiseDetail_.html

You can learn more about how noise works from Ken Perlin himself: http://www.noisemachine.com/talk1/

Processing has a built-in implementation of the Perlin noise algorithm with the function noise().
The noise() function takes one, two, or three arguments (referring to the “space” in which noise
is computed: one, two, or three dimensions.) Let’s start by looking at one-dimensional noise.

Consider for a moment drawing a circle in our Processing window at a random x-location.

float x = random(0,width);! $$ A random x-location
ellipse(x,180,16,16);

Now, instead of a random xlocation, we want a Perlin noise x-location that is “smoother.” You
might think that all you need to do is replace random() with noise(), i.e.

float x = noise(0,width);! $$ A noise x-location?

While conceptually this is exactly what we want to do—calculate an x-value that ranges between
zero and the width according to Perlin noise—this is not the correct implementation. While the

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 14

http://processing.org/reference/noiseDetail_.html
http://processing.org/reference/noiseDetail_.html
http://www.noisemachine.com/talk1/
http://www.noisemachine.com/talk1/

arguments to the random() function specify a range of values between a minimum and a
maximum, noise() does not work this way. Instead, the output range is fixed—it always returns a
value between zero and one. We’ll see in a moment that we can get around this easily with
Processing’s map() function, but first we must examine what exactly noise() expects us to pass in
as an argument.

We can think of one-dimensional Perlin noise as a linear sequence of values over time. For
example:

Time Noise Value

0 0.365

1 0.363

2 0.363

3 0.364

4 0.366

Now, in order to access a particular noise value in Processing, we have to pass a specific moment
in time to the noise() function. For example:

float n = noise(3);

According to the above table, noise(3) will return 0.364 at time equals three. We could improve
this by using a variable for “time” and asking for a noise value continuously in draw().
float t = 3;! !

void draw() {
 float n = noise(t);! $$ We need the noise value for a specific “moment in time”
 println(n);
}

The above code results in the same value printed over and over. This is because we are asking
for the result of the noise() function at the same point in “time”—3—over and over. If we
increment the “time” variable t, however, we’ll get a different result.

float t = 0;! ! $$ Typically we would start at time = 0, though this is arbitrary

void draw() {
 float n = noise(t);
 println(n);

 t += 0.01;! ! $$ Now, we move forward in time!
}

How quickly we increment “t” also affects the smoothness of the noise. If we make large jumps
in time, then we are skipping ahead and the values will be more random.

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 15

Try running the code several times, incrementing t by 0.01, 0.02, 0.05, 0.1, 0.0001, and you will
see different results.

Now we’re ready to answer the question of what to do with the noise value. Once we have the
value with a range between zero and one, it’s up to us to map that range to what we want. The
easiest way to do this is with Processing’s map() function. The map() function takes five
arguments. First up is the value we want to map, in this case n. Then we have to give it the
value’s current range (minimum and maximum) followed by our desired range.

In this case, we know that noise has a range between zero and one, but we’d like to draw our
circle with a range between zero and the window’s width.

float t = 0;

void draw() {
 float n = noise(t);
 float x = map(n,0,1,0,width);! $$ Using map() to customize the range of Perlin noise
 ellipse(x,180,16,16);

 t += 0.01;

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 16

}

We can apply the exact same logic to our random walker, and assign both its x- and y-values
according to Perlin noise.

Example: Noise Walker
class Walker {
 float x,y;

 float tx,ty;

 Walker() {
 tx = 0;
 ty = 10000;
 }

 void step() {
 x = map(noise(tx), 0, 1, 0, width);! $$ x- and y-location mapped from noise
 y = map(noise(ty), 0, 1, 0, height);

 tx += 0.01;! ! ! ! $$ Move forward through “time”
 ty += 0.01;
 }
}

Notice how the above example requires an additional pair of variables: “tx” and “ty”. This is
because we need to keep track of two “time” variables, one for the x-location of the walker and
one for the y. But there is something a bit odd about these variables. Why does tx start at zero
and ty at 10,000? While these numbers are arbitrary choices, we have very specifically
initialized our two time variables with different values. This is because the noise function is
deterministic; it gives you the same result for a specific time t each and every time. If we asked
for the the noise value at the same time t for both x and y, then x and y would always be equal,
resulting in the walker only moving along a diagonal. Instead, we simply use two different parts
of the noise space, starting at 0 for x and 10,000 for y so that x and y can appear to act
independently of each other.

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 17

In truth, there is no true concept of “time” at play here. It’s a useful metaphor to help us
understand how the noise function works, but really what we have is space, rather than time.
The graph above depicts a linear sequence of noise values in a one-dimensional space, and we
can ask for a value at a specific x-location whenever we want. In examples, you will often see a
variable named “xoff” to indicate the “x offset” along the noise graph rather than “t” for time (as
noted in the diagram).

Exercise: In the above random walker, the result of the noise function is mapped directly to the
walker’s location. Create a random walker where you instead map the result of the noise()
function to a walker’s step size?

The reason why this idea of noise values living in a one-dimensional space is important is that it
leads us right into a discussion of two-dimensional space. Let’s think about this for a moment.
With one-dimensional noise, we have a sequence of values in which any given value is similar to
its neighbor. Because the value is in one dimension, it only has two neighbors: a value that
comes before it (to the left on the graph) and one that comes after it (to the right).

Two-dimensional noise works exactly the same way conceptually. The difference of course is
that we aren’t looking at values along a linear path, but values that are sitting on a grid. Think of

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 18

a piece of graph paper with numbers written into each cell. A given value will be similar to all of
its neighbors: above, below, to the right, left, and along any diagonal.

If you were to visualize this graph paper with each value mapped to the brightness of a color, we
would get something that looks like clouds. White sits next to light gray, which sits next to gray,
which sits next to dark grey, which sits next to black, which sits next to dark gray, etc.

This is what noise was originally invented for. Tweak the parameters a bit, play with color, and
the resulting image might look more like marble or wood or any other organic-looking texture.

Let’s take a quick look at how you implement two-dimensional noise in Processing. If you
wanted to color every pixel of a window randomly, you would need a nested loop, one that
accessed each pixel and picked a random brightness.

loadPixels();
for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 float bright = random(255);! ! $$ A random brightness!
 pixels[x+y*width] = color(bright);
 }
}
updatePixels();

To color each pixel according to the noise() function, we’ll do exactly the same thing, only
instead of calling random() we’ll call noise().

 float bright = map(noise(x,y),0,1,0,255);

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 19

This is a nice start conceptually—it gives you a noise value for every xy location in our two-
dimensional space. The problem is that this won’t have the cloudy quality we want. Jumping
from pixel 200 to pixel 201 is too large of a jump through noise. Remember, when we worked
with one-dimensional noise, we incremented our “time” variable by 0.01 each frame, not by 1!
A pretty good solution to this problem is to just use different variables for the arguments to noise.
For example, we could increment a variable called “xoff” each time we move horizontally, and a
“yoff” variable each time we move vertically through the nested loops.

float xoff = 0.0; $$ Start xoff at 0

for (int x = 0; x < width; x++) {

 float yoff = 0.0; $$ For every xoff, start yoff at 0

 for (int y = 0; y < height; y++) {
 float bright = map(noise(xoff,yoff),0,1,0,255);! ! $$ Use xoff and yoff for noise()
 pixels[x+y*width] = color(bright);! ! ! ! $$ Use x and y for pixel location

 yoff += 0.01; $$ Increment xoff
 }
 xoff += 0.01; $$ Increment xoff
}

Exercise: Play with color, noiseDetail(), and the rate at which xoff and yoff are incremented to
achieve different visual effects.

Exercise: Add a third argument to noise that increments once per cycle through draw() to
animate the two-dimensional noise.

Exercise: Use the noise values as the heights of a landscape. See the screenshot below as a
reference.

We’ve examined several traditional uses of Perlin noise in this section. With one-dimensional
noise, we used smooth values to assign the location of an object to give the appearance of
wandering. With two-dimensional noise, we created a cloudy pattern with smoothed values on a
plane of pixels. It’s important to remember, however, that Perlin noise values are just that—
values. They aren’t inherently tied to pixel locations or color. Any example in this book that has
a variable could be controlled via Perlin noise. When we model a wind force, the strength of that

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 20

force could be controlled by Perlin noise. When we design a fractal tree pattern, the angles
between the branches could be controlled by Perlin noise. When we develop a flow field
simulation, the speed and direction of objects moving along a grid could be controlled by Perlin
noise.

Tree with Perlin noise Flow field with Perlin noise

I.7 Onward

We began this chapter by talking about how randomness can be a crutch. In many ways, it’s the
most obvious answer to the kinds of questions we ask continuously—how should this object
move? What color should it be? This obvious answer, however, can also be a lazy one.

As we finish off this prologue, it’s also worth noting that we could just as easily fall into the trap
of using Perlin noise as a crutch. How should this object move? Perlin noise! What color
should it be? Perlin noise! How fast should it grow? Perlin noise!

The point of all of this is not to say that you should or should not use randomness. Or that you
should or should not use Perlin noise. The point is that the rules of your system are defined by
you and the larger your toolbox, the more choices you’ll have as you implement those rules.
The goal of this book is to fill your toolbox. If all you know is random, then your design
thinking is limited. Sure, Perlin noise helps, but you’ll need more. A lot more.

I think we’re ready to begin.

Daniel Shiffman, Prologue, Nature of Code Draft, February 15, 2012 11:02 AM Page 21

Chapter 1. Vectors
“Roger, Roger. What's our vector, Victor?”
 -- Captain Oveur, Airplane

In this chapter:
• What is a vector?
• What are we using vectors for?
• Basic vector math

• add, subtract, multiply
• dot, cross

• How to program your own Vector class (but really we are using PVector)
• Motion 101—position, velocity, acceleration
• Object Oriented Program, an object full of vectors
• An interactive object with dynamic acceleration

[THIS CHAPTER IS MISSING SOME EXERCISES (AMONG OTHER THINGS)]

This book is all about looking at the world around us, and coming up with clever ways to simulate that
world with code. Divided into three parts, the book will start by looking at basic physics—how a bowling
ball rolls towards the pins, a pendulum swings in the air, the earth revolves around the sun, etc.
Absolutely everything contained within the first five chapters of this book requires the most basic
building block for programming motion—the vector. And so this is where we begin our story.

Now, the word vector can mean a lot of different things. Vector is the name of a new wave rock band
formed in Sacramento, CA in the early 1980s. It’s the name of a breakfast cereal manufactured by
Kellogg’s Canada. In the field of epidemiology, a vector is used to describe an organism that transmits
infection from one host to another. In the C++ programming language, a Vector (std::vector) is an
implementation of a dynamically resizable array data structure.

While all interesting, these are not the definitions we are looking for. Rather, what we want is this
vector:

A vector is a collection of values that describe relative position in space.
[this definition needs work]

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 1

Vectors: You Complete Me

Before we get into vectors themselves, let’s look at a beginner Processing example that demonstrates why
we should care about vectors in the first place. If you’ve read any of the introductory Processing
textbooks or taken a class on programming with Processing (and hopefully you’ve done one of these
things to help prepare you for this book), you probably, at one point or another, learned to how to write a
simple bouncing ball sketch.

Example 1.1: Bouncing Ball with No Vectors

float x = 100;
float y = 100;
float xspeed = 1;
float yspeed = 3.3;

void setup() {
 size(200,200);
 smooth();
 background(255);
}

void draw() {
 noStroke();
 fill(255,10);
 rect(0,0,width,height);

 // Add the current speed to the location.
 x = x + xspeed;
 y = y + yspeed;

 // Check for bouncing
 if ((x > width) || (x < 0)) {
 xspeed = xspeed * -1;
 }
 if ((y > height) || (y < 0)) {
 yspeed = yspeed * -1;
 }

 // Display at x,y location
 stroke(0);
 fill(175);
 ellipse(x,y,16,16);
}

In the above example, we have a very simple world—a blank canvas with a circular shape (“ball”)
traveling around. This “ball” has some properties.

 LOCATION: x and y
 SPEED: xspeed and yspeed

In a more advanced sketch, we could imagine this ball and world having many more properties:

 ACCELERATION: xacceleration and yacceleration
 TARGET LOCATION: xtarget and ytarget
 WIND: xwind and ywind
 FRICTION: xfriction and yfriction

It’s becoming more and more clear that for every singular concept in this world (wind, location,
acceleration, etc.), we need two variables. And this is only a two-dimensional world. In a 3D world, we’d
need x, y ,z, xspeed, yspeed, zspeed, etc. Our first goal in this chapter is to learn the fundamental

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 2

[somewhere in this book i
need to mention that i’m
doing that alpha background
thing so that the screenshots
indicate motion. . .i think put
it in intro and then remind
reader here?]

Variables for location
and speed of ball.

Display the ball at x,y location.

Move the ball
according to its speed

Remember how Processing works?
setup() is executed once when the
sketch starts and draw() loops
forever and ever (until you quit).

concepts behind using vectors and rewrite this bouncing ball example. After all, wouldn’t it be nice if we
could simply write our code like the following?

Instead of:

float x;
float y;
float xspeed;
float yspeed;

Wouldn’t it be nice to have. . .

Vector location;
Vector speed;

Vectors aren’t going to allow us to do anything new. Using vectors won’t suddenly make your Processing
sketches magically simulate physics; however, they will simplify your code and provide a set of functions
for common mathematical operations that happen over and over and over again while programming
motion.

As an introduction to vectors, we’re going to live in two dimensions for quite some time (at least until we
get through the first several chapters.) All of these examples can be fairly easily extended to three
dimensions (and the class we will use—PVector—allows for three dimensions.) However, for the time
being, it’s easier to start with just two.

Vectors: What are they to us, the Processing programmer?

Technically speaking, the definition of a vector is the difference between two points. Consider how you
might go about providing instructions to walk from one point to another.

Here are some vectors and possible translations:

(3, 5) --> Walk three steps east, turn and walk five steps north.
(2,-1) --> Walk two steps east, turn and walk one step south.
(-15, 3) --> Walk fifteen steps west, turn and walk three steps north.

You’ve probably done this before when programming motion. For every frame of animation (i.e. single
cycle through Processing’s draw() loop), you instruct each object on the screen to move a certain number
of pixels horizontally and a certain number of pixels (vertically).

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 3

For a Processing programmer, we can now
understand a vector as the instructions for
moving a shape from point A to point B, an
object’s “pixel velocity” so to speak.

For every frame:

location = location + velocity

If velocity is a vector (the difference between
two points), what is location? Is it a vector too?
Technically, one might argue that location is not
a vector, since it’s not describing the change
between two points—it’s simply describing a
singular point in space. And so conceptually, we think of a location as different: a single point rather than
the difference between two points.

Nevertheless, another way to describe a location is the path taken from the origin to reach that location.
Hence, a location can be the vector representing the difference between location and origin. Therefore, if
we were to write code to describe a vector object, instead of creating separate Point and Vector classes,
we can use a single class which is more convenient.

Let’s examine the underlying data for both location and velocity. In the bouncing ball example we had
the following:

location --> x,y
velocity --> xspeed,yspeed

Notice how we are storing the same data for both—two floating point numbers, an x and a y. If we were
to write a vector class ourselves, we’d start with something rather basic:

class PVector {

 float x;
 float y;

 PVector(float x_, float y_) {
 x = x_;
 y = y_;
 }

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 4

}

At its core, a PVector is just a convenient way to store two values (or three, as we’ll see in 3D examples.).

And so this. . .

float x = 100;
float y = 100;
float xspeed = 1;
float yspeed = 3.3;

. . . becomes . . .

PVector location = new PVector(100,100);
PVector velocity = new PVector(1,3.3);

Now that we have two vector objects (“location” and “velocity”), we’re ready to implement the algorithm
for motion—location = location + velocity. In Example 1.1, without vectors, we had:

 // Add the current speed to the location.
 x = x + xspeed;
 y = y + yspeed;

In an ideal world, we would be able to rewrite the above as:

 // Add the current velocity vector to the location vector.
 location = location + velocity;

However, in Processing, the addition operator ‘+’ is reserved for primitive values (integers, floats, etc.)
only. Processing doesn’t know how to add two PVector objects together any more than it knows how to
add two PFont objects or PImage objects. Fortunately for us, the PVector class includes functions for
common mathematical operations.

Vectors: Addition

Before we continue looking at the PVector class and its add() method (purely for the sake of learning
since it’s already implemented for us in Processing itself), let’s examine vector addition using the notation
found in math and physics textbooks.

Vectors are typically written either in boldface type or with an arrow on top. For the purposes of this
book, to distinguish a vector from a scalar (scalar refers to a single value, such as an integer or a floating
point), we’ll use the arrow notation:

Vector:
Scalar: x

Let’s say I have the following two vectors:

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 5

 = (5,2) = (3,4)

Each vector has two components, an x and a y. To add two vectors together we simply add both x’s and
both y’s. In other words:

 = +

translates to:

 x = x + x
 y = y + y

and therefore:

 x = 5 + 3
 y = 2 + 4

and therefore:

 = (8,6)

Now that we understand how to add two vectors together, we can look at how addition is implemented in
the PVector class itself. Let’s write a function called add() that takes as its argument another PVector
object.

class PVector {

 float x;
 float y;

 PVector(float x_, float y_) {
 x = x_;
 y = y_;
 }

 void add(PVector v) {
 x = x + v.x;
 y = y + v.y;
 }
}

Now that we see how add() is written inside of PVector, we can return to the location + velocity algorithm
with our bouncing ball example and implement vector addition:

 // Add the current velocity to the location.
 location = location + velocity;
 location.add(velocity);

And here we are, ready to successfully complete our first goal—rewrite the entire bouncing ball example
using PVector.

Example 1.2: Bouncing Ball with PVector!

PVector location;
PVector velocity;

We can visually represent adding
vectors by placing them end to end.

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 6

New! A function to add
another PVector to this
PVector. Simply add the x
components and the y
components together.

Instead of a bunch of floats, we now
just have two PVector variables.

void setup() {
 size(200,200);
 smooth();
 background(255);
 location = new PVector(100,100);
 velocity = new PVector(2.5,5);
}

void draw() {
 noStroke();
 fill(255,10);
 rect(0,0,width,height);

 // Add the current speed to the location.
 location.add(velocity);

 if ((location.x > width) || (location.x < 0)) {
 velocity.x = velocity.x * -1;
 }
 if ((location.y > height) || (location.y < 0)) {
 velocity.y = velocity.y * -1;
 }

 // Display circle at x location
 stroke(0);
 fill(175);
 ellipse(location.x,location.y,16,16);
}

Now, you might feel somewhat disappointed. After all, this may initially appear to have made the code
more complicated than the original version. While this is a perfectly reasonable and valid critique, it’s
important to understand that we haven’t fully realized the power of programming with vectors just yet.
Looking at a simple bouncing ball and only implementing vector addition is just the first step. As we
move forward into a more complex world of multiple objects and multiple forces (we’ll cover forces in
the next chapter), the benefits of PVector will become more apparent.

We should, however, make note of an important aspect of the above transition to programming with
vectors. Even though we are using PVector objects to describe two values—the x and y of location and
the x and y of velocity—we still often need to refer to the x and y components of each PVector
individually. When we go to draw an object in Processing, there’s no means for us to say:

ellipse(location,16,16);

The ellipse() function does not allow for a PVector as an argument. An ellipse can only be drawn with
two scalar values, an x coordinate and a y coordinate. And so we must dig into the PVector object and
pull out the x and y components using object-oriented dot syntax.

ellipse(location.x,location.y,16,16);

The same issue arises when testing if the circle has reached the edge of the window, and we need to
access the individual components of both vectors: location and velocity.

if ((location.x > width) || (location.x < 0)) {
 velocity.x = velocity.x * -1;
}

Vectors: More Algebra

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 7

We still sometimes need to refer to the
individual components of a PVector
and can do so using the dot syntax
(location.x, velocity.y, etc.)

Addition was really just the first step. There is a long list of common mathematical operations that are
used with vectors when programming the motion of objects on the screen. Below is a comprehensive list
of the mathematical operations available as functions in the PVector class. We’ll go through a few of the
key ones now. As our examples get more and more sophisticated, we’ll continue to reveal the details of
these functions.

• add()—add vectors
• sub()—subtract vectors
• mult()—scale the vector with multiplication
• div()—scale the vector with division
• mag()—calculate the magnitude of a vector
• normalize()—normalize the vector to unit length of 1
• limit()—limit the magnitude of a vector
• heading2D()—the heading of a vector expressed as an angle
• dist()—the Euclidean distance between two vectors (considered as points)
• angleBetween()—find the angle between two vectors
• dot()—the dot product of two vectors
• cross()—the cross product of two vectors

Having already covered addition, let’s start with subtraction. This one’s not so bad; just take the plus sign
and replace it with a minus!

Vector subtraction: = -

translates to:

 x = x - x
 y = y - y

and the function inside PVector therefore looks like:

 void sub(PVector v) {
 x = x - v.x;
 y = y - v.y;
 }

[THIS DIAGRAM REALLY NEEDS WORK, WELL, THEY ALL DO, BUT THIS ONE IN
PARTICULAR]

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 8

The following example demonstrates vector subtraction by taking the difference between two points—the
mouse location and the center of the window.

Example 1-3: Vector subtraction
void setup() {
 size(200,200);
 smooth();
}

void draw() {
 background(255);

 PVector mouse = new PVector(mouseX,mouseY);
 PVector center = new PVector(width/2,height/2);

 mouse.sub(center);

 translate(width/2,height/2);
 line(0,0,mouse.x,mouse.y);

}

Both addition and subtraction with vectors follow the same algebraic rules as with real numbers.

The commutative rule: + = +

The associative rule: + (+) = (+) +

Fancy terminology and symbols aside, this is really quite a simple concept. We’re just saying that common sense
properties of addition apply to vectors as well.

 3 + 2 = 2 + 3

 (3 + 2) + 1 = 3 + (2 + 1)

Moving on to multiplication, we have to think a little bit differently. When we talk about multiplying a
vector, what we usually mean is scaling a vector. Maybe we want a vector to be twice its size or one-
third its size. In this case, we are saying “Multiply a vector by 2” or “Multiply a vector by 1/3”. Note we
are multiplying a vector by a scalar, a single number, not another vector.

To scale a vector by a single number, we multiply each component (x and y) by that number.

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 9

Two PVectors, one for the mouse
location and one for the center of the
window.

PVector subtraction!

Draw a line to represent the vector.

Vector multiplication: = * n

translates to:
 x = x * n
 y = y * n

Let’s look at an example with vector
notation.

 = (-3,7)
 n = 3

 = * n
 x = -3 * 3
 y = 7 * 3

 = (-9, 21)

The function inside the PVector class therefore is written as:

 void mult(float n) {
 x = x * n;
 y = y * n;
 }

And implementing multiplication in code is as simple as:

PVector u = new PVector(-3,7);
u.mult(3);

Example 1-4: Vector multiplication
void setup() {
 size(200,200);
 smooth();
}

void draw() {
 background(255);

 PVector mouse = new PVector(mouseX,mouseY);
 PVector center = new PVector(width/2,height/2);
 mouse.sub(center);

 mouse.mult(0.5);

 translate(width/2,height/2);
 line(0,0,mouse.x,mouse.y);

}

Division is exactly the same as multiplication—only, of course, using a forward slash instead of a
multiplication sign.

void div(float n) {

When you multiply a vector by a
number, only its size (also known as
magnitude or length) changes. Its
direction stays the same!

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 10

With multiplication, all components of
the vector are multiplied by a number.

This PVector is now three times the size
and is equal to (-9,21).

PVector multiplication! The
vector is now half its original
size (multiplied by 0.5).

 x = x / n;
 y = y / n;
}

PVector u = new PVector(8,-4);
u.div(2);

As with addition, basic algebraic rules of multiplication and division apply to vectors.

The associative rule: (n*m)* = n*(m*)
The distributive rule, 2 scalars, 1 vector: (n + m)* = n* + m*
The distributive rule, 2 vectors, 1 scalar: (+)*n = n* + n*

Vectors: Magnitude

Multiplication and division, as we just saw, are means by which the length of the vector can be changed
without affecting direction. Perhaps you’re wondering: “Ok, so how do I know what the length of a
vector is? I know the components (x and y), but I don’t know how long (in pixels) actual arrow is?!”

Understanding how to calculate the length (referred from here on out as magnitude) is incredibly useful
and important.

Notice in the above diagram how when we draw a vector as an arrow and two components (x and y), we
end up with a right triangle. The sides are the components and the hypotenuse is the arrow itself. We’re
very lucky to have this right triangle, because once upon a time, a Greek mathematician named
Pythagoras developed a nice formula to describe the relationship between the sides and hypotenuse of a
right triangle.

The length or “magnitude” of a vector is often written as: || ||

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 11

The Pythagorean theorem: a squared plus b squared equals c squared.

Armed with this lovely formula, we can now compute the magnitude of as follows:

• || || = sqrt (x* x + y* y)

or in PVector:

float mag() {
 return sqrt(x*x + y*y);
}

Example 1-3: Vector magnitude
void setup() {
 size(200,200);
 smooth();
}

void draw() {
 background(255);

 PVector mouse = new PVector(mouseX,mouseY);
 PVector center = new PVector(width/2,height/2);
 mouse.sub(center);

 float m = mouse.mag();
 fill(0);
 rect(0,0,m,10);

 translate(width/2,height/2);
 line(0,0,mouse.x,mouse.y);

}

Vectors: Normalizing

Calculating the magnitude of a vector is only the beginning. The magnitude function opens the door to
many possibilities, the first of which is normalization. Normalizing refers to the process of making
something “standard” or, well, “normal.” In the case of vectors, let’s assume for the moment that a
standard vector has a length of one. To normalize a vector, therefore, is to take a vector of any length and,
keeping it pointing in the same direction, change its length to one, turning it into what is called a unit
vector.

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 12

The magnitude (i.e. length) of a vector can
be accessed via the mag() function. Here it
is used as the width to a rectangle drawn at
the top of the window.

The ability to quickly access the unit vector is useful since it describes a vector’s direction without regard
to length, and we’ll see this come in handy once we start to work with forces in Chapter 2.

For any given vector , its unit vector (written as û) is calculated as follows:

• û = / || ||

In other words, to normalize a vector, simply divide each component by its magnitude. This is pretty
intuitive. Say a vector is of length 5. Well, 5 divided by 5 is 1. So looking at our right triangle, we then
need to scale the hypotenuse down by dividing by 5. In that process the sides shrink, divided by 5 as
well.

In the PVector class, we therefore write our normalization function as follows:

 void normalize() {
 float m = mag();
 div(m);
 }

Of course, there’s one small issue. What if the magnitude of the vector is zero? We can’t divide by zero!
Some quick error checking will fix that right up:

 void normalize() {
 float m = mag();
 if (m != 0) {
 div(m);
 }
 }

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 13

Example 1-X: Normalizing a Vector
void setup() {
 size(200,200);
 smooth();
}

void draw() {
 background(255);

 PVector mouse = new PVector(mouseX,mouseY);
 PVector center = new PVector(width/2,height/2);
 mouse.sub(center);

 mouse.normalize();
 mouse.mult(50);

 translate(width/2,height/2);
 line(0,0,mouse.x,mouse.y);

}

Vectors: Motion

Why should we care? Yes, all this vector math stuff sounds like something we should know about, but
why exactly? How will it actually help me write code? The truth of the matter is that we need to have
some patience. The awesomeness of using the PVector class will take some time to fully come to light.
This is actually quite common when first learning a new data structure. For example, when you first
learn about an array, it might seem like much more work to use an array than to just have several
variables stand for multiple things. But that plan quickly breaks down when you need a hundred, or a
thousand, or ten thousand things. The same can be true for PVector. What might seem like more work
now will pay off later, and pay off quite nicely. And you don’t have to wait too long, as your reward will
come in the next chapter.

For now, however, we want to focus on simplicity. What does it mean to program motion using vectors?
We’ve seen the beginning of this in our first example: the bouncing ball. An object on screen has a
location (where it is at any given moment) as well as a velocity (instructions for how it should move from
one moment to the next). Velocity is added to location:

location.add(velocity);

And then we draw the object at that location:

ellipse(location.x,location.y,16,16);

This is Motion 101.

• Add velocity to location
• Draw object at location

In the bouncing ball example, all of this code happened in Processing’s main tab, within setup() and draw
(). What we want to do now is move towards encapsulating all of the logic for motion inside of a class.
This way, we can create a foundation for programming moving objects in Processing. We’ll take a
moment now to review the basics of object-oriented programming in this context, but this book will
otherwise assume knowledge of working with objects (which will be necessary for just about every

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 14

In this example, after the vector is normalized it is
multiplied by 50 so that it is viewable onscreen.
Note that no matter where the mouse is, the vector
will have the same length (50) due to the
normalization process.

example from this point forward). However, if you need a further refresher, I encourage you to check out
the online OOP Processing tutorial: http://processing.org/learning/tutorials/objects/.

The driving principle behind object-oriented programming is the union of data and functionality. Take the
prototypical OOP example: a car. A car has data—color, size, speed, etc. It also has functionality—drive
(), turn(), stop(), etc. A car class brings all that stuff together in a template from which car instances, i.e.
objects, are made. The benefit of OOP is nicely organized code that makes sense when you read it.

Car c = new Car(red,big,fast);
c.drive();
c.turn();
c.stop();

In our case, we’re going to create a generic “Mover” class, a class to describe a shape moving around the
screen. And so we must consider the following two questions:

1) What data does a Mover have?
2) What functionality does a Mover have?

Our “Motion 101” algorithm tells us the answers to these questions. A “Mover” object has two pieces of
data: its location and its velocity, two PVector objects.

class Mover {

 PVector location;
 PVector velocity;

Its functionality is just about as simple. It needs to move and it needs to be seen. We’ll implement these
as functions named update() and display(). update() is where we’ll put all of our motion logic code and
display() is where we will draw the object.

 void update() {
 location.add(velocity);
 }

 void display() {
 stroke(0);
 fill(175);
 ellipse(location.x,location.y,16,16);
 }

}

We’ve forgotten one crucial item, however: the object’s constructor. The constructor is a special function
inside of a class that creates the instance of the object itself. It is where you give instructions on how to
set up the object. It always has the same name as the class and is called by invoking the new operator: “
Car myCar = new Car(); ”.

In our case, let’s just initialize our mover object by giving it a random location and a random velocity.

 Mover() {
 location = new PVector(random(width),random(height));
 velocity = new PVector(random(-2,2),random(-2,2));
 }

If object-oriented programming is new to you, one aspect here may seem a bit confusing. After all, we
spent the beginning of this chapter discussing the PVector class. The PVector class is the template for
making the object “location” and the object “velocity”. So what are they doing inside of yet another

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 15

http://processing.org/learning/tutorials/objects/
http://processing.org/learning/tutorials/objects/

object, the “Mover” object? In fact, this is quite normal in object-oriented programming. An object is
simply something that holds data (and functionality). That data can be numbers (integers, floats, etc.) or
other objects! We’ll see this over and over again in this book. For example, in Chapter X, we’ll write a
class to describe a system of Particles. That “ParticleSystem” object will have as its data a list of Particle
objects. . .and each Particle object will have as its data several PVector objects!

Let’s finish off the Mover class by incorporating a function to determine what the object should do when
it reaches the edge of the window. For now let’s do something simple, and just have it wrap around the
edges.

 void checkEdges() {

 if (location.x > width) {
 location.x = 0;
 } else if (location.x < 0) {
 location.x = width;
 }

 if (location.y > height) {
 location.y = 0;
 } else if (location.y < 0) {
 location.y = height;
 }

 }

Now that the Mover class is finished, we can look at what we need to do in our main program. We first
declare a Mover object:

Mover mover;

Then initialize the mover in setup():

 mover = new Mover();

and call the appropriate functions in draw():

 mover.update();
 mover.checkEdges();
 mover.display();

Here is the entire example for reference:

Example 1.3: Motion 101 (velocity)

Mover mover;

void setup() {
 size(200,200);
 smooth();
 background(255);
 mover = new Mover();
}

void draw() {
 noStroke();
 fill(255,10);
 rect(0,0,width,height);

 mover.update();
 mover.checkEdges();
 mover.display();
}

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 16

Declare and make a Mover object

Call functions on Mover object.

class Mover {

 PVector location;
 PVector velocity;

 Mover() {
 location = new PVector(random(width),random(height));
 velocity = new PVector(random(-2,2),random(-2,2));
 }

 void update() {
 location.add(velocity);
 }

 void display() {
 stroke(0);
 fill(175);
 ellipse(location.x,location.y,16,16);
 }

 void checkEdges() {

 if (location.x > width) {
 location.x = 0;
 } else if (location.x < 0) {
 location.x = width;
 }

 if (location.y > height) {
 location.y = 0;
 } else if (location.y < 0) {
 location.y = height;
 }

 }

}

OK. At this point, we should feel comfortable with two things—(1) What is a PVector? and (2) How do
we use PVectors inside of an object to keep track of its location and movement? This is an excellent first
step and deserves an mild round of applause. Before standing ovations and screaming fans, however, we
need to make one more, somewhat larger, step forward. After all, watching the Motion 101 example is
fairly boring -- the circle never speeds up, never slows down, and never turns. For more interesting
motion, for motion that appears in the real world around us, we need to add one more PVector to our class
—acceleration.

The strict definition of acceleration we’re using here is: the rate of change of velocity. Let’s think about
that definition for a moment. Is this a new concept? Not really. Velocity is defined as the rate of change
of location. In essence, we are developing a “trickle down” effect. Acceleration affects velocity which in
turn affects location (for some brief foreshadowing, this point will become even more crucial in the next
chapter when we see how forces affect acceleration, which affects velocity, which affects location.) In
code, this reads:

 velocity.add(acceleration);
 location.add(velocity);

As an exercise, from this point forward, let’s make a rule for ourselves. Let’s write every example in the
rest of this book without ever touching the value of velocity and location (except to initialize them). In
other words, our goal now for programming motion is as follows—come up with an algorithm for how
we calculate acceleration and let the trickle-down effect work its magic. And so we need to come up
with some ways to calculate acceleration:

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 17

Our object has two PVectors: location and velocity

Motion 101: Location changes by velocity.

ACCELERATION ALGORITHMS!

 1) A constant acceleration
 2) A totally random acceleration
 3) Perlin noise acceleration
 4) Acceleration towards the mouse

Number one, though not particularly interesting, is the simplest, and will help us begin incorporating
acceleration into our code. The first thing we need to do is add another PVector to the Mover class:

class Mover {

 PVector location;
 PVector velocity;
 PVector acceleration;

And incorporate acceleration into the update() function:

 void update() {
 velocity.add(acceleration);
 location.add(velocity);
 }

We’re almost done. The only missing piece is initialization in the constructor.

 Mover() {

Let’s start the mover object in the middle of the window. . .
 location = new PVector(width/2,height/2);

. . . with an initial velocity of zero.
 velocity = new PVector(0,0);

This means that when the sketch starts, the object is at rest. We don’t have to worry about velocity
anymore as we are controlling the object’s motion entirely with acceleration. Speaking of which,
according to Algorithm #1, our first sketch involves constant acceleration. So let’s pick a value.
 acceleration = new PVector(-0.001,0.01);

 }

Maybe you’re thinking, “Gosh, those values seem awfully small!” That’s right, they are quite tiny. It’s
important to realize that our acceleration values (measured in pixels) accumulate over time in the velocity,
about thirty times per second depending on our sketch’s frame rate. And so to keep the magnitude of the
velocity vector within a reasonable range, our acceleration values should remain quite small. We can
also help this cause by incorporating the PVector function limit().

velocity.limit(10);

This translates to the following:

What is the magnitude of velocity? If it’s less than 10, no worries; just leave it as is. If it’s more
than 10, however, reduce it to 10!

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 18

The limit() function constrains the
magnitude of a vector.

Our motion algorithm is
now two lines of code!

A new PVector for
acceleration.

Exercise: Write the limit() function for the PVector class.

 void limit(float max) {
 if (_______ > _______) {
 _________();
 ____(max);
 }
 }

Let’s take a look at the changes to the Mover class now, complete with acceleration and limit().

Example 1.4: Motion 101 (velocity and constant acceleration)

class Mover {

 PVector location;
 PVector velocity;
 PVector acceleration;
 float topspeed;

 Mover() {
 location = new PVector(width/2,height/2);
 velocity = new PVector(0,0);
 acceleration = new PVector(-0.001,0.01);
 topspeed = 10;
 }

 void update() {
 velocity.add(acceleration);
 velocity.limit(topspeed);
 location.add(velocity);
 }

 // display() is the same

 // checkEdges() is the same

}

Now to Algorithm #2,“a totally random acceleration.” In this case, instead of initializing acceleration in
the object’s constructor, we want to pick a new acceleration each cycle, i.e. each time update() is called.

Example 1.5: Motion 101 (velocity and random
acceleration)

 void update() {

 acceleration = new PVector(random(-1,1),random(-1,1));
 acceleration.normalize();

 velocity.add(acceleration);
 velocity.limit(topspeed);
 location.add(velocity);
 }

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 19

Acceleration is the key!

The variable, topspeed,
will limit the magnitude
of velocity.

Velocity changes by
acceleration and is
limited by topspeed.

While normalizing acceleration is not entirely necessary, it does prove useful, as it standardizes the
magnitude of the vector, allowing us to try different things. Such as:

(a) scaling the acceleration to a constant value

 acceleration = new PVector(random(-1,1),random(-1,1));
 acceleration.normalize();
 acceleration.mult(0.5);

(b) scaling the acceleration to a random value

 acceleration = new PVector(random(-1,1),random(-1,1));
 acceleration.normalize();
 acceleration.mult(random(2));

While this may seem like an obvious point, it’s crucial to understand that acceleration does not merely
refer to the speeding up or slowing down of a moving object, but rather any change in velocity in either
magnitude or direction. Acceleration is used to steer an object, and we’ll see this again and again in
future chapters as we begin to program objects that make decisions about how to move about the screen.

[INCLUDE PERLIN NOISE EXAMPLE REFFERING BACK TO PROLOGUE]

Vectors: Static vs. Non-Static

Before we get to acceleration Algorithm #4 (accelerate towards the mouse), we need to cover one more
rather important aspect of working with vectors and the PVector class: the difference between using static
methods and non-static methods.

Forgetting about vectors for a moment, take a look at the following code:

float x = 0;
float y = 5;

x = x + y;

Pretty simple, right? x has the value of 0, we add y to it, and now x is equal to 5. We could write the
corresponding code pretty easily based on what we’ve learned about PVector.

PVector v = new PVector(0,0);
PVector u = new PVector(4,5);
v.add(u);

The vector v has the value of (0,0), we add y to it, and now x is equal to (4,5). Easy, right?

OK, let’s take a look at another example of some simple floating point math:

float x = 0;
float y = 5;

float z = x + y;

x has the value of 0, we add y to it, and store the result in a new variable z. The value of x does not
change in this example (neither does y)! This may seem like a trivial point, and one that is quite intuitive
when it comes to mathematical operations with floats. However, it’s not so obvious with mathematical
operations in PVector. Let’s try to write the code based on what we know so far.

PVector v = new PVector(0,0);

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 20

PVector u = new PVector(4,5);
PVector w = v.add(u);

The above might seem like a good guess, but it’s just not the way the PVector class works. If we look at
the definition of add() . . .

 void add(PVector v) {
 x = x + v.x;
 y = y + v.y;
 }

. . . we see that this code does not accomplish our goal. First, it does not return a new PVector (the return
type is “void”) and second, it changes the value of the PVector upon which it is called. In order to add
two PVector objects together and return the result as a new PVector, we must use the static add() function.

Functions that we call from the class name itself (rather than from a specific object instance) are known
as static functions.

// Assuming two PVector objects: v and u

PVector.add(v,u);

v.add(u);

Since you can’t write static functions yourself in Processing, you might not have encountered them
before. In the case of PVector, static allows us to perform generic mathematical operations on PVector
objects without having to adjust the value of one of the input PVectors. Let’s look at how we might write
the static version of add():

 static PVector add(PVector v1, PVector v2) {
 PVector v3 = new PVector(v1.x + v2.x, v1.y + v2.y);
 return v3;
 }

There are several differences here:

• The function is labeled as static.
• The function does not have a void return type, but rather returns a PVector.
• The function creates a new PVector (v3) and returns the sum of the components of v1 and v2 in that

new PVector.

When you call a static function, instead of referencing an actual object instance, you simply reference the
name of the class itself.

PVector v = new PVector(0,0);
PVector u = new PVector(4,5);
PVector w = v.add(u);
PVector w = PVector.add(v,u);

The PVector class has static versions of add(), sub(), mult(), and div().

Exercise: Translate the following pseudo-code to code using static or non-static functions where
appropriate.

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 21

Static: called off of the class name.

Not static: called off of an object instance.

Don’t be fooled, this is
incorrect!!!

The static version of add allows us to add two
PVectors together and assign the result to a new
PVector while leaving the original PVectors (v and u)
intact.

• The PVector v equals (1,5)
• The PVector u equals v multiplied by 2.
• The PVector w equals v minus u.
• Divide the PVector w by 3.

PVector v = new PVector(1,5);
PVector u = ________._____(__,__);
PVector w = ________._____(__,__);
___________;

Vectors: Interactivity

To finish out this chapter, let’s try something a bit more complex and a great deal more useful. We’ll
dynamically calculate an object’s acceleration according to a rule, acceleration Algorithm #4 —“the
object accelerates towards the mouse.”

Anytime we want to calculate a vector based on a rule or a formula, we need to compute two things:
magnitude and direction. Let’s start with direction. We know the acceleration vector should point from
the object’s location towards the mouse location. Let’s say the object is located at the point (x,y) and the
mouse at (mouseX,mouseY).

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 22

As illustrated in the above diagram, we see that we can get a vector (dx,dy) by subtracting the object’s
location from the mouse’s location. After all, this is precisely where we started this chapter—the
definition of a vector is “the difference between two points in space”!

dx = mouseX - x
dy = mouseY - y

Let’s rewrite the above using PVector syntax. Assuming we are in the Mover class and thus have access
to the object’s location PVector, we then have:

PVector mouse = new PVector(mouseX,mouseY);
PVector dir = PVector.sub(mouse,location);

We now have a PVector that points from the mover’s location all the way to the mouse. If the object were
to actually accelerate using that vector, it would appear instantaneously at the mouse location. This does
not make for good animation, of course, and what we want to do now is decide how quickly that object
should accelerate toward the mouse.

In order to set the magnitude (whatever it may be) of our acceleration PVector, we must first ________
that direction vector. That’s right, you said it. Normalize. If we can shrink the vector down to its unit
vector (of length one) then we have a vector that tells us the direction and can easily be scaled to any
value. One multiplied by anything equals anything.

float anything = ?????
dir.normalize();
dir.mult(anything);

To summarize, we take the following steps:

• 1) Calculate a vector that points from the object to the target location (mouse).
• 2) Normalize that vector (reducing its length to 1)
• 3) Scale that vector to an appropriate value (by multiplying it by some value)
• 4) Assign that vector to acceleration

And here are those steps in the update() function itself:

 void update() {

 PVector mouse = new PVector(mouseX,mouseY);
 PVector dir = PVector.sub(mouse,location);

 dir.normalize();

 dir.mult(0.5);

 acceleration = dir;

 velocity.add(acceleration);
 velocity.limit(topspeed);
 location.add(velocity);

 }

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 23

Look! We’re using the static
reference to sub() because we
want a new PVector pointing
from one point to another.

Step 1: direction

Step 2: normalize

Step 3: scale

Step 4: accelerate

Exercise: This example is remarkably close to the concept of gravitational attraction (where the object is
attracted to the mouse location). Gravitational attraction will be covered in more detail in the next
chapter. However, one thing missing here is that the strength of gravity (magnitude of acceleration) is
inversely proportional to distance. This means that the closer the object is to the mouse, the faster it
accelerates. Try implementing the above example with a variable magnitude of acceleration, either
stronger when it is closer or when it is farther away.

Let’s see what this example would look like with an array of Mover objects (rather than just one).

Example 1.6: Accelerating towards mouse
Mover[] movers = new Mover[20];

void setup() {
 size(200,200);
 smooth();
 background(255);
 for (int i = 0; i < movers.length; i++) {
 movers[i] = new Mover();
 }
}

void draw() {
 noStroke();
 fill(255,10);
 rect(0,0,width,height);

 for (int i = 0; i < movers.length; i++) {
 movers[i].update();
 movers[i].checkEdges();
 movers[i].display();
 }
}

class Mover {

 PVector location;
 PVector velocity;
 PVector acceleration;
 float topspeed;

 Mover() {
 location = new PVector(random(width),random(height));
 velocity = new PVector(0,0);
 topspeed = 4;
 }

 void update() {

 PVector mouse = new PVector(mouseX,mouseY);
 PVector dir = PVector.sub(mouse,location);
 dir.normalize();
 dir.mult(0.5);
 acceleration = dir;

Why doesn’t the circle stop when it reaches the target?

The object moving has no knowledge about trying to stop at a destination; it only knows where the destination is
and tries to go there as quickly as possible. Going as quickly as possible means it will inevitably overshoot the
location and have to turn around, again going as quickly as possible towards the destination, overshooting it again,
and so on, and so forth. Stay tuned; in later chapters we’ll learn how to program an object to “arrive” at a location
(slow down on approach).

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 24

Creating and initializing
an array of objects.

Calling functions of all of
the objects in the array.

Our algorithm for calculating acceleration:

• find vector pointing towards mouse
• normalize
• scale
• set to acceleration

 velocity.add(acceleration);
 velocity.limit(topspeed);
 location.add(velocity);
 }

 void display() {
 stroke(0);
 fill(175);
 ellipse(location.x,location.y,16,16);
 }

 void checkEdges() {

 if (location.x > width) {
 location.x = 0;
 } else if (location.x < 0) {
 location.x = width;
 }

 if (location.y > height) {
 location.y = 0;
 } else if (location.y < 0) {
 location.y = height;
 }

 }

}

Chapter 1 Project:

[AN END OF CHAPTER PROJECT / EXERCISE WOULD GO HERE]

The Nature of Code by Daniel Shiffman, Chapter 1, January 28, 2011 1:35 PM, page 25

Motion 101! Velocity changes by
acceleration. Location changes by velocity.

Chapter 2. Forces
“Don't underestimate the Force.”
! -- Darth Vader

In this Chapter:
• Acceleration is the Key
• Newton’s Laws
• Making up a force
• Force accumulation
• A real world force simulated, a few examples

• Attraction (Gravity)
• Friction
• What else?

• Many things acting on many things

In the final example of Chapter 1, we saw how we could calculate a dynamic acceleration based on a vector pointing
from a circle on the screen to the mouse location. The resulting motion resembled a magnetic attraction between
circle and mouse, as if some force were pulling the circle in towards the mouse and the key to that force was
acceleration. In this chapter we will formalize our understanding of the concept of a force and its relationship to
acceleration. Our goal, by the end of this chapter, is to understand how to make multiple objects move around the
screen and respond to a variety of environmental forces.

Forces and Sir Isaac Newton

Before we begin examining the practical realities of simulating forces in code, let’s take a conceptual look at what it
means to be a force in the real world. Just as with the word “vector”, “force” is often commonly used to mean a
variety of things. It can used to indicate a powerful intensity, as in “She pushed the boulder with great force” or “He
spoke forcefully.” The definition of force that we care about is much more formal and comes from Isaac Newton’s
laws of motion:

Force is a vector that causes an object with mass to accelerate.

The good news here is that we recognize the first part of the definition—“a force is a vector”. Thank goodness we just
spent a whole chapter learning what a vector is and how to program with PVectors!

Let’s look at Newton’s three laws in relation to the concept of a force.

Newton’s First Law
Every body persists in its state of being at rest or of moving uniformly straight forward, except insofar as it is
compelled to change its state by force impressed.
[TAKEN FROM WIKIPEDIA, CITE: http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion]?

By the time Newton came along, the prevailing theory of motion—formulated by Aristotle—was nearly two thousand
years old. It stated that if an object is moving, some sort of “force” is required to keep it moving. Unless that moving
thing is being pushed or pulled, it will simply slow down or stop. Right?

This, of course, is not true. In a vacuum, if an object is moving, it requires no force to keep it moving. An object not
in a vacuum, such as a ball thrown in the air on earth, might slow down because of air resistance (a force) or speed up
while falling due to gravity (another force). An object’s velocity will remain constant if no forces act upon it. An an
object at rest (with a velocity of zero) will stay at rest if no forces act upon it.

It should also be noted that an object’s velocity will remain unchanged if the forces that act on it cancel each other out,
i.e. the net force adds up to zeroThis is often referred to as equilibrium.

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 1

http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion%5D
http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion%5D

In our Processing world, we could restate Newton’s 1st law as follows:

Newton’s First Law as seen through the eyes of Processing
An object’s PVector velocity will remain constant if it is in a state of equilibrium.

Skipping Newton’s Second law (arguably the most important law for our purposes) for a moment, let’s move on to
the Third law.

Newton’s Third Law
For a force there is always an equal and opposite reaction: or the forces of two bodies on each other are always equal
and are directed in opposite directions.
[ALSO TAKEN FROM WIKIPEDIA, CITE: http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion]

This law is often stated as “For every action there is an equal and opposite reaction." When I push on the wall, the
wall pushes back on me (with equal force in the opposite direction.) When sumo wrestlers meet in the middle of the
ring, for every push there is an equal and opposite push.

This law often causes some confusion in the way that it is stated, however. For one, it sounds like one force causes
another. Truly, there is no “origin” force. A better way of stating the law might be: “Forces always occur in pairs.
The two forces are of equal strength, but in opposite directions.”

Now, this still causes confusion because it sounds like these two forces always cancel each other out. This is not the
case. First, the forces act on different objects. And second, just because the two forces are equal, it doesn’t mean that
the movements are equal (or that the objects will stop moving). After all, we have to take many other factors into
account. If one sumo wrestler is much bigger than the other, even if the forces are equal, the larger wrestler will
overpower the smaller one. And certainly, the current velocity of each object is important—if a wrestler is running
towards another wrestler rather than standing in place, this will have a strong effect on the outcome.

Let’s take a look at a quick example. Say you are wearing roller skates and you push on a table that is leaning against
a wall.

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 2

http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion%5D
http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion%5D

When you push against the table, Newton’s third law tells us that the table pushes against you. In turn, you
accelerate away from the table sliding along the floor. But the table does not accelerate away from you. This could be
due to a number of different reasons. For example, if the table is extremely heavy (i.e. has a higher mass) its
acceleration will be much smaller (we’ll get into why with Newton’s second law). In addition, there are other forces
at work, such as friction against the floor and a force pushing back from the wall.

Newton’s Third Law as seen through the eyes of Processing

If we calculate a PVector f that is a force of object A on object B, we must also apply the force -f (or PVector.mult
(f,-1);) that B exerts on object A.

We’ll see that in the world of Processing programming we don’t always have to stay true to the above. Sometimes,
such as in the case of gravitational attraction between bodies (see ex. 2.x on p.XX), we’ll want to model equal and
opposite forces. Other times, such as when we’re simply saying, “Hey, there’s some wind in the environment,” we’re
not going to bother to model the force that a body exerts back on the air. In fact, we’re not modeling the air at all!
Remember, we are simply taking inspiration from the physics of the natural world and not simulating everything
with perfect precision.

Newton’s Second Law

F = M * A
Force equals mass times acceleration.

And here we are at the most important law for the Processing
programmer. Why? Well, let’s write this a different way.

A = F / M
Acceleration is directly proportional to force and inversely
proportional to mass. This means that if you get pushed, the harder
you are pushed, the faster you’ll move (accelerate). The bigger you
are, the slower you’ll move.

Now, in the world of Processing, what is mass anyway? Aren’t we dealing with pixels? To start in a simpler place,
let’s say that in our pretend pixel world, all of our objects have a mass equal to 1. F/ 1 = F. And so:

A = F

Weight vs. Mass

• The mass of an object is a measure of the amount of
matter in the object (measured in kilograms).

• Weight, though often mistaken for mass, is
technically the force of gravity on an object. From
Newton’s second law, we can calculate it as mass
times the acceleration of gravity (w = m * g). Weight
is measured in Newtons.

• Density is is defined as the amount of mass per unit
of volume (grams per cubic centimeter, for example).

Note that an object that has a mass of one kilogram on
earth would have a mass of one kilogram on the moon.
However, it would weigh only one-sixth as much.

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 3

The acceleration of an object is equal to force. This is great news. After all, we saw in Chapter 1 that acceleration was
the key to the controlling the movement of our objects on screen. Location is adjusted by velocity, and velocity by
acceleration. Acceleration was where it all began. Now we learn that force is truly where it all begins.

Forces and Processing—Newton’s Second Law as a function

Let’s say we have a class called Mover, with location, velocity, and acceleration.

class Mover {
 PVector location;
 PVector velocity;
 PVector acceleration;

 Mover() {
 location = new PVector(random(width),random(height));
 velocity = new PVector(0,0);
 acceleration = new PVector(0,0);
 }

 void update() {
 velocity.add(acceleration);
 location.add(velocity);
 }
}

Now our goal is to be able to add forces to this object, saying perhaps:

mover.applyForce(wind);

or:

mover.applyForce(gravity);

where wind and gravity are PVectors. According to Newton’s second law, we could implement this function as
follows.

 void applyForce(PVector force) {
 acceleration = force;
 }

Forces and Processing—Force Accumulation

This looks pretty good. After all, it’s a literal translation of Newton’s second law (without mass): Acceleration =
Force. Nevertheless, there’s a pretty big problem here. Let’s return to what we are trying to accomplish: creating a
moving object on the screen that responds to wind and gravity.

mover.applyForce(wind);
mover.applyForce(gravity);
mover.update();
mover.display();

Ok, let’s be the computer for a moment. First, we call applyForce() with wind. And so the Mover object’s acceleration
is now set to the wind PVector. Second, we call applyForce() with gravity. And so the Mover object’s acceleration is
now set to the gravity PVector. Third, we call update(). What happens in update? Acceleration is added to velocity.

velocity.add(acceleration);

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 4

Newton’s second law at its simplest.

We’re not going to see any error in Processing, but zoinks! We’ve got a major problem. What is the value of
acceleration when it is added to velocity? It is equal to the gravity force. Wind has been left out! If we call
applyForce() more than once, it overrides each previous call. How are we going to handle more than one force?

The answer is through a process known as force accumulation. It’s actually very simple; all we need to do is add all
of the forces together. At any given moment, there might be one, two, six, twelve, or three hundred and three forces.
As long as our object knows how to accumulate them, it doesn’t matter how many forces act on it.

 void applyForce(PVector force) {
 acceleration.add(force);
 }

Now, we’re not finished just yet. There is one more piece to force accumulation. Since we’re adding all the forces
together at any given moment, we have to make sure that we clear acceleration (i.e. set it to zero) before each time
update() is called. Let’s think about wind for a moment. Sometimes the wind is very strong, sometimes it’s weak,
and sometimes there’s no wind at all. At any given moment, there might be a huge gust of wind, say, when the user
holds down the mouse.

if (mousePressed) {
 PVector wind = new PVector(0.5,0);
 mover.applyForce(wind);
}

When the user releases the mouse, the wind will stop and according to Newton’s first law, the object will continue to
move at a constant velocity. However, if we had forgotten to reset acceleration to zero, the gust of wind would still
be in effect. Even worse, it would add onto itself from the previous frame, since we are accumulating forces!
Acceleration, in our simulation, has no memory; it is simply calculated based on the environmental forces present at a
moment in time. This is different than, say, location, which must remember where the object was the previous frame
in order to move properly to the next.

The easiest way to implement clearing the acceleration for each frame is to multiply the PVector by zero at the end of
update().

 void update() {
 velocity.add(acceleration);
 location.add(velocity);
 acceleration.mult(0);
 }

Exercise: Using forces, simulate a helium-filled balloon floating upward (and bouncing off the top of a window). Can you add a
wind force which changes over time, perhaps according to Perlin noise?

Forces and Processing—dealing with Mass

OK. We’ve got one tiny little addition to make before we are done with integrating forces into our Mover class and
are ready to look at examples. After all, Newton’s second law is really F = M * A, not F = A. Incorporating mass is as
easy as adding an instance variable to our class, but we need to spend a little more time here because a slight
complication will emerge.

First we just need to add mass.

class Mover {
 PVector location;
 PVector velocity;
 PVector acceleration;
 float mass;

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 5

Newton’s second law but with force
accumulation. We now add each force to
acceleration, one at a time.

Mass is a scalar (float), not a vector, as it’s just one number describing the amount of matter in an object. We could be
fancy about things and compute the area of a shape as its mass, but it’s simpler to begin by saying, “Hey, the mass of
this object is, um, I dunno, how about 10?”

 Mover() {
 location = new PVector(random(width),random(height));
 velocity = new PVector(0,0);
 acceleration = new PVector(0,0);
 mass = 10.0;
 }

This isn’t so great since things only become interesting once we have objects with varying mass , but it’ll get us
started. Where does mass come in? We use it while applying Newton’s second law to our object.

 void applyForce(PVector force) {
 force.div(mass);
 acceleration.add(force);
 }

Yet again, even though our code looks quite reasonable, we have a fairly major problem here. Consider the
following scenario with two Mover objects, both being blown away by a wind force.

Mover m1 = new Mover();
Mover m2 = new Mover();

PVector wind = new PVector(1,0);

m1.applyForce(wind);
m2.applyForce(wind);

Again, let’s be the computer. Object m1 receives the wind force—(1,0)—divides it by mass (10) and adds it to
acceleration.

m1:
Wind Force is equal to! (1,0)
divided by mass = 10:! (0.1,0)

OK, moving onto object m2. It also receives the wind force—(1,0). Wait. Hold on a second. What is the value of
wind force? Taking a closer look, the wind force is actually now—(0.1,0)!! Do you remember this little tidbit about
working with objects? When you pass an object (in this case a PVector) into a function, you are passing a reference to
that object. It’s not a copy! So if a function makes a change to that object (which, in this case, it does by dividing by
mass) then that object is permanently changed! But we don’t want m2 to receive a force divided by the mass of object
m1. It wants to receive that force in its original state—(1,0). And so we must protect ourselves and make a copy of the
PVector f before dividing it by mass. Fortunately, the PVector class has a convenient method for making a copy—
get(). get() returns a new PVector object with the same data. And so we can revise applyForce() as follows:

void applyForce(PVector force) {
 PVector f = force.get();
 f.div(mass);
 acceleration.add(f);
}

There’s another way we could write the above function, using the static method div(). For help with this exercise,
review static methods in Chapter 1 (see p. XXX).

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 6

Making a copy of the PVector before
using it!

Newton’s second law but with force
accumulation and mass.

Exercise 2-x: Rewrite the applyForce method using the static method div() instead of get().

void applyForce(PVector force) {
 PVector f = _______.___(_____,____);
 acceleration.add(f);
}

Where do forces come from?

Let’s take a moment to remind ourselves where we are. We know what a force is (a vector), we know how to apply a
force to an object (divide it by mass, add it to the object’s acceleration vector). What are we missing? Well, we have
yet to figure out how we get a force in the first place. Where do forces come from?

In this chapter, we’ll look at two methods for creating forces in our Processing world.

1. Make a force up! After all, you are the programmer, the creator of your world. There’s no reason why
you can’t just make up a force and apply it.

2. Model a force! Yes, forces exist in the real world. And physics textbooks often contain formulas for
these forces. We can take these formulas, translate them into source code, and model real-world forces in
I.

Examples of forces—let’s make some up!

The easiest way to make up a force is just to just pick a number. Let’s start with the idea of simulating wind. How
about a wind force that points to the right and is fairly weak? Assuming a Mover object “m”, our code would look
like:

 PVector wind = new PVector(0.001,0);
 m.applyForce(wind);

The result isn’t terribly interesting, but it is a good place to start. We create a PVector object, initialize it, and pass it
into an object (which in turn will apply it to its own acceleration).

If we wanted to have two forces, perhaps wind and gravity (a bit stronger, pointing
down), we might say:

 PVector wind = new PVector(0.001,0);
 PVector gravity = new PVector(0,0.1);
 m.applyForce(wind);

Now we have two forces, pointing in different directions with different magnitudes,
both applied to object “m.” We’re beginning to get somewhere. We’ve now built a
world for our objects in Processing, an environment to which they can actually
respond.

Let’s look at how we could make this example a bit more exciting with many objects of
varying mass. To do this, we’ll need to do a quick review of object-oriented programming. Again, we’re not
covering all the basics of programming here (for that you can check out any of the intro Processing books listed in the
introduction). However, since the idea of creating a world filled with objects is pretty fundamental to all the
examples in this book, it’s worth taking a moment to walk through the steps of going from one object to many.

This is where we are with the Mover class as a whole. Notice how it is identical to the Mover class created in Chapter
1, with two additions—mass and a new applyForce() function.

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 7

class Mover {

 PVector location;
 PVector velocity;
 PVector acceleration;
 float mass;

 Mover() {
 mass = 1;
 location = new PVector(30,30);
 velocity = new PVector(0,0);
 acceleration = new PVector(0,0);
 }

 void applyForce(PVector force) {
 PVector f = PVector.div(force,mass);
 acceleration.add(f);
 }

 void update() {
 velocity.add(acceleration);
 location.add(velocity);
 acceleration.mult(0);
 }

 void display() {
 stroke(0);
 fill(175);
 ellipse(location.x,location.y,16,16);
 }

 void checkEdges() {

 if (location.x > width) {
 location.x = 0;
 } else if (location.x < 0) {
 location.x = width;
 }

 if (location.y > height) {
 velocity.y *= -1;
 location.y = height;
 }

 }

}

Now that our class is set, we can choose to create, say, one hundred Mover objects with an array.

Mover[] movers = new Mover[100];

And then we can initialize all of those Mover objects in setup() with a loop.

void setup() {
 for (int i = 0; i < movers.length; i++) {
 movers[i] = new Mover();
 }
}

But now we have a small issue. If we refer back to the Mover object’s constructor. . .

 Mover() {
 mass = 1;
 location = new PVector(30,30);
 velocity = new PVector(0,0);
 acceleration = new PVector(0,0);
 }

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 8

Somewhat arbitrarily, we are deciding that an
object bounces when it hits the bottom of the
screen and wraps around the horizontal edges.

Motion 101 from Chapter 1 plus
clearing the acceleration each time!

Newton’s second law. Receive a
force, divide by mass, and add to
acceleration.

The object now has mass! And for now, we’ll just set the
mass equal to 1 for simplicity.

. . .we discover that every Mover object is made exactly the same way. What we want are Mover objects of varying
mass that start at varying locations. Here is where we need to increase the sophistication of our constructor by
adding arguments.

 Mover(float m, float x , float y) {
 mass = m;
 location = new PVector(x,y);
 velocity = new PVector(0,0);
 acceleration = new PVector(0,0);
 }

Notice how the mass and location are no longer set to hardcoded numbers, but rather initialized via arguments
passed through the constructor. This means we can create a variety of Mover objects: big ones, small ones, ones that
start on the left side of the screen, ones that start on the right, etc.

Mover m1 = new Mover(10,0,height/2); // A big Mover on the left side of the window
Mover m1 = new Mover(0.1,width,height/2); // A small Mover on the right side of the window

With an array, however, we want to initialize all of the objects with a loop.

void setup() {
 for (int i = 0; i < movers.length; i++) {
 movers[i] = new Mover(random(0.1,5),0,0);
 }
}

For each “Mover” created, the mass is set to a random value between 0.1 and 5, the starting x location is set to 0, and
the starting y location is set to 0. Certainly, there are all sorts of ways we might choose to initialize the objects, this is
just a demonstration of one possibility.

Once the array of objects is declared, created, and initialized, the rest of the code is simple. We run through every
object, hand them each the forces in the environment, and enjoy the show.

void draw() {
 noStroke();
 fill(255,10);
 rect(0,0,width,height);

 PVector wind = new PVector(0.001,0);
 PVector gravity = new PVector(0,0.1);

 for (int i = 0; i < movers.length; i++) {
 movers[i].applyForce(wind);
 movers[i].applyForce(gravity);

 movers[i].update();
 movers[i].display();
 movers[i].checkEdges();
 }
}

Note how in the above image, the smaller circles reach the right of the window faster than the larger ones. This is
because of our formula: acceleration = force divided by mass. The larger the mass, the smaller the acceleration.

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 9

Initializing many “Mover” objects all with
random mass (and all starting at 0,0).

Make up two forces.

Loop through all objects and
apply both forces to each object.

Exercise: Create an example where instead of objects bouncing off the edge of the wall, an invisible force pushes back on the
objects to keep them in the window. Can you weight the force according to how far the object is from an edge, i.e. the closer it is,
the stronger the force?

Examples of forces—model a force!

Making up forces will actually get us quite far. The world of Processing is a pretend world of pixels and you are its
master. So whatever you deem appropriate to be a force, well by golly, that’s the force it should be. Nevertheless,
there may come a time where you find yourself wondering: “But how does it really all work?”

Open up any high school physics textbook and you will find some diagrams and formulas describing many different
forces—gravity, electromagnetism, friction, tension, elasticity, etc. In this chapter we’re going to look at two forces—
friction and gravity. The point we’re making here is not that friction and gravity are fundamental forces that you
always need to have in your Processing sketches. Rather, we want to evaluate these two forces as case studies for the
following process:

• Understand the concept behind a force
• Deconstruct the force’s formula into two parts:

• How do we compute the force’s direction?
• How do we compute the force’s magnitude?

• Translate that formula into Processing code that calculates a PVector to be sent through our Mover’s
applyForce() function.

If we can follow the above steps with two forces, then hopefully when you find yourself at 3 a.m. googling “atomic
nuclei weak nuclear force”, you will have the skills to take what you find and adapt it for Processing.

Friction

Let’s begin with friction and follow our steps:

What is friction?

Friction is a “dissipative” force. A dissipative force is one where the total energy of a system decreases when an
object is in motion. Let’s say you are driving a car. When you press your foot down on the brake pedal, the car’s
brakes use friction to slow down the motion of the tires. Kinetic energy (motion) is converted into thermal energy
(heat). Whenever two surfaces come into contact, they experience friction. A complete model of friction would
include separate cases for static friction (a body at rest against a surface) and kinetic friction (a body in motion against
a surface), but for our purposes, we are going to only look at the kinetic case.

What is the formula for friction?

Ffriction = -1 * ! * N * ;

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 10

It’s now up to us to separate this formula into two components that determine the direction of friction as well as the
magnitude. Based on the diagram above, we can see that friction points in the opposite direction of velocity. In fact,
that’s the part of the formula that says -1 * or negative one times the velocity unit vector. In Processing, this would
mean taking the velocity vector, normalizing it, and multiplying by -1.

PVector friction = velocity.get();
friction.normalize();
friction.mult(-1);

Notice two additional steps here. First, it’s important to make a copy of the velocity vector first as we don’t want to
reverse the object’s direction by accident. Second, we normalize the vector. This is because the magnitude of friction
is not associated with how fast it is moving, and we want to start with a friction vector of magnitude one so that it
can easily be scaled.

According to the formula, the magnitude is ! * N. ! is the Greek letter, Mu (pronounced “mew”). It is used here to
describe the “coefficient of friction.” The coefficient of friction establishes the strength of a friction force for a
particular surface. The higher it is, the stronger the friction; the lower, the weaker. A block of ice, for example, will
have a much lower coefficient of friction than, say, sandpaper. Since we’re in a pretend Processing world , we can
arbitrarily set the coefficient based on how much friction we want to simulate.

float c = 0.01;

Now for the second part: N. N refers to the “normal” force, the force perpendicular to the object’s motion along a
surface. Think of a vehicle driving along a road. The vehicle pushes down against the road with gravity, and
Newton’s third law tells us that the road in turn pushes back against the vehicle. That’s the normal force. The
greater the gravitational force, the greater the normal force. As we’ll see in the next section, gravity is associated
with mass and so a lightweight sports car would experience less friction than a massive tractor trailer truck. With
the diagram above, however, where the object is moving along a surface at an angle, computing the normal force is a
bit more complicated because it doesn’t point in the same direction as gravity. We’ll need to know something about
angles and trigonometry.

All of these specifics are important; however, in Processing, an “good enough” simulation can be achieved without
them. We can, for example, make friction work with the assumption that the normal force will always have a
magnitude of 1. When we get into trigonometry in the next chapter, we’ll remember to return to this question and
make our friction example a bit more sophisticated. Therefore:

float normal = 1;

Now that we have both the magnitude and direction for friction, we can put it all together:

float c = 0.01;
float normal = 1;
float frictionMag = c*normal;

PVector friction = velocity.get();
friction.mult(-1);
friction.normalize();

friction.mult(frictionMag);

And add it to our “forces” example where many objects experience wind, gravity, and now friction:

void draw() {
 noStroke();
 fill(255,10);
 rect(0,0,width,height);

 PVector wind = new PVector(0.001,0);
 PVector gravity = new PVector(0,0.1);

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 11

Let’s figure out the magnitude of friction
(really just an arbitrary constant).

Let’s figure out the direction of the friction force (a unit
vector in the opposite direction of velocity).

Take the unit vector and multiply it by
magnitude and we have our force vector!

 for (int i = 0; i < movers.length; i++) {

 float c = 0.01;
 PVector friction = movers[i].velocity.get();
 friction.mult(-1);
 friction.normalize();
 friction.mult(c);

 movers[i].applyForce(friction);
 movers[i].applyForce(wind);
 movers[i].applyForce(gravity);

 movers[i].update();
 movers[i].display();
 movers[i].checkEdges();
 }

}

 !
no friction! ! ! ! ! friction

Running this example, you’ll notice that the circles don’t even make it to the right side of the window. Since friction
continuously pushes against the object in the opposite direction of its movement, the object continuously slows
down. This can be a useful technique or a problem depending on the goals of your visualization.

Air and Fluid Resistance

Friction also occurs when a body passes through a liquid or gas. This force has many different names, all really
meaning the same thing: viscous force, drag force, fluid resistance. While the result is ultimately the same as our
prevous friction examples (the object slows down), the way we calculate a drag force will be slightly different. Let’s
look at the formula:

! ! ! ! !

OK, let’s break this down and see what we really need for an effective simulation in Processing, making ourselves a
much simpler formula in the process.

• Fd refers to “Drag Force”, the vector we ultimately want to compute and pass into our applyForce() function.

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 12

Once we calculate the friction force, let’s
apply it to the object.

• - 1/2 is a constant: -0.5! This is fairly irrelevant in terms of our Processing world as we will be making up
values for other constants anyway.

• is the Greek letter rho, and refers to the density of the liquid. Something we don’t need to worry about. We
can simplify the problem and consider this to have a constant value of 1.

• v refers to the speed of the object moving. OK, we’ve got this one! The object’s speed is the magnitude of the
velocity vector: velocity.magnitude(). And v2 just means v squared or v * v.

• A refers to the frontal area of the object that is pushing through the liquid (or gas). An aerodynamic
Lamborghini, for example, will experience less air resistance than a boxy Volvo. Nevertheless, for a basic
simulation, we can consider our object to be spherical and ignore this element.

• Cd is the coefficient of drag, exactly the same as the coefficient of friction (!). This is a constant we’ll
determine based on whether we want the drag force to be strong or weak.

• Look familiar? It should. This refers to the velocity unit vector, i.e. velocity.normalize(). Just like with
friction, drag is a force that points in the opposite direction of velocity.

Now that we’ve analyzed each of these components and determined what we
need for a simple simulation, we can reduce our formula to:

! ! ! ! Fd = -Cd * v2 *

or:

float c = 0.1;
float speed = v.mag();
float dragMagnitude = -1 * c * speed * speed;

PVector drag = velocity.get();
drag.normalize();
drag.mult(dragMagnitude);

Let’s implement this force in our Mover example with one addition. When we wrote our friction example, the force
of friction was always present. Whenever an object was moving, friction would slow it down. Here, let’s introduce
an element to the environment—a “liquid” that the Mover objects pass through. The liquid object will be a rectangle
and will know about its location, width, height, and “coefficient of drag.” In addition, it should include a function to
draw itself on the screen (and two more functions, which we’ll see in a moment.)

class Liquid {

 float x;
 float y;
 float w;
 float h;
 float c;

 Liquid(float x_, float y_, float w_, float h_, float c_) {
 x = x_;
 y = y_;
 w = w_;
 h = h_;
 c = c_;
 }

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 13

Part 1 of our formula (magnitude):

-Cd * v2

Part 2 of our formula (direction):

Magnitude and direction together!

The liquid object includes a variable defining its “coefficient of drag”:
i.e., is it easy for objects to move through it (air) or difficult (molasses)?

 void display() {
 noStroke();
 fill(175);
 rect(x,y,w,h);
 }

}

The main program will now include a Liquid object reference as well as a line of code that initializes that object.

Liquid liquid;

void setup() {
 liquid = new Liquid(300,0,50,200,0.01);
}

Now comes an interesting question: how do we get the Mover object to talk to the Liquid object? In other words, we
want to execute the following:

When a Mover passes through a Liquid it experiences a Drag force.

or in object-oriented speak (assuming we are looping through an array of Mover objects with index i):

if (movers[i].isInside(liquid)) {
 movers[i].drag(liquid);
}

The above code tells us that we need to add two functions to the Mover class: (1) a function that determines if a
Mover object is inside the liquid, and (2) a function that computes and applies a drag force on the Mover object.

The first is easy; we can simply use a conditional statement to determine if the location vector rests inside the
rectangle defined by the liquid.

boolean isInside(Liquid l) {
 if (location.x > l.x && location.x < l.x + l.w && location.y > l.y && location.y < l.y + l.h) {
 return true;
 } else {
 return false;
 }
}

The drag() function is a bit more complicated; however, we’ve written the code for it already. This is simply an
implementation of our formula. The drag force is equal to the coefficient of drag multiplied by the speed of the Mover
squared in the opposite direction of velocity!

Fd = -Cd * v2 *

 void drag(Liquid l) {
 // Drag Magnitude
 float speed = velocity.mag();
 float dragMagnitude = -1 * l.c * speed * speed;

 // Drag direction
 PVector drag = velocity.get();
 drag.normalize();

 // Finalize force: magnitude and direction
 drag.mult(dragMagnitude);

 // Apply the force!
 applyForce(drag);
 }

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 14

If a Mover is inside a Liquid, apply the drag force.

This conditional statement determines if the PVector
location is inside the rectangle defined by the Liquid
class.

 -Cd * v2

PVector “drag” now equals -Cd * v2 *

Initialize a Liquid object. Note how the coefficient
value is low (0.01); otherwise, the object would
come to a halt fairly quickly (which may someday
be the effect you want).

And with these two functions added to the Mover class, we’re ready to put it all together in the main tab:

Mover[] movers = new Mover[100];

Liquid liquid;

void setup() {
 size(600,200);
 smooth();
 background(255);
 for (int i = 0; i < movers.length; i++) {
 movers[i] = new Mover(random(0.1,5),0,0);
 }
 liquid = new Liquid(300,0,50,200,0.01);
}

void draw() {
 noStroke();
 fill(255,10);
 rect(0,0,width,height);

 liquid.display();

 PVector wind = new PVector(0.001,0);
 PVector gravity = new PVector(0,0.1);

 for (int i = 0; i < movers.length; i++) {

 if (movers[i].isInside(liquid)) {
 movers[i].drag(liquid);
 }

 movers[i].applyForce(wind);
 movers[i].applyForce(gravity);

 movers[i].update();
 movers[i].display();
 movers[i].checkEdges();
 }

}

 !
no drag ! ! ! ! ! drag from liquid

Running the example, you should notice that the objects only slow down when crossing the black bar in the center of
the screen (representing the liquid). You’ll also notice that the smaller, faster objects slow down a great deal more
than the larger, faster objects. Let’s think about why:

1. Remember Newton’s second law? A = F / M. Acceleration equals Force divided by mass. A massive
object will accelerate less. A smaller object will accelerate more. Think of how easy it is to throw a
baseball versus a bowling ball.

2. Let’s take a look at our formula for drag again. DRAG FORCE = COEFFICIENT * SPEED * SPEED. The
faster an object moves, the greater the drag force against it. In fact, an object not moving in water
experiences no drag at all.

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 15

Exercise: Create pockets of air resistance / friction in a Processing sketch. Try using circles instead of rectangles, i.e. pockets of
mud (or ice). What if you vary the strength (drag / friction coefficient) of each circle? What if you make some of them the
opposite of drag—i.e., when you enter a given pocket you actually speed up instead of slow down?

Gravitational Attraction

Probably the most famous force of all is gravity. We humans on earth think of gravity as an apple hitting Isaac
Newton on the head. Gravity means that stuff falls down. But this is only our experience of gravity. In truth, just
as the earth pulls the apple towards it due to a gravitational force, the apple pulls the earth as well. The thing is, the
earth is just so freaking big that it overwhelms all the other gravity interactions. Every object with mass exerts a
gravitational force on every other object. And there is a formula for calculating the strengths of these forces:

! ! ! !

Let’s examine this formula a bit more closely:

• F refers to the gravitational force, the vector we ultimately want to compute and pass into our applyForce()
function.

• G is the “Universal Gravitational Constant” and in our world equals 6.67428 x 10-11 meters cubed per kilogram
per second squared. This is a pretty important number, especially if your name is Isaac Newton or Albert
Einstein. It’s not an important number if you are a Processing programmer. Again, it’s a constant that we can
use to make the forces in our world weaker or stronger. Just making it equal to one and ignoring it isn’t such a
terrible choice either.

• m1 and m2 are the masses of objects 1 and 2. As we saw with Newton’s second law (F = MA), mass is also
something we could choose to ignore. After all, shapes drawn on the screen don’t actually have a physical
mass. However, if we keep these values, we can create more interesting simulations where bigger (in pixel
dimensions) objects exert a stronger gravitational force than smaller ones.

• refers to the unit vector pointing from object 1 to object 2. As we’ll see in a moment, we can compute this
direction vector by subtracting the location of one object from the other.

• r2 refers to the distance between the two objects squared. Let’s take a moment to think about this a bit more.
With everything on the top of the formula—G, m1, m2—the bigger its value, the stronger the force. Big mass,
big force. Big G, big force. Now, when we divide by something we have the opposite. The strength of the
force is inversely proportional to the distance squared. The further away an object is, the weaker the force; the
closer, the stronger.

[make sure i talk about somewhere that we’re just doing this to demo how to do it, but it’s potentially more
interesting if you come up with your own rules / design your own force, distance makes it stronger, repel instead of
attract, etc.]

Hopefully by now the formula makes some sense to us. We’ve looked at a diagram and dissected the individual
components of the formula. Now it’s time to figure out how we translate the math into Processing code. Let’s make
the following assumptions.

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 16

We have two objects and:

1. Each object has a location: PVector location1 and PVector location2.
2. Each object has a mass: float mass1 and float mass2.
3. There is a variable float G for the universal gravitational constant.

Given these assumptions, we want to compute PVector force, the force of gravity. We’ll do it in two parts. First, we’ll

compute the direction of the force (in the formula above). Second, we’ll calculate the strength of the force
according to the masses and distance.

Remember in Chapter 1, when we figured out how to have an object accelerate towards the mouse?

A vector is the difference between two points. To make a vector that points from the circle to the mouse, we simply
subtract one point from another:

PVector dir = PVector.sub(mouse,location);

In our case, the direction of the attraction force that object 1 exerts on object 2 is equal to:

PVector dir = PVector.sub(location1,location2);
dir.normalize();

Don’t forget that since we want a unit vector, a vector that tells us about direction only, we’ll need to normalize the
vector after subtracting the locations.

OK, we’ve got the direction of the force. Now we just need to compute the magnitude and scale the vector
accordingly.

float m = (G * mass1 * mass2) / (distance * distance);
dir.mult(m);

The only problem is that we don’t know the distance. G, mass1, and mass2 were all givens, but we’ll need to actually
compute distance before the above code will work. Didn’t we just make a vector that points all the way from one
location to another? Wouldn’t the length of that vector be the distance between two objects?

Well, if we add just one line of code and grab the magnitude of that vector before normalizing it, then we’ll have the
distance.

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 17

PVector force = PVector.sub(location1,location2);

float distance = force.magnitude();

float m = (G * mass1 * mass2) / (distance * distance);

force.normalize();
force.mult(m);

Note that I also renamed the PVector “dir” as “force.” After all, when we’re finished with the calculations, the
PVector we started with ends up being the actual force vector we wanted all along.

Now that we’ve worked out the math and the code for calculating an attractive force (emulating gravity), we need to
turn our attention to applying this technique in the context of an actual Processing sketch. In Example 2.x, you may
recall how we created a simple Mover object—a class with PVectors location, velocity, and acceleration as well as an
applyForce(). Let’s take this exact class and put it in a sketch with:

• A single Mover object.
• A single Attractor object (a new class that will have a fixed location).

The Mover object will experience a gravitational pull towards the Attractor object, as illustrated below.

We can start by making the new Attractor class very simple—a location and a mass, along with a function to display
itself (tying mass to size).

class Attractor {
 float mass;
 PVector location;

 Attractor() {
 location = new PVector(width/2,height/2);
 mass = 20;
 }

 // Method to display
 void display() {
 stroke(0);
 fill(175,200);
 ellipse(location.x,location.y,mass*2,mass*2);
 }
}

And in our main program, we can add an instance of the Attractor class.

Mover m;
Attractor a;

void setup() {
 size(200,200);
 m = new Mover();

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 18

The vector that points from one object to another

The length (magnitude) of that vector is the
distance between the two objects.

Use the formula for gravity to compute
the strength of the force.

Normalize and scale the force vector to
the appropriate magnitude.

Our Attractor is a simple object that doesn’t move.
We just need a mass and a location.

 a = new Attractor();
}

void draw() {
 background(255);

 a.display();

 m.update();
 m.display();
}

This is a good structure: a main program with a Mover and Attractor object, and a class to handle the variables and
behaviors of Movers and Attractors. The last piece of the puzzle is how to get one object to attract the other. How do
we get these two objects to talk to each other?

There are a number of ways we could do this. Here are just a few possibilities:

1. A function that receives both an Attractor and a Mover: attraction(a,m);!

2. A function in the Attractor class that receives a Mover: a.attract(m);!

3. A function in the Mover class that receives an Attractor: m.attractedTo(a);

4. A function in the Attractor class that receives a Mover and
returns a PVector, which is the attraction force. That attraction
force is then passed into the Mover’s applyForce() function:

PVector f = a.attract(m);
m.applyForce(f);

and so on. . .

It’s good to look at a range of options for making objects talk to each other, and you could probably make arguments
for each of the above possibilities. I’d like to at least discard the first one, since an object-oriented approach is really a
much better choice over an arbitrary function not tied to either the Mover or Attractor class. Whether you pick (2) or
(3) is the difference between saying “The attractor attracts the mover” or “The mover is attracted to the attractor.”
Number 4 is really my favorite, at least in terms of where we are in this book. After all, we spent a lot of time
working out the applyForce() function and I think our examples will be clearer if we continue with the same
methodology.

[OK, IT’S SO INCONVENIENT FOR ME RIGHT NOW WHILE WRITING TO HAVE THESE CODE BUBBLES --
BOXES + ARROWS. SO I’M GOING TO CONTINUE WITH HAVING JUST COMMENTS WRITTEN AS:

LINE OF CODE $$ CONTENT FOR CODE BUBBLE POINTING HERE

WE’LL SORT IT OUT IN DESIGN LATER]

In other words, where we once had:

PVector f = new PVector(0.1,0); $$ Made up force
m.applyForce(f);

We now have:

PVector f = a.attract(m); $$ Attraction force between two objects
m.applyForce(f);

And so our draw() function can now be written as:

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 19

Initialize Attractor object.

Display Attractor object.

void draw() {
 background(255);

 PVector f = a.attract(m); $$ Calculate attraction force and apply it
 m.applyForce(f);

 m.update();

 a.display();
 m.display();

}

We’re almost there. Since we decided to put the attract() function inside of the Attractor class, we’ll need to actually
write that function. The function needs to receive a Mover object and return a PVector, i.e.:

PVector attract(Mover m) {

}

And what goes inside that function? All of that nice math we worked out for gravitational attraction!

PVector attract(Mover m) {

 PVector force = PVector.sub(location,m.location); $$ What’s the force’s direction?
 float distance = force.mag();
 force.normalize();
 float strength = (G * mass * m.mass) / (distance * distance); $$ What’s the force’s magnitude?
 force.mult(strength);

 return force;! ! $$ Return the force so that it can be applied!
}

And we’re done. Sort of. Almost. There’s one small kink we need to work out. Let’s look at the above code again.
See that symbol for divide, the slash? Whenever we have one of these, we need to ask ourselves the question: What
would happen if the distance happened to be a really, really small number or (even worse!) zero??! Well, we know
we can’t divide a number by zero, and if we were to divide a number by something like 0.0001, that is the equivalent
of multiplying that number by 10,000! Yes, this is the real-world formula for the strength of gravity, but we don’t live
in the real world. We live in the Processing world. And in the Processing world, the Mover could end up being very,
very close to the Attractor and the force could become so strong the Mover would just fly way off the screen. And so
with this formula, it’s good for us to be practical and constrain the range of what distance can actually be. Maybe, no
matter where the Mover actually is, we should never consider it less than 5 pixels or more than 25 pixels away from
the Attractor.

 distance = constrain(distance,5,25);

For the same reason we need to constrain tminimum distance, it’s useful for us to do the same with the maximum.
After all, if the Mover were to be, say, 500 pixels from the Attractor (not unreasonable), we’d be dividing the force by
250,000. That force might end up being so weak that it’s almost as if we’re not applying it at all.

Now, it’s really up to you to decide what behaviors you want. But in the case of, “I want reasonable looking
attraction that is never absurdly weak or strong,” then constraining the distance is a good technique.

Our Mover class hasn’t changed at all, so let’s just look at the main program and Attractor class as a whole, adding a
variable “g” for the universal gravitational constant. (On the web site, you’ll find that this example also has code that
allows you to move the Attractor object with the mouse):

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 20

Example: Attraction

Mover m;
Attractor a;

void setup() {
 size(200,200);
 m = new Mover();
 a = new Attractor();
}

void draw() {
 background(255);

 PVector force = a.attract(m);
 m.applyForce(force);
 m.update();

 a.display();
 m.display();
}

class Attractor {
 float mass; // Mass, tied to size
 PVector location; // Location
 float g;

 Attractor() {
 location = new PVector(width/2,height/2);
 mass = 20;
 g = 0.4;
 }

 PVector attract(Mover m) {
 PVector force = PVector.sub(location,m.location);
 float distance = force.mag();
 distance = constrain(distance,5.0,25.0); !! $$ Remember, we need to constrain the
 force.normalize(); the distance so that our circle
! ! ! ! ! ! ! ! doesn’t spin out of control
 float strength = (g * mass * m.mass) / (distance * distance);
 force.mult(strength);
 return force;
 }

 // Method to display
 void display() {
 stroke(0);
 fill(175,200);
 ellipse(location.x,location.y,mass*2,mass*2);
 }
}

And we could, of course, expand this example using an array to include many Mover objects, just as we did with
friction and drag:

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 21

Mover[] movers = new Mover[10];

Attractor a;

void setup() {
 size(400,400);
 for (int i = 0; i < movers.length; i++) {
 movers[i] = new Mover(random(0.1,2),random(width),random(height));
 }
 a = new Attractor();
}

void draw() {
 background(255);

 a.display();

 for (int i = 0; i < movers.length; i++) {
 PVector force = a.attract(movers[i]);
 movers[i].applyForce(force);

 movers[i].update();
 movers[i].display();
 }

}

Exercise: In the example above, we have a system (i.e. array) of Mover objects and one Attractor object. Build an example that
has both systems of Movers and Attractors. What if you make the Attractors invisible? Can you create a pattern / design from
the trails of objects moving around attractors? (See the Metropop Denim project by Clayton Cubitt and Tom Carden: http://
processing.org/exhibition/works/metropop/) for an example.) [INCLUDE AN IMAGE, ASK PERMISSION?]

Everything Attracts (or Repels) Everything

Hopefully, you found it helpful that we started with a simple scenario: one object attracts another object, moving on to
one object attracts many objects. However, it’s likely that you are going to find yourself in a slightly more complex
situation: many objects attract each other. In other words, every object in a given system attracts every other object in
that system (except for itself.)

We’ve really done almost all of the work for this already. Let’s consider a Processing sketch with an array of Mover
objects:

Mover[] movers = new Mover[10];

void setup() {
 size(400,400);
 for (int i = 0; i < movers.length; i++) {
 movers[i] = new Mover(random(0.1,2),random(width),random(height));
 }
}

void draw() {
 background(255);
 for (int i = 0; i < movers.length; i++) {
 movers[i].update();
 movers[i].display();
 }
}

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 22

http://processing.org/exhibition/works/metropop/
http://processing.org/exhibition/works/metropop/
http://processing.org/exhibition/works/metropop/
http://processing.org/exhibition/works/metropop/

The draw() function is where we need to work some magic. Currently, we’re saying: for every Mover i, update and
display yourself. Now what we need to say is: for every Mover i, be attracted to every other Mover j, and update and display
yourself.

To do this, we need to nest a second loop.

 for (int i = 0; i < movers.length; i++) {
 for (int j = 0; j < movers.length; j++) {
 PVector force = movers[j].attract(movers[i]);
 movers[i].applyForce(force);
 }
 movers[i].update();
 movers[i].display();
 }

In the previous example, we had an Attractor object with a function named attract(). Now, since we have Movers
attracting Movers, all we need to do is move the attract() function into the Mover class.

class Mover {

 // all the other stuff we had before plus. . .

 PVector attract(Mover m) {
 PVector force = PVector.sub(location,m.location);
 float distance = force.mag();
 distance = constrain(distance,5.0,25.0);
 force.normalize();

 float strength = (g * mass * m.mass) / (distance * distance);
 force.mult(strength);
 return force;
 }
}

Of course, there’s one small problem. When we are looking at every Mover i and every Mover j, are we OK with the
times that i equals j? For example, should Mover #3 attract Mover #3? The answer, of course, is no. If there are 5
objects, we only want Mover #3 to attract 0, 1, 2, and 4, skipping itself. And so, we finish this example by adding a
simple conditional statement to skip applying the force when i equals j.

Example 2.x
Mover[] movers = new Mover[20];

float g = 0.4;

void setup() {
 size(400,400);
 for (int i = 0; i < movers.length; i++) {
 movers[i] = new Mover(random(0.1,2),random(width),random(height));
 }
}

void draw() {
 background(255);

 for (int i = 0; i < movers.length; i++) {
 for (int j = 0; j < movers.length; j++) {
 if (i != j) {
 PVector force = movers[j].attract(movers[i]);
 movers[i].applyForce(force);
 }
 }
 movers[i].update();

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 23

 movers[i].display();
 }

}

Exercise 2.x: Change the attraction force in Example 2.x to a repulsion force. Can you create an example where all of the Mover
objects are attracted to the mouse, but repel each other? Think about how you need to balance the relative strength of the forces
and how to most effectively use distance in your force calculations.

Chapter 2 Project Assignment. . . .

!

The Nature of Code by Daniel Shiffman, Chapter 1, February 4, 2011 11:59 AM, page 24

Chapter 3. Oscillation
“Trigonometry is a sine of the times.”
! -- Anonymous

In this Chapter:

• Angles: Degrees vs. Radians
• Angular velocity and acceleration
• Basic Trigonometry
• Pointing in the direction of motion
• Cartesian and Polar Coordinates
• Oscillating Motion
• Drawing a Wave pattern
• Applying Trigonometry to forces

• Pendulum
• Friction at an angle
• Spring force

In Chapters One and Two, we carefully worked out an object-oriented structure to make
something move on the screen, using the concept of a vector to represent location, velocity, and
acceleration driven by forces in the environment. We could move straight from here into topics
such as particle systems, steering forces, group behaviors, etc. If we did that, however, we’d
skip an important area of mathematics that we’re going to need—trigonometry: the mathematics
of triangles, specifically right triangles.

Trigonometry is going to give us a lot of tools. We’ll get to think about angles and angular
velocity and acceleration. It’s going to teach us about the sine and cosine functions, which when
used properly can yield an nice ease-in, ease-out wave pattern. It’s going to allow us to
calculate more complex forces in an environment that involves angles, such as a pendulum
swinging or a box sliding down an incline.

So this chapter is a bit of a mishmash. We’ll start with the basics of angles in Processing and
cover many trigonometric topics, tying it all into forces at the end. And by taking this break
now, we’ll also pave the way for more advanced examples that require trig later in this book.

[Some of this is adapted Learning Processing. When all is said and done, I’ll need to take a
look at this again]

3.1 Angles

OK. Before we can do any of this stuff, we need to make sure we understand what it means to be
an angle in Processing. If you have experience with Processing, you’ve undoubtedly
encountered this question while using the rotate() function to rotate and spin objects.

The first order of business is radians and degrees. You’re probably familiar with the concept of
an angle in degrees. A full rotation goes from zero to 360 degrees. 90 degrees (a right angle) is
1/4th of 360, shown below as two perpendicular lines.

It’s fairly intuitive for us to think of angles of in terms of degrees.
For example, the rectangle in Figure x.x is rotated 45 degrees around
its center.

Processing, however, requires angles to be specified in radians. A
radian is a unit of measurement for angles defined by the ratio of the
length of the arc of a circle to the radius of that circle. One radian is
the angle at which that ratio equals one (see figure x.x). 180 degrees
= PI radians, 360 degrees = 2*PI radians, 90 degrees = PI/2 radians,
etc.

The formula to convert from degrees to radians is:

radians = 2 * PI * (degrees / 360)

Fortunately for us, if we prefer to think in degrees but code with radians, Processing makes this
easy. The radians() function will automatically convert values from degrees to radians. In
addition, the constants PI and TWO_PI provide convenient access to these commonly used
numbers (equivalent to 180 and 360 degrees, respectively). The following code, for example,
will rotate shapes by 60 degrees. (If you are not familiar with rotation in Processing, I would
suggest reading Chapter X of Learning Processing or this online tutorial: http://
www.processing.org/learning/transform2d/).

float angle = radians(60);
rotate(angle);

PI, what is it?
The mathematical constant PI (or !) is a real number defined as the ratio of a circle's circumference (the distance
around the perimeter) to its diameter (a straight line that passes through the circle center). It is equal to
approximately 3.14159.

Exercise: Rotate a baton-like object (see screenshot below) around its center using translate()
and rotate().

http://www.processing.org/learning/transform2d/
http://www.processing.org/learning/transform2d/
http://www.processing.org/learning/transform2d/
http://www.processing.org/learning/transform2d/

3.2 Angular motion

Remember all this stuff?

location = location + velocity;
velocity = velocity + acceleration;

The stuff we dedicated almost all of Chapters 1 and 2 to? Well, we can apply exactly the same
logic to a rotating object.

angle = angle + angular velocity
angular velocity = angular velocity + angular acceleration

In fact, the above is actually simpler than what we started with because an angle is a scalar
quantity, a single number, not a vector!

Using the answer from Exercise X.X, let’s say we were going to rotate a baton in Processing by
some angle. We would have code like:

 translate(width/2,height/2);
 rotate(angle);
 line(-50,0,50,0);
 ellipse(50,0,8,8);
 ellipse(-50,0,8,8);

Adding in our principles of motion, we’d have something like:

Example 3.x: Angular Motion using rotate()
float angle = 0;! ! ! $$ location
float aVelocity = 0;! ! ! $$ velocity
float aAcceleration = 0.0001;!! $$ acceleration

void setup() {
 size(200,200);
}

void draw() {
 background(255);

 fill(175);
 stroke(0);
 rectMode(CENTER);
 translate(width/2,height/2);
 rotate(angle);
 line(-50,0,50,0);
 ellipse(50,0,8,8);
 ellipse(-50,0,8,8);

 aVelocity += aAcceleration;!! $$ Angular equivalent of velocity.add(acceleration);
 angle += aVelocity;! ! ! $$ Angular equivalent of location.add(velocity);
}

The square starts onscreen with no rotation and then spins faster and faster and faster as the angle
of rotation accelerates.

This idea can be incorporated into our Mover object. For example, we can add the variables
related to angular motion to our Mover.

Example 3.x: Angular motion added to Mover object
class Mover {

 PVector location;
 PVector velocity;
 PVector acceleration;
 float mass;

 float angle = 0;
 float aVelocity = 0;
 float aAcceleration = 0;

And then in update(), we update both location and angle according to the same algorithm!

 void update() {

 velocity.add(acceleration);! $$ Regular old-fashion motion of cartesian location
 location.add(velocity);

 aVelocity += aAcceleration;! $$ New-fangled angular motion
 angle += aVelocity;

 acceleration.mult(0);
 }

Of course, for any of this to matter, we also would need to rotate the object when displaying it.

 void display() {
 stroke(0);
 fill(175,200);
 rectMode(CENTER);
 pushMatrix();! ! ! ! $$ pushMatrix() and popMatrix() are necessary so
! ! ! ! ! ! that the rotation of this shape doesn’t affect
! ! ! ! ! the rest of the world
! ! ! ! ! !
 translate(location.x,location.y);!! $$ Set the origin at the shape’s location
 rotate(angle);! ! ! ! $$ Rotate by the angle
 rect(0,0,mass*16,mass*16);
 popMatrix();
 }

Now, if we were to actually go ahead and run the above code, we wouldn’t see anything new.
This is because angular acceleration (float aAcceleration = 0;) is initialized to zero. For the
object to rotate, we need to give it an acceleration! Certainly, we could hard-code in a different
number.

float aAcceleration = 0.001;

However, a more interesting result can be produced by dynamically assigning an angular
acceleration according to the environment. We could head far down this road, trying to model
realistically the physics of angular acceleration (and we’ll see an example of this when we look
at the pendulum later this chapter.) However, a quick and dirty solution that produces reasonable

results is to simply calculate angular acceleration as a function of the object’s acceleration vector.
Here’s one such example:

 aAcceleration = acceleration.x;

Yes, this is completely arbitrary. But it does do something. If the object is accelerating right, its
angular rotation accelerates in a clockwise direction;acceleration to the left results in a
counterclockwise rotation. Of course, it’s important to think about scale in this case. The x
component of the acceleration vector might be a quantity that’s too large, causing the object to
spin in way that looks ridiculous or unrealistic. So dividing the x component by some value, or
perhaps constraining the angular velocity to a reasonable range, could really
help. Here’s the entire update() function with these tweaks added:

 void update() {

 velocity.add(acceleration);
 location.add(velocity);

 aAcceleration = acceleration.x / 10.0;! $$ calculate angular
acceleration according to
! ! ! ! ! ! acceleration’s horizontal direction and
! ! ! ! ! ! magnitude
 aVelocity += aAcceleration;
 aVelocity = constrain(aVelocity,-0.1,0.1); $$ Use constrain() to ensure that angular
! ! ! ! ! ! velocity doesn’t spin out of control
 angle += aVelocity;

 acceleration.mult(0);
 }

Exercise: Step 1. Create a simulation where objects are shot out of a cannon. Each object
should experience a sudden force when shot (just once) as well as gravity (always present). Step
2. Add rotation to the object to model its spin as its shot from the cannon. How realistic can you
make it look?

3.3 Trigonometry

I think it may be time. We’ve looked at angles, we’ve spun an object. It’s time for: sohcahtoa.
Yes, sohcahtoa. Strangely enough, this seemingly nonsensical word is the foundation for a lot of
computer graphics work. Anytime you need to calculate an angle, determine the distance
between points, deal with circles, arcs, lines, etc., you will find that a basic understanding of
trigonometry is essential. And sohcahtoa is a (albeit somewhat absurd) mnemonic device for
remembering the definitions of the trigonometric functions, sine, cosine, and tangent.

! soh: sine = opposite / hypotenuse
! cah: cosine = adjacent / hypotenuse
! toa: tangent = opposite / adjacent

Take a look at the above diagram again. There’s no need to memorize it, but make sure you feel
comfortable with it. Draw it again yourself. Now let’s draw it a slightly different way:

See how we create a right triangle out of a vector? The vector arrow itself is the hypotenuse and
the components of the vector (‘x’ and ‘y’) are the sides of the triangle. The angle is an additional
means for specifying the vector’s direction (or “heading”).

Because the trigonometric functions allow us to establish a relationship between the components
of a vector and its direction+magnitude, they will prove very useful throughout this book. Let’s
begin by looking at an example that requires the tangent function.

3.4 Pointing in the direction of movement.

Let’s go all the way back to example 1.x, which features a “Mover” object
accelerating towards the mouse. You might notice that almost all of the shapes
we’ve been drawing so far are circles. This is convenient for a number of
reasons, one of which is that we don’t have to consider the question of rotation.
Rotate a circle and, well, it looks exactly the same. However, there comes a
time in all motion programmers’ lives when you want to draw something on the
screen that points in the direction of movement. Perhaps you are drawing an
ant, or a car, or a spaceship. And when we say point in the direction of
movement, what we are really saying is “rotate according to the velocity vector.” Velocity is a

vector, with an x and y component, but to rotate in Processing we need an angle, in radians.
Let’s draw our trigonometry diagram one more time, with an object’s velocity vector:

OK. We know that the definition of tangent is:

tangent(angle) = velocityy / velocityx

[NEED TO CLEAN-UP / MAKE CONSISTENT USE OF TERM THETA VS. ANGLE, OK
TO USE BOTH JUST ESTABLISH WHAT I’M DOING?]

The problem with the above is that we know velocity, but we don’t know theta. We have to
solve for theta. This is where a special function known as “inverse tangent” comes in,
sometimes referred to as “arctangent.” (There is also an “inverse sine” and an “inverse cosine”.)

If the tangent of some value ‘a’ equals some value ‘b’, then the inverse tangent of ‘b’ equals ‘a’,
i.e.

if: ! tangent(a) = b
then: ! a = arctangent(b)

See how that is the inverse? The above now allows us to solve for theta:

if: ! tangent(angle) = velocityy / velocityx
then: ! angle = arctangent(velocityy / velocityx)

Now that we have the formula, let’s see where it should go in our Mover’s display() function.
Notice how in Processing, the function for arctangent is called atan().

 void display() {! ! !
 float angle = atan(velocity.y/velocity.x); $$ Solve for angle by using atan()

 stroke(0);
 fill(175);
 pushMatrix();
 rectMode(CENTER);
 translate(location.x,location.y);
 rotate(angle);! ! ! ! $$ Rotate according to that angle
 rect(0,0,30,10);
 popMatrix();
 }

Now the above code is pretty darn close, and almost works. There’s a pretty big problem,
though. Let’s consider the following two velocity vectors:

V1 = (-4,3) V2 = (4,-3)

Though superficially similar, the above two vectors point in quite different directions, opposite in
fact! However, if we were to apply our formula to solve for theta to each vector...

V1 ==> angle = atan(-3/4) = atan(-0.75) = -0.64350110
V2 ==> angle = atan(3/-4) = atan(-0.75) = -0.64350110

We get the same angle for each vector! It turns out that we have the correct answer for V1 and
for V2, because the y component is negative (and not the x); we just need to add PI to the answer
to get the correct angle. The thing is, this is a pretty common problem in computer graphics.
Rather than simply using atan() along with a bunch of conditional statements to account for
positive / negative scenarios, Processing (and pretty much all programming environments) has a
nice function called atan2() which does it for you.

 void display() {
 float angle = atan2(velocity.y,velocity.x); $$ Using atan2() to account
! ! ! ! ! ! all possible directions

 stroke(0);
 fill(175);
 pushMatrix();
 rectMode(CENTER);
 translate(location.x,location.y);
 rotate(angle);
 rect(0,0,30,10);
 popMatrix();
 }

To simplify this even further, the PVector class itself provides a function heading2D(), which
takes care of calling atan2() for you so you can get the direction angle, in radians, for any
Processing PVector.

 float theta = velocity.heading2D(); $$ The easiest way to do this!

Exercise: Create a simulation of a vehicle that you can drive around the screen using the arrow
keys: left arrow accelerates the car to the left, right to the right. The car should point in the
direction it is currently moving.

3.5 Polar vs Cartesian coordinates

Any time we display a shape in Processing we have to specify a pixel location, a set of x and y
coordinates. These coordinates are known as Cartesian coordinates, named for the French
mathematician René Descartes who developed the ideas behind Cartesian space.

Another useful coordinate system known as polar coordinates describes a point in space as an
angle of rotation around the origin and a radius from the origin. Thinking about this in terms of
a vector:

Cartesian coordinate: !the x,y components of a vector
Polar coordinate: ! the magnitude (length) and direction (angle) of a vector

We can’t use polar coordinates as arguments for a drawing function in Processing, however.
Whenever we want to display something in Processing we have to specify locations as x,y
Cartesian coordinates. However, sometimes it is a great deal more convenient for us to think in
polar coordinates when designing. Happily for us, with trigonometry we can convert back and
forth between polar and Cartesian, which allows us to design with whatever coordinate system
we have in mind but always draw with Cartesian coordinates.

sine(theta) = y / r !" y = r * sine(theta)
cosine(theta) = x / r !" x = r * cosine(theta)

For example, if r is 75 and theta is 45 degrees (or PI/4 radians), we can calculate x and y as
follows. The functions for sine and cosine in Processing are sin() and cos() respectively. They
each take one argument, a floating point angle measured in radians.

float r = 75;
float theta = PI / 4; // We could also say: float theta = radians(45);
float x = r * cos(theta);
float y = r * sin(theta);

This type of conversion can be useful in certain applications. For example, to move a shape
along a circular path using Cartesian coordinates is not so easy. With polar coordinates, on the
other hand, it’s simple: increment the angle!

Here’s how it is done with global variables “r” and “theta.”

Example 3.x: Polar to Cartesian
// A Polar coordinate
float r = 75;
float theta = 0;

void setup() {
 size(200,200);
 background(255);
 smooth();
}

void draw() {

 // Polar to Cartesian conversion
 float x = r * cos(theta);
 float y = r * sin(theta);

 // Draw an ellipse at x,y
 noStroke();
 fill(0);
 ellipse(x+width/2, y+height/2, 16, 16); // Adjust for center of window

 // Increment the angle
 theta += 0.01;
}

Exercise: Using the above example, draw a spiral path. Start in the center and move outwards.
Note that this can be done by only changing one line of code and adding one line of code! [This
is recycled from Learning Processing -- update/expand?]

Exercise: Simulate the spaceship in the game Asteroids. In case you aren’t familiar with
Asteroids, here is a brief description. A spaceship (represented as a triangle) floats in two
dimensional space. The left arrow keys turns the spaceship counter-clockwise, the right clock-
wise. The space bar applies a “thrust” force in the direction the spaceship is pointing. See the
screenshot below.

Polar coordinates (r,theta) are
converted to Cartesian (x,y) for use in
the ellipse() function.

3.6 Oscillation: Amplitude and Period

Are you amazed yet? We’ve seen pretty great uses of tangent (for finding the angle of a vector)
and sine and cosine (for converting from polar to Cartesian coordinates). We could stop right
here and be satisfied. But we’re not going to. This is only the beginning. What sine and cosine
can do for you goes beyond mathematical formulas and right triangles.

Let’s take a look at a graph of the sine function, where y = sin(x).

[REDRAW THIS]

You’ll notice that the output of the sine function is a smooth curve alternating between –1 and 1.
This type of a behavior is known as oscillation, a periodic movement between two points. Pluck
a guitar string, swing a pendulum, bounce on a pogo stick—these are all examples of oscillating
motion.

And so we happily discover that we can simulate oscillation in a Processing sketch by assigning
the output of the sine function to an object’s location. [REFERENCE PERLIN NOISE FROM
YET TO BE WRITTEN PROLOGUE]

Let’s begin with a really basic scenario. We want a circle to oscillate from the left side to the
right side of a Processing window.

 [a better illustration of oscillation]

This is what is known as simple harmonic motion (or to be fancier: “the periodic sinusoidal
oscillation of an object”). This is going to be a simple program to write, but before we get into
the code, let’s familiarize ourselves with some of the terminology of oscillation (and waves).

Simple harmonic motion can be expressed as any location (in our case, the ‘x’ location) as a
function of time, with the following two elements:

•Amplitude: the distance from the center of motion to either extreme.
•Period: the amount of time it takes for one complete cycle of motion

Looking at the graph of sine, we can see that the amplitude is 1 and the period is TWO PI; the
output of sine never rises above 1 or below -1; and every TWO PI radians (or 360 degrees) the
wave pattern repeats.

Now, in the world we live in, the Processing world, what is amplitude and what is period?
Amplitude can be measured rather easily in pixels. In the case of a window 200 pixels wide, we
would oscillate from the center 100 pixels to the right and 100 pixels to the left. Therefore:

float amplitude = 100; // Measured in pixels

Period is the amount of time it takes for one cycle. What is time in our Processing world? I
mean, certainly we could say we want the circle to oscillate every 3 seconds. And we could track
the milliseconds—using millis()—in Processing and come up with an elaborate algorithm for
oscillating an object according to real-world time. But for us, real-world time doesn’t really
matter. The real measure of time in Processing is in frames. The oscillating motion should repeat
every 30 frames, or 50 frames, or 1000 frames, etc.

float period = 120; // Measured in frames

Once we have the amplitude and period, it’s time to write a formula to calculate x as a function
of time, which we now know is the current frame count.

 float x = amplitude * cos(TWO_PI * frameCount / period);

[CIRCLE AND ANNOTATE THE FORMULA??]

Let’s dissect the formula a bit more and try to understand each component. The first is probably
the easiest. Whatever comes out of the cosine function we multiply by amplitude. We know

that cosine will oscillate between -1 and 1. If we take that value and multiply it by amplitude
then we’ll get the desired result: a value oscillating between -amplitude and amplitude. (Note
this is also a place where we could use Processing’s map() function to map the output of cosine
to a custom range).

Now, let’s look at what is inside the cosine function:

TWO_PI * frameCount / period

What’s going on here? Let’s start with what we know. We know that cosine will repeat every
2PI radians—i.e., it will start at 0, repeat at 2PI, 4PI, 6PI, etc. If the period is 120, then we want
the oscillating motion to repeat when the frameCount is at 120 frames, 240 frames, 360 frames,
etc. frameCount is really the only variable; it starts at 0 and counts upward. Let’s take a look at
what the formula yields at those values:

frameCount frameCount / period TWO_PI * frameCount / period

0 0 0

60 0.5 PI

120 1 TWO_PI

240 2 2 * TWO_PI (or 4* PI)

etc.

Framecount divided by period tells us how many cycles we’ve completed—are we halfway
through the first cycle? Have we completed 2 cycles? By multiplying that number by TWO_PI,
we get the result we want, since TWO_PI is the number of radians required for one cosine (or
sine) to complete one cycle.

Wrapping this all up, here’s a Processing example that oscillates the x location of a circle with an
amplitude of 100 pixels and a period of 120 frames.

Example 3.x Simple Harmonic Motion
void setup() {
 size(200,200);
}

void draw() {
 background(255);

 float period = 120;
 float amplitude = 100;
 float x = amplitude * cos(TWO_PI * frameCount / period); $$ Calculating horizontal location
 ! ! ! ! ! ! ! according to formula for simple
! ! ! ! ! ! ! ! ! ! ! harmonic motion
 stroke(0);

 fill(175);
 translate(width/2,height/2);
 line(0,0,x,0);
 ellipse(x,0,20,20);
}

It’s also worth mentioning the term frequency: the number of cycles per time unit. Frequency is
equal to 1 divided by period. If the period is 120 frames, then only 1/120th of a cycle is
completed in one frame and so frequency = 1/120. In the above example, we simply chose to
define the rate of oscillation in terms of “period” and therefore did not need a variable for
frequency.

Exercise: Create a simulation of a weight (sometimes referred to as a “bob”) hanging from the
top of the window by a spring using the sine function. Use the map() function to calculate the
vertical location of the bob. Later this chapter, we’ll see how to recreate this same simulation by
modeling the forces of a spring according to Hooke’s law.

3.6 Oscillation: Angular Velocity

Understanding the concepts of oscillation, amplitude, frequency/period is important and often
required in the course of simulating “real-world” behaviors. However, there is a slightly easier
way to rewrite the above example with the same result. Let’s take one more look at our
oscillation formula:

float x = amplitude * cos(TWO_PI * frameCount / period);

And let’s rewrite it a slightly different way:

float x = amplitude * cos (some value that increments slowly)

If we care about precisely defining the period of oscillation in terms of frames of animation, we
might need the formula the way we first wrote it, but we can just as easily rewrite our example
using the concept of angular velocity (and acceleration) from Section 3.x. Assuming:

float angle = 0;
float aVelocity = 0.05;

In draw(), we can simply say:

angle += aVelocity;
float x = amplitude * cos(angle);

angle is our “some value that increments slowly.”

Example 3.x Simple Harmonic Motion II
float angle = 0;
float aVelocity = 0.05;

void setup() {

 size(200,200);
}

void draw() {
 background(255);

 float amplitude = 100;
 float x = amplitude * cos(angle);
 angle += aVelocity;! ! ! ! $$ Using the concept of angular velocity to increment
! ! ! ! ! ! ! an angle variable

 ellipseMode(CENTER);
 stroke(0);
 fill(175);
 translate(width/2,height/2);
 line(0,0,x,0);
 ellipse(x,0,20,20);
}

Just because we’re not referencing it directly doesn’t mean that we’ve eliminated the concept of
period. After all, the greater the angular velocity, the faster the circle will oscillate (therefore
lowering the period). In fact, the number of times it takes to add up the angular velocity to get
to TWO_PI is the period or: period = TWO_PI / angular velocity.

Let’s expand this example a bit more and create an “Oscillator” class. And let’s assume we want
the oscillation to happen along both the x-axis (as above) and the y-axis. To do this, we’ll need
two angles, two angular velocities, and two amplitudes (one for each axis). Another perfect
opportunity for PVector!

Example 3.x: Oscillator objects
class Oscillator {

 PVector angle;
 PVector velocity;
 PVector amplitude;

 Oscillator() {
 angle = new PVector();
 velocity = new PVector(random(-0.05,0.05),random(-0.05,0.05));
 amplitude = new PVector(random(width/2),random(height/2));
 }

 void oscillate() {
 angle.add(velocity);
 }

 void display() {

 float x = sin(angle.x)*amplitude.x;
 float y = sin(angle.y)*amplitude.y;

 pushMatrix();
 translate(width/2,height/2);
 stroke(0);
 fill(175);
 // draw circle and line
 line(0,0,x,y);
 ellipse(x,y,16,16);

 popMatrix();
 }
}

[NOT INCLUDING THE MAIN PROGRAM, TOO MUCH UNNECESSARY CODE. This is
maybe something I need to discuss in intro and have an icon or something which reminds
users to see the complete example online]

Exercise: Try initializing each Oscillator object with velocities and amplitudes that are not
random to create some sort of regular pattern.

Exercise: Incorporate angular acceleration into the Oscillator object.

Exercise: Rewrite the above Oscillator class so that each object doesn’t simply oscillate around
the middle of the Processing window (width/2,height/2), but around a moving point. In other
words, design a creature that moves around the screen according to location, velocity, and
acceleration. But that creature isn’t just a static shape, it’s an oscillating body. Consider tying
the speed of oscillation to the speed of motion. Think of a butterfly’s flapping wings or the legs
of an insect. Can you make it appear that the creature’s internal mechanics (oscillation) drive its
locomotion? [In theory, I’d love to include an example of this in the book itself, but for now
it’s an exercise and example solutions will be online. Also, this is probably better moved to end
of Chapter as a “project”]

3.7 Waves

If you’re asking yourself, “Um, this is all great and everything, but what I really want is to just
draw a wave onscreen,” well then, the time has come. The thing is, we’re about 90% there.
When we oscillate a single circle up and down according to the sine function, what we are doing
is looking at a single point along the x-axis of a wave pattern. With a little panache and a for
loop, we can place a whole bunch of these oscillating circles next to each other.

This wavy pattern could be used in the design of the body or appendages of a creature, as well as
to simulate a soft surface (such as water).

Here, we’re going to encounter the same questions of amplitude (height of pattern) and period.
Instead of period referring to time, however, since we’re looking at the full wave, we can talk
about period as the width (in pixels) of a full wave cycle. And just as with simple oscillation,

we have the option of computing the wave pattern according to a precise period or simply
following the model of angular velocity.

Let’s go with the simpler case, angular velocity. We know we need to start with an angle, an
angular velocity, and an amplitude:

float theta = 0;
float thetaVel = 0.2;
float amplitude = 100;

Then we’re going to loop through all of the x values where we want to draw a point of the wave.
Let’s say every 10 pixels for now. In that loop, we’re going to want to do three things:

1) Calculate the y location according to amplitude and sine of the angle.
2) Draw a circle at the (x,y) location
3) Increment the angle according to angular velocity.

 for (int x = 0; x <= width; x += 10) {
 float y = amplitude*sin(theta);! ! // 1 (make these point to each other)
 ellipse(x,y+height/2,16,16);! ! // 2
 theta += thetaVel;!! ! ! // 3
 }

Let’s look at the results with different values for thetaVel:

thetaVel = 0.05! ! thetaVel = 0.2!! ! thetaVel = 0.4

Notice how, although we’re not precisely computing the period of the wave, the higher the
angular velocity, the shorter the period. It’s also worth noting that as the period becomes shorter,
it becomes more and more difficult to make out the wave itself as the distance between the
individual points increases. One option we have is to use beginShape() and endShape() to
connect the points with a line.

float theta = 0;
float thetaVel = 0.2;
float amplitude = 100;

size(400,200);
background(255);
smooth();

stroke(0);
strokeWeight(2);
noFill();

beginShape();
for (int x = 0; x <= width; x += 5) {
 float y = map(sin(theta),-1,1,0,height); $$ Here’s an example of using the map() function
! ! ! ! ! ! instead.
 vertex(x,y);!! ! ! ! $$ With beginShape() and endShape() you call
! ! ! ! ! ! vertex() to set all the vertices of your shape.
 theta +=thetaVel;
}
endShape();

You may have noticed that the above example is static. The wave never changes, never
undulates. This additional step is a bit tricky. Your first instinct might be to say: “Hey, no
problem, we’ll just let theta be a global variable and let it increment from one cycle through
draw() to another.”

While it’s a nice thought, it doesn’t work. If you look at the wave, the righthand edge doesn’t
match the lefthand; where it ends in one cycle of draw() can’t be where it starts in the next.
Instead, what we need to do is have a variable dedicated entirely to tracking what value of theta
the wave should start with. This theta (which we’ll call “startTheta”) increments with its own
angular velocity.

float startTheta = 0;
float thetaVel = 0.1;
float amplitude = 100;

void setup() {
 size(400,200);
}

void draw() {
 background(255);

 startTheta += 0.02;
 float theta = startTheta;! ! ! ! $$ In order to move the wave, we start at a
! ! ! ! ! ! ! different theta value each frame

 for (int x = 0; x <= width; x += 5) {
 float y = map(sin(theta),-1,1,0,height);
 stroke(0);
 fill(0,50);
 ellipse(x,y,10,10);
 theta += thetaVel;
 }
}

Exercise 3.x: Try using the Perlin noise function instead of sine or cosine.

Exercise 3.x: Encapsulate the above examples into a Wave class and create a sketch that displays
two saves (with different amplitudes / periods) as in the screenshot below. (Move beyond plain
circles and lines and try visualizing the wave in a more creative way.)

Exercise 3.x: More complex waves can be produced by the values of multiple waves together.
Create a sketch that implements this, as in the screenshot below.

3.8 Trigonometry and Forces: The Pendulum

Do you miss Newton’s laws of motion? I know I sure do. Well, lucky for you, it’s time to bring
it all back home. After all, it’s been nice learning about triangles and tangents and waves, but the
core of this book is really simulating the physics of moving bodies. Let’s take a look at how
trigonometry can help us with this pursuit.

A pendulum is a bob suspended from a pivot. Obviously a real-world pendulum would live in a
3D space, but we’re going to look at a simpler scenario, a pendulum in a 2D space—a Processing
window.

In Chapter 2, we learned how a force (such as the force of gravity in the diagram above) causes
an object to accelerate. F = M * A or A = F / M. In this case, however, the pendulum bob
doesn’t simply fall to the ground because it is attached by an arm to the pivot point. And so, in

order to determine its acceleration, we not only need to look at the force of gravity, but also at
the angle of the pendulum’s arm (relative to a pendulum at rest with an angle of zero).

And this is why we’re here in this chapter. In the above case, since the pendulum’s arm is of
fixed length, the only variable in the scenario is the angle. We are going to simulate the
pendulum’s motion through the use of angular velocity and acceleration. The angular
acceleration will be calculated using Newton’s second law with a little trigonometry twist.

Let’s zoom in on the right triangle from the pendulum diagram.

We know the force of the pendulum (Fp) should point perpendicular to the arm of the pendulum
in the direction that the pendulum is swinging. The force of gravity (Fg) points downward. By
making a right triangle out of these two vectors, we’ve accomplished something quite
magnificent. We’ve made the force of gravity the hypotenuse of a right triangle and separated
the vector into two components, one of which represents the force of the pendulum.
[MENTION TENSION HERE?] Since sine equals opposite over hypotenuse, we have:

sine(!) = Fp / Fg

therefore:

Fp = Fg * sine(!)

From Chapter Two we know that the force of gravity is equal to (G * m1 * m2 / distance
squared), where G is the universal gravitational constant, m1 is the mass of the pendulum’s bob,
m2 is the mass of the earth and distance is how far the pendulum is from the center of the earth.
This is a good time to remind ourselves that we’re Processing programmers and not physicists.
Clearly, we’re not going to be using the actual mass of the earth in our code. For our purposes,
let’s consider G, m2, and the distance to all be a single constant (let’s call it ‘G’), and we’ll scale
the value according to something that makes sense for pixels. So now we have:

Fp = Fg * sine(!) and Fg = G * m

where m is the pendulum bob’s mass. Therefore:

Fp = G * m * sine(!)

Lest we forget, we’ve been doing all of this with a single question in mind: What is the angular
acceleration of the pendulum? Now we can apply our rules of motion to find the new angle for
the pendulum.

angular velocity = angular velocity + angular acceleration
angle = angle + angular velocity

Newton’s second law is: F = M * A. Applying it here we have:

Fp = m * angular acceleration

or

angular acceleration = Fp / m

or

angular acceleration = G * m * sine(!) / m

or

angular acceleration = G * sine(!)

Amazing. After all that, the formula is so simple. You might be wondering, why bother going
through the derivation at all? I mean, learning is great and all, but we could have easily just said:
Hey, the angular acceleration of a pendulum is some constant times the sine of the angle. This is
just another moment to remind ourselves that the purpose of the book is not to learn how
pendulums swing or gravity works. The point is to think creatively about how things can move

[NOTE: maybe the
way we continually
substitute one
formula into another
isnʼt going to obvious
to all readers. Cover
this somewhere or
diagram/notate this
better]

about the screen in an interactive computer graphics system. The pendulum is just a case study.
If you can understand the approach to programming a pendulum, then however you choose to
design your onscreen world, you can apply the same techniques.

Of course, we’re not finished yet. We may be happy with our simple, elegant formula, but we
still have to apply it in code. This is most definitely a good time to practice our object-oriented
programming skills and create a Pendulum class. Let’s think about all the properties we’ve
encountered in our pendulum discussion that the class will need:

• arm length
• angle
• angular velocity
• angular acceleration

class Pendulum {

 float r; // Length of arm
 float angle; // Pendulum arm angle
 float aVelocity; // Angular velocity
 float aAcceleration; // Angular acceleration

We’ll also need to write a function update() to update the pendulum’s angle according to our
formula. . .

 // Function to update location
 void update() {
 float G = 0.4; // Arbitrary universal gravitational constant
 aAcceleration = -1 * G * sin(angle); // Calculate acceleration
 aVelocity += aAcceleration; // Increment velocity
 angle += aVelocity; // Increment angle
 }

. . .as well as a function display() to draw the pendulum in the window, which begs the question:
“Um, where do we draw the pendulum?” We know the angle and the arm length, but how do we
know the x,y (Cartesian!) coordinates for both the pendulum’s pivot point (let’s call it “origin”)
and bob location (let’s call it location)? This may be getting a little tiring, but the answer, yet
again, is trigonometry.

The origin is just something we make up, as is the arm length. Let’s say:

PVector origin = new PVector(100,10);
float r = 125;

We’ve got the current angle stored in our variable “angle”. So relative to the origin, the
pendulum’s location is a polar coordinate: (r,angle). And we need it to be Cartesian. Luckily for
us, we just spent some time (Section 3.x) deriving the formula for converting from polar to
Cartesian. And so:

PVector location = new PVector(r*sin(angle),r*cos(angle));

Since the location is relative to wherever the origin happens to be, we can just add origin to the
location PVector:

location.add(origin);

And all that remains is the little matter of drawing a line and ellipse (you should be more
creative, of course).

stroke(0);
fill(175);
line(origin.x,origin.y,location.x,location.y);
ellipse(location.x,location.y,16,16);

Before we put everything together, there’s one last little detail I neglected to mention. Let’s
think about the pendulum arm for a moment. Is it a metal rod? A string? A rubber band? How
is it attached to the pivot point? What is its mass? Is it a windy day? There are a lot of
questions that we could continue to ask that would affect the simulation. We’re living, of course,
in a fantasy world, one where the pendulum’s arm is some idealized rod that never bends and has
no mass. Nevertheless, even though we don’t want to worry ourselves with all of the questions,
it would be useful to consider one additional force: tension. Tension can be described as a
pulling force (from a string, chain, rod, etc.) on an object. [WHOOPS THIS IS WRONG
WHAT I’M REALLY TALKING ABOUT IS: http://calculuslab.deltacollege.edu/ODE/7-A-2/7-
A-2-h.html NEED TO FIX THIS EXPLANATION WHICH RESULTS IN]:

http://calculuslab.deltacollege.edu/ODE/7-A-2/7-A-2-h.html
http://calculuslab.deltacollege.edu/ODE/7-A-2/7-A-2-h.html
http://calculuslab.deltacollege.edu/ODE/7-A-2/7-A-2-h.html
http://calculuslab.deltacollege.edu/ODE/7-A-2/7-A-2-h.html

aAcceleration = (-1 * G * sin(angle)) / r;

Finally, a real world pendulum is going to experience some amount of friction (at the pivot point)
and air resistance. With our code as is, the pendulum would swing forever, so to make it more
realistic we can use a “damping” trick. I say “trick” because rather than model the resistance
forces with some degree of accuracy (as we looked at in Chapter 2), we can achieve a similar
result by simply reducing the angular velocity during each cycle. The following code reduces
the velocity by 1% (or multiplies it by 99%) during each frame of animation:

aVelocity *= 0.99;

Putting everything together, we have the following example (with the pendulum beginning at a
45 degree angle).

[NEED TO PULL OUT SOME COMMENTS TO BE NICER CODE BUBBLES]
Example 3.x: Swinging Pendulum
Pendulum p;

void setup() {
 size(200,200);
 smooth();
 // Make a new Pendulum with an origin location and armlength
 p = new Pendulum(new PVector(width/2,10),125);
}

void draw() {
 background(255);
 p.go();
}

class Pendulum {

 PVector location; // Location of pendulum ball
 PVector origin; // Location of arm origin
 float r; // Length of arm
 float angle; // Pendulum arm angle
 float aVelocity; // Angle velocity
 float aAcceleration; // Angle acceleration
 float damping; // Arbitrary damping amount

 Pendulum(PVector origin_, float r_) {
 // Fill all variables
 origin = origin_.get();
 location = new PVector();
 r = r_;
 angle = PI/4;

 aVelocity = 0.0;
 aAcceleration = 0.0;
 damping = 0.995; // Arbitrary damping
 }

 void go() {
 update();
 display();
 }

 // Function to update location
 void update() {
 float G = 0.4; // Arbitrary universal gravitational constant
 aAcceleration = (-1 * G / r) * sin(angle); // Calculate acceleration
 aVelocity += aAcceleration; // Increment velocity
 aVelocity *= damping; // Arbitrary damping
 angle += aVelocity; // Increment angle
 }

 void display() {
 location.set(r*sin(angle),r*cos(angle),0); // Polar to Cartesian conversion
 location.add(origin); // Location is relative to the pendulum's origin

 stroke(0);
 // Draw the arm
 line(origin.x,origin.y,location.x,location.y);
 ellipseMode(CENTER);
 fill(175);
 // Draw the ball
 ellipse(location.x,location.y,16,16);
 }
}

(Note that the version of the example posted on the web site has additional code to allow the user
to grab the pendulum and swing it with the mouse.)

Exercise: String together a series of pendulums so that the endpoint of one is the origin point of
another.

Exercise: Examine the following diagram [NOTE REDO DIAGRAM, NOT ACTUAL
DIAGRAM].

Using trigonometry, what is the magnitude of the“normal” force (the force perpendicular to the
incline on which the box rests)? Note that, as indicated, the “normal” force is a component of
the force of gravity.

Exercise part 2: Create an example that simulates the box sliding down the incline with friction.
Note that the magnitude of the friction force is equal to the normal force.

3.10 Spring Forces

In Section 3.x, we looked at modeling simple harmonic motion by mapping the sine wave to a
pixel range. Exercise 3.x asked you to use this technique to create a simulation of a spring
hanging from a bob. While using the sin() function is a quick-and-dirty, one-line-of-code way of
getting something up and running, it won’t do if what we really want is to have a bob hanging
from a spring in a two-dimensional space that responds to other forces in the environment (wind,
gravity, etc.) To accomplish a simulation like this (one that is identical to the pendulum example,
only now the arm is a springy connection), we need to model the forces of a spring using
PVector.

The force of a spring is calculated according to Hooke’s law, named for Robert Hooke, a British
physicist who developed the formula in 1660. Hooke originally stated the law in Latin: “Ut
tensio, sic vis” or “As the extension, so the force” [from wikipedia]. Let’s think of it this way:

The force of the spring is directly proportional to the extension of the spring.

In other words, if you pull on the bob a lot, the force will be small; if you pull on the bob a little,
the force will be weak. Mathematically, the law is stated as follows:

Fspring = - k * x

• k is constant and its value will ultimately scale the force. Is the spring highly elastic or
quite rigid?

• x refers to the displacement of the spring, i.e. the difference between the current length and
the rest length. The rest length is defined as the length of the spring in a state of
equilibrium.

Now, remember, force is a vector so we need to calculate both magnitude and direction. Let’s
look at one more diagram of the spring and label all the givens we might have in a Processing
sketch.

Let’s establish the following three variables as related to the diagram above.

PVector anchor;
PVector location;
float restLength;

First, let’s use Hooke’s law to calculate the magnitude of the force. We need to know k and x. k
is easy; it’s just a constant, so let’s make something up.

float k = 0.1;

x is perhaps a bit more difficult. We need to know the “difference between the current length and
the rest length.” The rest length is defined as the variable “restLength.” What’s the current
length? The distance between the anchor and the bob. And how can we calculate that distance?
How about the magnitude of a vector that points from the anchor to the bob? (Note this is
exactly the same process we employed when calculating distance in Example 2.x: gravitational
attraction.)

PVector dir = PVector.sub(bob,anchor);
float currentLength = dir.mag();
float x = restLength - currentLength;

Now that we’ve sorted out the elements necessary for the magnitude of the force (-1 * k * x), we
need to figure out the direction, a unit vector pointing in the direction of the force. The good
news is that we already have this vector. Right? Just a moment ago we said: “How we can

calculate that distance? How about the magnitude of a vector that points from the anchor to the
bob?” Well, that is the direction of the force, it’s a vector that points from the anchor to the bob!

In the above diagram, we can see that if we stretch the spring beyond its rest length, there should
be a force pulling it back towards the anchor. And if it shrinks below its rest length, the force
should push it away from the anchor. This reversal of direction is accounted for in the formula
with the -1. And so all we need is to normalize the PVector we used for the distance calculation!
Let’s take a look at the code, and rename that PVector variable to “force.”

float k = 0.1;!! ! ! $$ Magnitude of spring force according to Hooke’s law
PVector force = PVector.sub(bob,anchor);
float currentLength = dir.mag();
float x = restLength - currentLength;

force.normalize();! ! ! $$ Direction of spring force (unit vector)

force.mult(-1 * k * x);! ! $$ Putting it together, direction and magnitude!

Now that we have the algorithm worked out for computing the spring force vector, the question
remains: what object-oriented programming structure should we use? This, again, is one of
those situations where there is no “correct” answer. There are several possibilities and which one
we choose depends on the program’s goals and one’s own personal coding style. Still, since
we’ve been working all along with a Mover class, let’s keep going with this same framework.
Let’s think of our Mover class as the spring’s “bob.” The bob needs location, velocity, and
acceleration vectors to move about the screen. Perfect—we’ve got that already! And perhaps
the bob experiences a gravity force via the applyForce() function. Just one more step: we need
to apply the spring force:

Bob bob;

void setup() {
 bob = new Bob();
}

void draw() {
 PVector gravity = new PVector(0,1);!! $$ Our chapter 2 “make-up-a-gravity-force”
 bob.applyForce(gravity);

 PVector springForce = _______________???? !$$ We need to also calculate and apply a spring
! ! ! ! ! ! force!
 bob.applyForce(spring);

 bob.update();! ! ! ! $ Our standard update() and display() functions
 bob.display();
}

One option would be to write out all of the spring force code in the main draw() loop. But
thinking ahead to when you might have multiple bobs and multiple spring connections, it makes
a good deal of sense to write an additional class, a Spring class. The Bob object keeps track of
the movements of the Bob; the Spring class keeps track of the Spring’s anchor and its rest length
and calculates the Spring force on the Bob.

Our goal here is to write a nice-looking main program as follows:

Bob bob;
Spring spring;!! ! $$ Adding a Spring object

void setup() {
 bob = new Bob();
 spring = new Spring();
}

void draw() {
 PVector gravity = new PVector(0,1);!!
 bob.applyForce(gravity);

 spring.connect(bob); ! $$ This new function in the Spring class will take care of
! ! ! ! computing the force of the spring on the bob
 bob.update();! ! ! !
 bob.display();
 spring.display();
}

You may notice here that this is quite similar to what we did in Example 2.x, the Attractor.
There, we said something like:

 PVector force = attractor.attract(mover);
 mover.applyForce(force);

The analogous situation here with a spring would be:

 PVector force = spring.connect(bob);
 bob.applyForce(force);

Nevertheless, in this example all we said was:

 spring.connect(bob);

What gives? Why don’t we need to call applyForce() on the bob? The answer is, of course, that
we do need to call applyForce() on the bob. Only instead of doing it in draw(), we’re just
demonstrating that a perfectly reasonable (and sometimes preferable) alternative is to ask the
connect() function to internally handle calling applyForce() on the bob:

 void connect(Bob b) {
 PVector force = some fancy calculations

 b.applyForce(force);! $$ The function connect() takes care of calling applyForce
! ! ! ! and therefore doesn’t have to return a vector to the calling
! ! ! ! area.
 }

Why do it one way with the Attractor and another way with the Spring? When we were first
learning about forces, it was a bit clearer to show all the forces being applied in the main draw()
loop, and hopefully this helped you learn about force accumulation. Now that we’re more
comfortable with that, perhaps it’s simpler to embed some of the details inside the objects
themselves.

Let’s take a look at the rest of the elements in the Spring class.

Example 3.x: a Spring connection
class Spring {

 PVector anchor;! ! $$ We need to keep track of the spring’s anchor location

 float len;! ! ! $$ Rest length and spring constant variables
 float k = 0.1;

 // Constructor
 Spring(float x, float y, int l) { $$ The constructor initializes the anchor point
! ! ! ! ! and rest length
 anchor = new PVector(x,y);
 len = l;
 }

 // Calculate spring force
 void connect(Bob b) { ! ! ! ! $$ Here is our implementation of Hooke’s Law
 PVector force = PVector.sub(b.location,anchor);! $$ Get a vector pointing from anchor to Bob
! ! ! ! ! ! ! location
 float d = force.mag();
 float stretch = d - len;! ! ! ! $$ Calculate the displacement between
 ! ! ! ! ! distance and rest length

 force.normalize();!! ! ! ! $$ Direction and magnitude together!
 force.mult(-1 * k * stretch);

 b.applyForce(force);! ! ! ! $$ call applyForce() right here!
 }

 void display() { ! ! ! ! ! $$ Draw the anchor
 fill(100);
 rectMode(CENTER);
 rect(anchor.x,anchor.y,10,10);
 }

 void displayLine(Bob b) {! ! ! ! $$ Draw the spring connection between Bob
! ! ! ! ! ! ! location and anchor
 stroke(255);
 line(b.location.x,b.location.y,anchor.x,anchor.y);
 }

}

The full code for this example is included on the book web site, and the web version also
incorporates two additional features: (1) Bob includes functions for mouse interactivity tso that it
can be dragged around the window. (2) The Spring object includes a function to constrain the
connection’s length between a minimum and a maximum.

Exercise: Before running to see the example online, take a look at this constrain function and see
if you can fill in the blanks.

void constrainLength(Bob b, float minlen, float maxlen) {
 PVector dir = PVector.sub(__________,__________);
 float d = dir.mag();

 if (d < minlen) {
 dir.normalize();
 dir.mult(________);
 b.location = PVector.add(__________,__________);
 b.velocity.mult(0);
 } else if (____________) {
 dir.normalize();
 dir.mult(_________);
 b.location = PVector.add(__________,__________);
 b.velocity.mult(0);
 }
}

Exercise: Create a system of multiple bobs and spring connections. How would you have a Bob
connected to a Bob with no fixed anchor?

Chapter 3 project ?? (i’m going to put all of these in once I have all the chapters??)

Is it too short?

Is it too long?
Keep location within
constraint

Vector pointing from
Bob to anchor.

Chapter 4. Particle Systems

“That is wise. Were I to invoke logic, however, logic clearly dictates that the needs of the many outweigh the needs of
the few.”
! -- Spock

In this Chapter:

• What is a Particle System?
• Why Particle Systems for us?
• The Particle class
• The ArrayList
• The ParticleSystem class
• Adding behaviors / forces
• Inheritance / polymorphism

4.1 What is a Particle System?

In 1982, William T. Reeves, a researcher at Lucasfilm Ltd. was working on the film “Star Trek
II: The Wrath of Khan.” Much of the movie revolves around the Genesis Device, a torpedo that
when shot at a barren, lifeless planet has the ability to reorganize matter and create a habitable
world for colonization. The term “particle system,” an incredibly common and useful technique
in computer graphics, was coined for the creation of this very Genesis Demo scene and was the
model for a wall of fire on the planet being “terraformed.”

“A particle system is a collection of many many minute particles that together represent a fuzzy
object. Over a period of time, particles are generated into a system, move and change from
within the system, and die from the system.”

Particle Systems—a Technique for Modeling a Class of Fuzzy Objects, author: William
Reeves, ACM Transactions on Graphics, Vol. 2, No. 2, April 1983.

Since the early 1980s, particle systems have been used in countless video games, animations,
digital art pieces, installations, etc. to model various irregular types of natural phenomena, such
as explosions, fire, smoke, sparks, waterfalls, clouds, fog, petals, grass, bubbles, and so on.

This chapter will be dedicated to looking at implementation strategies for coding a particle
system. How do we organize our code? Where do we store information related to individual
particles vs. information related to the system as a whole? The examples we’ll look at focus on
managing the data associated with a particle system. The examples will use simple shapes for the
particles and apply only the most basic behaviors (gravity, etc.). However, by using this
framework and building in more interesting ways to render the particles and compute behaviors,
you can achieve a variety of effects.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 1

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

4.2 Why Particle Systems for us?

We’ve defined a particle system to be a collection of independent objects, often represented by a
simple shape or dot. Why does this matter? Certainly, the prospect of modeling some of the
phenomena we listed (explosions, etc.) is attractive and potentially useful. But really, there’s an
even better reason for us to concern ourselves with particle systems. If we want to get anywhere
in this nature of code life, we’re going to need to work with systems of many things. We’re
going to want to look at balls bouncing, birds flocking, ecosystems evolving, all sorts of things in
plural.

Just about every chapter after this one is going to need to deal with a list of objects. Yes, we’ve
done this with an array in some of our first vector and forces examples. But we need to take this
beyond just using an array.

First, we’re going to want to deal with flexible quantities of elements. Sometimes we’ll have
zero things, sometimes one thing, sometimes ten things, and sometimes ten thousand things.
Second, we’re going to want to take a more sophisticated object-oriented approach. Instead of
simply writing a class to describe a single Particle, we’re also going to want to write a class that
describes the collection of particles, the Particle System itself. The goal here is to be able to
write a main program that looks like the following:

ParticleSystem ps;! ! ! $$ Ah, isn’t this main program so simple and lovely?

void setup() {
 size(200,200);
 ps = new ParticleSystem();
}

void draw() {
 background(255);
 ps.run();
}

No single Particle is ever referenced in the above code, yet the result will be full of particles
flying all over the screen. Getting used to writing Processing sketches with multiple classes and
classes that keep lists of instances of other classes will prove very useful as we get to more
advanced chapters in this book.

Finally, working with Particle Systems is also a good excuse for us to tackle two other advanced
object-oriented programming techniques: inheritance and polymorphism. With the examples
we’ve seen up until now, we’ve always had an array of a single type of object: “Movers” or
“Oscillators.” With inheritance (and polymorphism), we’ll see a convenient way that we can

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 2

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

store a single list that contains objects of different types. This way a Particle System need not
only be a system of a single type of particle.

Though it may seem obvious to you, I’d also like to point out that there are typical
implementations of particle systems, and that’s where we will begin in this chapter. However,
the fact that the particles in this chapter look or behave a certain way should not limit your
imagination. Just because particle systems tend to look sparkly, fly forward, and fall with
gravity doesn’t meant that’s how you should make yours.

The focus here is really just how to keep track of a system of many elements. What those
elements do and how those elements look is up to you.

4.3 A Single Particle

Before we can get rolling on the system itself, we’ve got to work on writing the class to describe
a single Particle. The good news: we’ve done this already. Our “Mover” class from Chapter 2
serves as the perfect template. For us, a particle is an independent body that moves about the
screen. It has location, velocity, and acceleration, a constructor to initialize those variables, and
functions to display() itself and update() its location.

class Particle {
 PVector location;! ! ! $$ A “Particle” object is just another name for our “Mover”
! ! ! ! ! ! It has location, velocity, and acceleration
 PVector velocity;
 PVector acceleration;

 Particle(PVector l) {
 location = l.get();
 acceleration = new PVector();
 velocity = new PVector();
 }

 void update() {
 velocity.add(acceleration);
 location.add(velocity);
 }

 void display() {
 stroke(0);
 fill(175);
 ellipse(location.x,location.y,8,8);
 }
}

This is about as simple as a particle can get. From here, we could take our particle in several
directions. We could add an applyForce() function to affect the particle’s behavior (we’ll do
precisely this in a future example). We could add variables to describe color and shape, or
reference a PImage to draw the particle. For now, however, let’s focus on adding just one
additional detail: lifespan.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 3

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Typical particle systems involve something called an emitter. The emitter is the source of the
particles and controls the initial settings for the particles, location, velocity, etc. An emitter
might emit a single burst of particles, or a continuous stream of particles, or both. The point is
that for a typical implementation such as this, a particle is born at the emitter but does not live
forever. If it were to live forever, our Processing sketch would eventually grind to a halt as the
number of particles increases to an unwieldy number over time. As new particles are born, we
need old particles to die. This creates the illusion of an infinite stream of particles, and the
performance of our program does not suffer. There are many different ways we could decide
when a particle dies. For example, it could come into contact with another object, or it could
simply leave the screen. For our first Particle class, however, we’re simply going to add a
“lifespan” variable. The timer will start at 255 and count down to 0, when the particle will be
considered “dead.” And so we expand the Particle class as follows:

class Particle {
 PVector location;
 PVector velocity;
 PVector acceleration;
 float lifespan;!! ! $$ A new variable to keep track of how long the particle
! ! ! ! has been “alive”

 Particle(PVector l) {
 location = l.get();
 acceleration = new PVector();
 velocity = new PVector();
 lifespan = 255;! ! $$ We start at 255 and count down for convenience
 }

 void update() {
 velocity.add(acceleration);
 location.add(velocity);
 lifespan -= 2.0;! ! $$ Lifespan decreases
 }

 void display() {
 stroke(0,lifespan);!! $$ Since our life ranges from 255 to 0 we can use it for alpha
 fill(175,lifespan);
 ellipse(location.x,location.y,8,8);
 }
}

The reason we chose to start the lifespan at 255 and count down to 0 is for convenience. With
those values, we can assign lifespan to act as the alpha transparency for the ellipse as well.
When the particle is “dead” it will also have faded away onscreen.

With the addition of the lifespan variable, we’ll also need one additional function -- a function
that can be queried (for a true or false answer) as to whether the particle is alive or dead. This
will come in handy when we are writing the ParticleSystem class whose task will be to manage
the list of particles themselves. Writing this function is pretty easy; we just need to check and
see if the value of lifespan is less than zero. If it is we return true, if not return false.

 boolean isDead() {
 if (lifespan < 0.0) {

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 4

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 return true;
 } else {
 return false;
 }
 }

Before we get to the next step of making many particles, it’s worth taking a moment to make
sure our Particle works correctly and create a sketch with one single Particle object. Here is the
full code below, with two small additions. We add a convenience function called run() that
simply calls both update() and display() for us. In addition, we give the Particle a random initial
velocity as well as an downward acceleration (to simulate gravity).

Example 4.x: A Single Particle
Particle p;

void setup() {
 size(200,200);
 p = new Particle(new PVector(width/2,10));
 smooth();
}

void draw() {
 background(255);
 p.run();! ! ! ! $$ Operating the single Particle
 if (p.isDead()) {
 println("Particle dead!");
 }
}

class Particle {
 PVector location;
 PVector velocity;
 PVector acceleration;
 float lifespan;

 Particle(PVector l) {
 acceleration = new PVector(0,0.05);! ! ! ! $$ For demonstration purposes we assign
 velocity = new PVector(random(-1,1),random(-2,0));! the Particle an initial velocity and
 location = l.get();!! ! ! ! ! ! constant acceleration
 lifespan = 255.0;
 }

 void run() {! ! ! ! $$ Sometimes it’s convenient to have a “run” function that
 update();! ! ! ! calls all the other functions we need
 display();
 }

 // Method to update location
 void update() {
 velocity.add(acceleration);
 location.add(velocity);
 lifespan -= 2.0;
 }

 // Method to display
 void display() {
 stroke(0,lifespan);
 fill(0,lifespan);
 ellipse(location.x,location.y,8,8);
 }

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 5

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 // Is the particle still useful?
 boolean isDead() {
 if (lifespan < 0.0) {
 return true;
 } else {
 return false;
 }
 }
}

Exercise: Rewrite the example so that the Particle can respond to force vectors via an
applyForce() function.

Exercise: Add angular velocity (rotation) to the Particle. Create your own non-circle Particle
design.

Now that we have a class to describe a single Particle, we’re ready for the next big step. How do
we keep track of many particles, when we can’t ensure exactly how many particles we might
have at any given time?

4.4 The ArrayList

In truth, we could use a simple array to manage our Particle objects. Some particle systems
might have a fixed number of particles, and arrays are magnificently efficient in those instances.
Processing also offers expand(), contract(), subset(), splice() and other methods for resizing
arrays. However, for these examples, the Java class ArrayList (found in the java.util package:
http://download.oracle.com/javase/6/docs/api/java/util/ArrayList.html) will prove to be the best
solution.

Using an ArrayList is conceptually similar to a standard array, but the syntax is different. Here is
some code (that assumes the existence of a generic Particle class) demonstrating identical results:
first with an array, and second with an ArrayList.

// THE STANDARD ARRAY WAY
int total = 10;
//declaring the array
Particle[] parray = new Particle[total];

// Initialize the array in setup
void setup() {
 for (int i = 0; i < parray.length; i++) {
 parray[i] = new Particle();
 }
}

// Loop through the array to call methods in draw
void draw() {
 for (int i = 0; i < parray.length; i++) {
 Particle p = parray[i];
 p.run();
 }
}

// THE NEWFANGLED ARRAYLIST WAY

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 6

THE STANDARD ARRAY WAY
This is what we’re used to, accessing elements of the array
via an index and brackets -- [].

http://download.oracle.com/javase/6/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/6/docs/api/java/util/ArrayList.html
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

int total = 10;
// Declaring and creating the ArrayList instance
ArrayList<Particle> plist = new ArrayList<Particle>();

void setup() {
 for (int i = 0; i < total; i++) {
 plist.add(new Particle());
 }
}

void draw() {
 for (int i = 0; i < plist.size(); i++) {
 Particle p = plist.get(i);
 p.run();
 }
}

This last for loop looks pretty similar to our code that looped through a “regular” array. We
initialize a variable called “i” to zero and count up by one accessing each element of the
ArrayList until we get to the end. However, if you use generics, i.e.

ArrayList<Particle> plist = new ArrayList<Particle>();

you can write something called an “enhanced for loop.” It looks like this:

for (Particle p: particles) {
 p.run();
}

Let’s translate that. Say “for each” instead of “for” and say “in” instead of “:”. Now you have:

“For each Particle p in particles, run that Particle p!”

I know. You cannot contain your excitement. I can’t. I know it’s not necessary, but I just have
to type that again.

for (Particle p: particles) {
 p.run();
}

Simple, elegant, concise, lovely. Take a moment. Breathe. I have some bad news. Yes, we
love that enhanced loop and we will get to use it. But not right now. Our Particle System
examples will require a feature that makes using that loop impossible. Let’s continue.

The code we’ve written above doesn’t take advantage of the ArrayList’s resizability, and it uses a
fixed size of 10. We need to design an example that fits with our Particle System scenario,
where we emit a continuous stream of Particle objects, adding one new particle with each cycle
through draw(). We’ll skip rehashing the Particle class code here, as it doesn’t need to change.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 7

The size of the ArrayList is returned by size().

An object is accessed from the ArrayList with get(). Because we are
using “Generics” we do not need to specify a type when we pull objects
out of the ArrayList.

THE NEW ARRAYLIST WAY (Using Generics!)
Have you ever seen this syntax before?
ArrayList<Particle>
This is a new feature in Java 1.6 which Processing now
supports, which allows us to in advance specify what type of
object we intend to put in the ArrayList.

An object is added to an ArrayList with add()

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Example 4.x: ArrayList of particles
ArrayList particles;

void setup() {
 size(200,200);
 particles = new ArrayList();
}

void draw() {
 background(255);

 particles.add(new Particle(new PVector(width/2,50)));

 for (int i = 0; i < particles.size(); i++) {
 Particle p = (Particle) particles.get(i);
 p.run();
 }
}

Run the above code for a few minutes and you’ll start to see the frame rate slow down and down
and down until the program grinds to a halt (my tests yielded horrific performance after 15
minutes.) The issue of course is that we are creating more and more and more particles without
removing any.

Fortunately, the ArrayList class has a convenient remove() function that allows us to delete a
Particle (by referencing its index). This is why we cannot use the new enhanced for loop we
just learned; the enhanced loop provides no means for deleting elements while iterating. Here,
we want to call remove() when the Particle’s isDead() function returns true.

 for (int i = 0; i < particles.size(); i++) {
 Particle p = particles.get(i);
 p.run();
 if (p.isDead()) {! ! $$ If the Particle is “dead” we can go ahead and delete it from
 particles.remove(i); ! the list.
 }
 }

Although the above code will run just fine (and the program will never grind to a halt), we have
opened up a medium-sized can of worms. Whenever we manipulate the contents of a list while
iterating through that very list we those worms pop out. Take, for example, the following code.

 for (int i = 0; i < particles.size(); i++) {
 Particle p = particles.get(i);
 p.run();
 particles.add(new Particle(new PVector(width/2,50))); $$ Adding a new Particle to the list
 }! ! ! ! ! ! ! ! while iterating?

This is a somewhat extreme example (with flawed logic), but it proves the point. In the above
case, for each Particle in the list, we add a new Particle to the list (manipulating the size() of the
ArrayList). This will result in an infinite loop as i can never increment past the size of the
ArrayList.

While removing elements from the ArrayList during a loop doesn’t cause the program to crash
(as it does with adding), the problem is almost more insidious in that it leaves no evidence. To
discover the problem we must first establish an important fact. When an object is removed from

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 8

A new Particle object is added to the
ArrayList every cycle through draw().

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

the ArrayList, all elements are shifted one spot to the left. Note the diagram below where
Particle “C” (index 2) is removed. Particles A and B keep the same index, while Particles D and
E shift from 3 and 4 respectively to 2 and 3.

Let’s pretend we are i looping through the ArrayList.

when i = 0 --> Check Particle A --> Do not delete
when i = 1 --> Check Particle B --> Do not delete
when i = 2 --> Check Particle C --> Delete! Slide Particles D and E back from slots 3,4 to 2,3
when i = 3 --> Check Particle E --> Do not delete

Notice the problem? We never checked Particle D! When C was deleted from slot #2, D moved
into slot #2, but i already moved on to equal 3. This is not a disaster given that the next time
around, Particle D will get checked. Still, the expectation is that we are writing code to iterate
through every single element of the ArrayList. Skipping an element is unacceptable.

There are two solutions to this problem. The first solution is to simply iterate through the
ArrayList backwards. If you are sliding elements from right to left as elements are removed, it’s
impossible to skip an element by accident. Here’s how the code would look:

 for (int i = particles.size()-1; i >= 0; i--) {
 Particle p = (Particle) particles.get(i);
 p.run();
 if (p.isDead()) {
 particles.remove(i);
 }
 }

This is a perfectly fine solution in 99 cases out of 100. But sometimes, the order that the
elements are drawn could be important and you may not want to iterate backwards. Java
provides a special class—Iterator—that takes care of all of the details of iteration for you. You
get to say:

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 9

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Hey, I’d like to iterate through this ArrayList. Could you continue to give me the next element in
the list one at a time until we get to the end? And if I remove elements or move them around in
the list while we’re iterating, will you make sure I don’t look at any elements twice or skip any by
accident?

An ArrayList can produce an Iterator object for you.

Iterator<Particle> it = particles.iterator();! $$ Note that with the Iterator object, we can also
! ! ! ! ! ! ! ! use the new <ClassName> generics syntax and
 ! ! ! ! ! ! ! ! specify the type that the Iterator will
! ! ! ! ! ! ! ! reference

Once you’ve got the Iterator, the hasNext() function will tell us whether there is a Particle for us
to run and the next() function will grab that Particle object itself.

 while (it.hasNext()) {
 Particle p = it.next();
 p.run();
 }

And if you call the remove() function on the Iterator object during the loop, it will delete the
current Particle object (and not skip ahead past the next one as we saw with counting forward
through the ArrayList).

 if (p.isDead()) {
 it.remove();
 }

Putting it all together, we have:

Example 4.x: ArrayList of Particles with Iterator
ArrayList particles;

void setup() {
 size(200,200);
 particles = new ArrayList();
}

void draw() {
 background(255);

 particles.add(new Particle(new PVector(width/2,50)));

 Iterator it = particles.iterator();! !
 while (it.hasNext()) {! ! ! $$ Using an Iterator object
 Particle p = it.next();! ! ! instead of counting with int i
 p.run();
 if (p.isDead()) {
 it.remove();
 }
 }
}

4.5 The Particle System class

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 10

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

OK, let’s review where we are. We’ve done two things. One, we’ve written a class to describe
an individual Particle object. Two, we’ve conquered the ArrayList and used it to manage a list
of many Particle objects (with the ability to add and delete at will).

We could stop here. However, one additional step we can and should take is to write a class to
describe the list of Particle objects itself—the ParticleSystem class. This will allow us to
remove the bulky logic of looping through all particles from the main tab, as well as open up the
possibility of having more than one particle system. A system of systems!

If you recall the goal we set at the beginning of this chapter, we wanted our main tab to look like:

Example 4.x: A single simple Particle System
ParticleSystem ps;

void setup() {
 size(200,200);
 ps = new ParticleSystem();
}

void draw() {
 background(255);
 ps.run();
}

Let’s take the code from Example 4.x and review a bit of object-oriented programming, looking
at how each piece from the main tab can fit into the ParticleSystem class.

ArrayList in the main tab ArrayList in the ParticleSystem class

ArrayList<Particle> particles;

void setup() {
 size(200,200);
 particles = new ArrayList<Particle>();
}

void draw() {
 background(255);

 particles.add(new Particle());

 Iterator<Particle> it = particles.iterator();
 while (it.hasNext()) {
 Particle p = it.next();
 p.run();
 if (p.isDead()) {
 it.remove();
 }
 }
}

class ParticleSystem {
 ArrayList<Particle> particles;

 ParticleSystem() {
 particles = new ArrayList<Particle>();
 }

 void addParticle() {
 particles.add(new Particle());
 }

 void run() {
 Iterator<Particle> it = particles.iterator();
 while (it.hasNext()) {
 Particle p = it.next();
 p.run();
 if (p.isDead()) {
 it.remove();
 }
 }
 }
}

[DIAGRAM HOW THE PARTS FEED FROM ONE TO THE OTHER, MENTION CONSTRUCTOR IS
LIKE OBJECT’S “SETUP”]

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 11

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

We could also add some new features to the particle system itself. For example, it might be
useful for the ParticleSystem class to keep track of an origin point where particles are made.
This fits in with the idea of a particle system being an “emitter”, a place where particles are born
and sent out into the world. The origin point should be initialized in the constructor:

class ParticleSystem {
 ArrayList particles;
 PVector origin;! ! ! ! $$ This particular ParticleSystem implementation
! ! ! ! ! ! includes an origin point where each Particle
 ParticleSystem(PVector location) {! ! begins.
 origin = location.get();
 particles = new ArrayList();
 }

 void addParticle() {
 particles.add(new Particle(origin));! $$ The origin is passed to each Particle when it
 }! ! ! ! ! ! is added.

Exercise: Make the origin point move dynamically. Have the particles emit from the mouse
location or use the concepts of velocity and acceleration to make the system move autonomously.

Exercise: Building off Chapter 3’s “Asteroids” example, use a Particle system to emit particles
from the ship’s “thrusters” whenever a thrust force is applied. The particles’ initial velocity
should be related to the ship’s current direction.

4.6 A System of Systems

Let’s review for a moment where we are. We know how to talk about an individual Particle
object. We also know how to talk about a system of Particle objects, and this we call a “Particle
System.” And we’ve defined a Particle System as a collection of independent objects. But isn’t
a Particle System itself an object? If that’s the case (which it is), there’s no reason why we
couldn’t also have a collection of many Particle Systems, i.e. a system of systems.

This line of thinking could of course take us even further, and you might lock yourself in a
basement for days sketching out a diagram of a system of systems of systems of systems of
systems of systems. Of systems. After all, this is how the world works. An organ is a system of
cells, a human body is a system of organs, a neighborhood is a system of human bodies, a city is
a system of neighborhoods, and so on and so forth. While this is an interesting road to travel
down, it’s a bit beyond where we need to be right now. It is, however, quite useful to know how
to write a Processing sketch that keeps track of many Particle Systems, each of which keep track
of many Particles. Let’s take the following scenario.

You start with a blank screen.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 12

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

You click the mouse and generate a Particle System at the mouse’s location.

Each time you click the mouse a new Particle System is created at the mouse’s location.

In Example 4.x, we stored a single reference to a Particle System object in the variable “ps.”

ParticleSystem ps;

void setup() {
 size(200,200);
 ps = new ParticleSystem(1,new PVector(width/2,50));
}

void draw() {
 background(255);
 ps.run();
 ps.addParticle();
}

For this new example, what we want to do instead is create an ArrayList to keep track of
multiple instances of Particle Systems. When the program starts (i.e. in setup()), the ArrayList is
empty.

ArrayList<ParticleSystem> systems;!! ! $$ This time the type of thing we are putting
! ! ! ! ! ! ! in the ArrayList is a ParticleSystem itself!
void setup() {
 size(600,200);
 systems = new ArrayList<ParticleSystem>();
}

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 13

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Whenever the mouse is pressed, a new ParticleSystem object is created and placed into the
ArrayList.

void mousePressed() {
 systems.add(new ParticleSystem(1,new PVector(mouseX,mouseY)));
}

And in draw(), instead of referencing a single ParticleSystem, we now look through all the
systems in the ArrayList and call run() on each of them.

void draw() {
 background(255);
 for (ParticleSystem ps: systems) {! $$ Since we aren’t deleting elements we
 ps.run();! ! ! ! ! can use our enhanced loop!
 ps.addParticle();
 }
}

Exercise: Rewrite example 4.x so that each ParticleSystem doesn’t live forever. When a
ParticleSystem is empty (i.e. has no Particles left in its ArrayList) remove it from the ArrayList
systems.

Exercise: Create a simulation of an object shattering into many pieces. How can you turn one
large shape into many small particles? What if there are several large shapes on the screen and
they shatter when you click on them?

4.7 Particle Systems: why we need inheritance and polymorphism

You may have encountered the terms inheritance and polymorphism in your programming life
before this book. After all, they are two of the three fundamental principles behind the theory of
object-oriented programming (the other being encapsulation). If you’ve read other Processing
or Java programming books, chances are it’s been covered. My beginner text, Learning
Processing, has close to an entire chapter (#22) dedicated to these two topics.

Still, perhaps you’ve only learned about it in the abstract sense and never had a reason to really
use inheritance and polymorphism. If this is true, you’ve come to the right place. Without these
two topics, your ability to program a variety of Particles and Particle Systems is extremely
limited. [REFERENCE SOMETHING IN A LATER CHAPTER TOO]

Imagine the following. It’s a Saturday morning, you’ve just gone out for a lovely jog, had a
delicious bowl of cereal, and are sitting quietly at your computer with a cup of warm chamomile
tea. It’s your old friend so and so’s birthday and you’ve decided you’d like to make a greeting
card in Processing. How about some confetti for a birthday? Purple confetti, pink confetti, star-
shaped confetti, square confetti, fast confetti, fluttery confetti, etc. All of these pieces of confetti
with different appearances and different behaviors explode onto the screen at once.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 14

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

What we’ve got here is clearly a Particle System—a collection of individual pieces of confetti
(i.e. particles). We might be able to cleverly design our Particle class to have variables that store
its color, shape, behavior, etc. And perhaps we initialize the values of these variables randomly.
But what if your particles are drastically different? This could become very messy, having all
sorts of code for different ways of being a Particle in the same class. Well, you might consider
doing the following:

class HappyConfetti {
 // etc.
}

class FunConfetti {
 // etc.
}

class WackyConfetti {
 // etc.
}

This is a nice solution: we have three different classes to describe the different kinds of pieces of
confetti that could be part of our Particle System. The ParticleSystem constructor could then
have some code to pick randomly from the three classes when filling the ArrayList.
[REFERENCE PROLOGUE WHERE WE DISCUSS PROBABILITY].

class ParticleSystem {
 ParticleSystem(int num) {
 particles = new ArrayList();
 for (int i = 0; i < num; i++) {
 float r = random(1);
 if (r < 0.33) particles.add(new HappyConfetti());
 else if (r < 0.67) particles.add(new FunConfetti());
 else particles.add(new WackyConfetti());
 }
 }

OK, we now need to pause for a moment. We’ve done nothing wrong. All we wanted to do
was wish our friend a happy birthday and enjoy writing some code. But while the reasoning
behind the above approach is quite sound, we’ve opened up two major problems.

#1: Aren’t we going to be copying/pasting a lot of code between the different “confetti”
classes?

Yes. Even though our different kinds of particles are different enough to merit us breaking them
out into separate classes, there is still a ton of code that they will likely share. They’ll all have
PVectors to keep track of location, velocity, and acceleration; an update() function that
implements our motion algorithm, etc.

This is where inheritance comes in. Inheritance allows us to write a class that inherits variables
and functions from another class, all the while implementing its own custom features.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 15

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

#2: How will the ArrayList know which objects are which type?

This is a pretty serious problem. Remember, we were using generics to tell the ArrayList what
type of objects we’re going to put inside it. Are we suddenly going to need three different
ArrayLists?

ArrayList<HappyConfetti> a1 = new ArrayList<HappyConfetti>();
ArrayList<FunConfetti> a2 = new ArrayList<FunConfetti>();
ArrayList<WackyConfetti> a3 = new ArrayList<WackyConfetti>();

This seems awfully inconvenient, given that we really just want one list to keep track of all the
stuff in the ParticleSystem. This is not necessary because of polymorphism.

Polymorphism will allow us to consider objects of different types as the same type and store
them in a single ArrayList..

Now that we understand the problem, let’s look at these two concepts with a bit more detail and
then create a Particle System example that implements both inheritance and polymorphism.

4.8 Inheritance basics

[THIS SECTION IS ADAPTED FROM LEARNING PROCESSING]

Inheritance allows us to create new classes that are based on existing classes.

Let’s take a different example, the world of animals: dogs, cats, monkeys, pandas, wombats, and
sea nettles. Arbitrarily, let’s begin by programming a Dog class. A Dog object will have an age
variable (an integer), as well as eat(), sleep(), and bark() functions.

class Dog {
 int age;

 Dog() {
 age = 0;
 }

 void eat() {
 // eating code goes here
 }

 void sleep() {
 // sleeping code goes here
 }

 void bark() {
 println("WOOF!");
 }
}

Finishing with dogs, we can now move on to cats.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 16

Dogs and cats have the
same variables (age)
and functions (eat,
sleep). They also have a
unique function for
barking or meowing.

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

class Cat {
 int age;

 Cat() {
 age = 0;
 }

 void eat() {
 // eating code goes here
 }

 void sleep() {
 // sleeping code goes here
 }

 void meow() {
 println("MEOW!");
 }
}

As we move onto fish, horses, koala bears, and lemurs, this process will become rather tedious as
we rewrite the same code over and over again. What if, instead, we could develop a generic
Animal class to describe any type of animal? After all, all animals eat and sleep. We could then
say the following:

• A dog is an animal and has all the properties of animals and can do all the things animals
do. Also, a dog can bark.

• A cat is an animal and has all the properties of animals and can do all the things animals
do. Also, a cat can meow.

Inheritance allows us to program just this. With inheritance, classes can inherit properties
(variables) and functionality (methods) from other classes. A Dog class is a child (aka subclass)
of an Animal class. Children inherit all variables and functions automatically from their parent
(aka superclass). Children can also include additional variables and functions not found in the
parent. Inheritance follows a tree-structure (much like a phylogenetic “tree of life”.) Dogs
can inherit from Canines which inherit from Mammals which inherit from Animals, etc.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 17

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Here is how the syntax works with inheritance.

class Animal {
 int age;

 Animal() {
 age = 0;
 }

 void eat() {
 // eating code goes here
 }

 void sleep() {
 // sleeping code goes here
 }
}

class Dog extends Animal {
 Dog() {
 super();
 }
 void bark() {
 println("WOOF!");
 }
}

class Cat extends Animal {
 Cat() {
 super();
 }
 void meow() {
 println("MEOW!");
 }

}

The following new terms have been introduced:

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 18

The Animal class is the parent (or super) class.

The variable age and the functions eat()
and sleep() are inherited by Dog and Cat.

The Dog class is the child (or sub) class. This is
indicated with the code “extends Animal”

super() means execute code found in the parent class.

Since bark() is not part of the parent class, we have to
define it in the child class.

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

• extends – this keyword is used to indicate a parent class for the class being defined. Note
that classes can only extend one class. However, classes can extend classes that extend
other classes, i.e. Dog extends Animal, Terrier extends Dog. Everything is inherited all
the way down the line.

• super() – super calls the Constructor in the parent class. In other words, whatever you
do in the parent constructor, do so in the child constructor as well. This is not required,
but is fairly common (assuming you want child objects to be created in the same manner
as their parents.) Other code can be written into the constructor in addition to super().

A subclass can be expanded to include additional functions and properties beyond what is
contained in the superclass. For example, let’s assume that a Dog object has a hair color variable
in addition to age, which is set randomly in the constructor. The class would now look like this:

class Dog extends Animal {
 color haircolor;

 Dog() {
 super();
 haircolor = color(random(255));
 }

 void bark() {
 println("WOOF!");
 }
}

Note how the parent constructor is called via super(), setting the age to 0, but the hair color is set
inside the Dog constructor itself. Suppose a Dog object eats differently than how the generic
Animal does. Parent functions can be overridden by rewriting the function inside the sub class.
class Dog extends Animal {
 color haircolor;

 Dog() {
 super();
 haircolor = color(random(255));
 }

 void eat() {
 // Code for how a dog specifically eats
 }

 void bark() {
 println("WOOF!");
 }
}

But what if a Dog should eat the same way an Animal does, but with some additional
functionality? A subclass can both run the code from a parent class and incorporate some custom
code.

class Dog extends Animal {
 color haircolor;

 Dog() {
 super();
 haircolor = color(random(255));
 }

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 19

A child class can introduce new variables not
included in the parent.

A child can override a parent
function if necessary.

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 void eat() {
 // Call eat() from Animal
 super.eat();
 // Add some additional code
 // for how a dog specifically eats
 println(“Yum!!!”);
 }

 void bark() {
 println("WOOF!");
 }
}

4.9 Particle example with inheritance

Now that we’ve had an introduction to the theory of inheritance and its syntax, we can develop a
working example in Processing based on our Particle class.

Let’s review a simple Particle implementation (further simplified from example 4.x):

class Particle {
 PVector location;
 PVector velocity;
 PVector acceleration;

 Particle(PVector l) {
 acceleration = new PVector(0,0.05);
 velocity = new PVector(random(-1,1),random(-2,0));
 location = l.get();
 }

 void run() {
 update();
 display();
 }

 // Method to update location
 void update() {
 velocity.add(acceleration);
 location.add(velocity);
 }

 // Method to display
 void display() {
 fill(0);
 ellipse(location.x,location.y,8,8);
 }
}

Next, we create a subclass from Particle (let’s call it “Confetti”). It will inherit all the instance
variables and methods from Particle. We write a new constructor with the name “Confetti” and
execute the code from the parent class by calling super().

class Confetti extends Particle {

 // We could add variables for only Confetti here if we so

 Confetti(PVector l) {
 super(l);
 }

 // Inherits update() from parent

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 20

A child can execute a function from
the parent while adding its own code
as well.

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 // Override the display method
 void display() {
 rectMode(CENTER);
 fill(175);
 stroke(0);
 rect(location.x,location.y,8,8);
 }
}

Let’s make this a bit more sophisticated. Let’s say we want to have the “Confetti” particle rotate
as it flies through the air. We could, of course, model angular velocity and acceleration as we did
in Chapter 3. Instead, we’ll try a quick and dirty solution.

We know a particle has an x location somewhere between zero and the width of the window.
What if we said: when the particle’s x location is zero, its rotation should be zero and when its x
location is equal to the width, its rotation should be equal to two PI? Does this ring a bell?
Whenever we have a value with one range that we want to map to another range, we can use
Processing’s map() function! [REFERENCE WHERE I TALK ABOUT THIS IN THE
PROLOGUE]

float angle = map(location.x,0,width,0,TWO_PI);

And just to give it a bit more spin, we can actually map the angle’s range from 0 to TWO_PI*2.
Let’s look at how this code fits into the display() function.
 void display() {
 rectMode(CENTER);
 fill(0,lifespan);
 stroke(0,lifespan);
 pushMatrix(); $$ If we rotate() a shape in Processing we need to
 translate(location.x,location.y); familiarize ourselves with transformations. For
 more, visit:
 http://processing.org/learning/transform2d/
 float theta = map(location.x,0,width,0,TWO_PI*2);
 rotate(theta);
 rect(0,0,8,8);
 popMatrix();
 }

Exercise: Instead of using map() to calculate theta, how would you model angular velocity and
acceleration?

Now that we have a “Confetti” particle that extends our “base” Particle class, we need to figure
out how our Particle System class can manage particles of different types within the same
system. To accomplish this goal, let’s return to the animal kingdom inheritance example and see
how the concept extends into the world of polymorphism.

4.10 Polymorphism basics

[AGAIN THIS SECTION IS ADAPTED FROM LEARNING PROCESSING]

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 21

http://processing.org/learning/transform2d/
http://processing.org/learning/transform2d/
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Now that we have the concept of inheritance down, we can imagine how we would program a
diverse animal kingdom using ArrayLists—an array of dogs, an array of cats, array of turtles, of
kiwis, etc. frolicking about.

ArrayList<Dog> dogs = new ArrayList<Dog>();
ArrayList<Cat> cats = new ArrayList<Cat>();
ArrayList<Turtle> turtles = new ArrayList<Turtle>();
ArrayList<Kiwi> kiwis = new ArrayList<Kiwi>();

for (int i = 0; i < 10; i++) {
 dogs.add(new Dog());
}
for (int i = 0; i < 15; i++) {
 cats.add(new Cat());
}
for (int i = 0; i < 6; i++) {
 turtles.add(new Turtle());
}
for (int i = 0; i < 98; i++) {
 kiwis.add(new Kiwi());
}

As the day begins, the animals are all pretty hungry and are looking to eat. So it’s off to looping
time (enhanced looping time!).

for (Dog d: dogs) {
 d.eat();
}
for (Cat c: cats) {
 c.eat();
}
for (Turtle t: turtles) {
 t.eat();
}
for (Kiwi k: kiwis) {
 k.eat();
}

This works great, but as our world expands to include many more animal species, we’re going to
get stuck writing a lot of individual loops. Isn’t this unnecessary? After all, the creatures are all
animals, and they all like to eat. Why not just have one ArrayList of “Animal” objects and fill it
with all different kinds of Animals?

ArrayList<Animal> kingdom = new ArrayList<Animal>();

for (int i = 0; i < 1000; i++) {
 if (i < 100) kingdom.add(new Dog());
 else if (i < 400) kingdom.add(new Cat());
 else if (i < 900) kingdom.add(new Turtle());
 else kingdom.add(new Kiwi());
}

for (Animal a: kingdom) {
 a.eat();
}

The ability to treat a Dog object as either a member of the Dog class or the Animal class (its
parent) is known as polymorphism, the third tenet of object-oriented programming.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 22

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Polymorphism (from the Greek polymorphos, meaning many forms) refers to the treatment of a
single object instance in multiple forms. A Dog is certainly a Dog, but since Dog extends
Animal, it can also be considered an Animal. In code, we can refer to it both ways.

Dog rover = new Dog();
Animal spot = new Dog();

Although the second line of code might initially seem to violate syntax rules, both ways of
declaring a Dog object are legal. Even though we declare spot as a Animal, we’re really making
a Dog object and storing it in the spot variable. And we can safely call all of the Animal methods
on spot because the rules of inheritance dictate that a Dog can do anything an Animal can.

What if the Dog class, however, overrides the eat() function in the Animal class? Even if spot is
declared as an Animal, Java will determine that its true identity is that of a Dog and run the
appropriate version of the eat() function.

This is particularly useful when we have an array or ArrayList.

4.11 Particle System with polymorphism

Let’s pretend for a moment that polymorphism doesn’t exist and rewrite a Particle System class
to include many Particle objects and many Confetti objects.

class ParticleSystem {
 ArrayList<Particle> particles; $$ We’re stuck doing everything twice with two lists!
 ArrayList<Confetti> confetti;
 PVector origin;

 ParticleSystem(PVector location) {
 origin = location.get();
 particles = new ArrayList<Particle>();
 confetti = new ArrayList<Confetti>();
 }

 void addParticle() {
 particles.add(new Particle(origin));
 particles.add(new Confetti(origin));
 }

 void run() {
 Iterator it = particles.iterator();
 while (it.hasNext()) {
 Particle p = it.next();
 p.run();
 if (p.isDead()) {
 it.remove();
 }
 }
 it = confetti.iterator();
 while (it.hasNext()) {
 Confetti c = it.next();
 c.run();
 if (c.isDead()) {
 it.remove();
 }
 }

 }
}

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 23

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Notice how we have two separate lists, one for Particle objects and one for Confetti objects.
Every action we want to perform we have to do twice! Polymorphism allows us to simplify the
above by just making one ArrayList of Particle objects that contains both standard Particle
objects as well as Confetti objects. We don’t have to worry about which are which; this will all
be taken care of for us! (Also, note that the code for the main program and the classes has not
changed so we aren’t including it here. See website for full example.)
Example 4.x: Polymorphism

class ParticleSystem {
 ArrayList<Particle> particles; $$ One list, for anything that is
 a Particle or extends Particle
 PVector origin;

 ParticleSystem(PVector location) {
 origin = location.get();
 particles = new ArrayList<Particle>();
 }

 void addParticle() {
 float r = random(1);
 if (r < 0.5) { $$ We have a 50% chance of
 adding each kind of Particle
 particles.add(new Particle(origin));
 } else {
 particles.add(new Confetti(origin));
 }
 }

 void run() {
 Iterator it = particles.iterator();
 while (it.hasNext()) {
 Particle p = it.next(); $$ Polymorphism allows us to treat everything as a Particle
 whether it is a Particle or Confetti
 p.run();
 if (p.isDead()) {
 it.remove();
 }
 }
 }
}

Exercise: ??????

4.8 Particle System with forces

So far this chapter, we’ve been focusing on structuring our code in an object-oriented way to
manage a collection of Particle objects. Maybe you noticed, or maybe you didn’t, but during
this process we unwittingly took a couple steps backward from where we were in previous
chapters. Let’s examine the constructor of our simple Particle class.

 Particle(PVector l) {
 acceleration = new PVector(0,0.05);! $$ We’re setting acceleration to a constant value!
 velocity = new PVector(random(-1,1),random(-2,0));
 location = l.get();
 lifespan = 255.0;
 }

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 24

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

And now let’s look at the update() function.

 void update() {
 velocity.add(acceleration);
 location.add(velocity);
! ! ! ! ! ! $$ Where is the line of code to clear acceleration?
 lifespan -= 2.0;
 }

Our Particle class is structured to have a constant acceleration, one that never changes. A much
better framework would be to follow Newton’s second law (F = M* A) and incorporate the force
accumulation algorithm we worked so hard on in Chapter 2 (see p. XXX).

Step 1 would be to add in the applyForce() function (remember, we need to make a copy of the
PVector before we divide it by mass).

 void applyForce(PVector force) {
 PVector f = force.get();
 f.div(mass);
 acceleration.add(f);
 }

Once we have this, we can add in one more line of code to clear the acceleration at the end of
update().

 void update() {
 velocity.add(acceleration);
 location.add(velocity);
 acceleration.mult(0); ! ! ! $$ There it is!
 lifespan -= 2.0;
 }

And our Particle class is complete!

class Particle {
 PVector location;
 PVector velocity;
 PVector acceleration;
 float lifespan;

 float mass = 1; ! ! $$ We could vary mass for more interesting results

 Particle(PVector l) {
 acceleration = new PVector(0,0);! ! $$ We now start with acceleration of 0
 velocity = new PVector(random(-1,1),random(-2,0));
 location = l.get();
 lifespan = 255.0;
 }

 void run() {
 update();
 display();
 }

 void applyForce(PVector force) {!! ! $$ Newton’s second law & force accumulation

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 25

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 PVector f = force.get();
 f.div(mass);
 acceleration.add(f);! ! ! !
 }

 // Method to update location
 void update() {
 velocity.add(acceleration);
 location.add(velocity);
 acceleration.mult(0);
 lifespan -= 2.0;
 }

 // Method to display
 void display() {
 stroke(255,lifespan);
 fill(255,lifespan);
 ellipse(location.x,location.y,8,8);
 }

 // Is the particle still useful?
 boolean isDead() {
 if (lifespan < 0.0) {
 return true;
 } else {
 return false;
 }
 }
}

Now that the Particle class is completed, we have a very important question to ask. Where do we
call the applyForce() function? Where in the code is it appropriate to apply a force to a particle?
The truth of the matter is that there’s no right or wrong answer; it really depends on the exact
functionality and goals of a particle Processing sketch. Still, we can create a generic situation
that would likely apply to most cases and create a model for applying forces to individual
particles in a system.

Let’s consider the following goal:

Apply a force globally every time through draw() to all particles.

Let’s just pick an easy one: a force pointing down, like gravity.

PVector gravity = new PVector(0,0.1);

We said it should always be applied, i.e. in draw(), so let’s take a look at our draw() function as it
stands.

void draw() {
 background(100);
 ps.addParticle();
 ps.run();
}

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 26

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Well, it seems that we have a small problem. applyForce() is a method written inside the
Particle class, but we don’t have any reference to the individual particles themselves, only the
ParticleSystem object: i.e. the variable “ps”.

Since we want all particles to receive the force, however, we can decide to apply the force to the
Particle System and let it manage applying the force to all the individual particles:

void draw() {
 background(100);

 PVector gravity = new PVector(0,0.1); !$$ Applying a force to the system as a whole
 ps.applyForce(gravity);

 ps.addParticle();
 ps.run();
}

Of course, if we call a new function in the ParticleSystem from draw(), well, we have to write
that function in the ParticleSystem class. Let’s describe the job that function needs to perform:

Receive a force as a PVector and apply that force to all the Particles.

Now in code:

 void applyForce(PVector f) {
 for (Particle p: particles) {
 p.applyForce(f);
 }
 }

It almost seems silly to write this function. What we’re saying is “apply a force to a particle
system so that the system can apply that force to all of the individual particles.” Nevertheless,
it’s really quite reasonable. After all, the ParticleSystem object is in charge of managing the
particles, so if we want to talk to the particles, we’ve got to talk to them through their manager.
(Also, here’s a chance for the enhanced loop since we aren’t deleting particles!)

Here is the full example (assuming the existence of the Particle class written above; no need to
include it again since nothing has changed):

Example 4.x: Particle System with Forces
ParticleSystem ps;

void setup() {
 size(200,200);
 smooth();
 ps = new ParticleSystem(new PVector(width/2,50));
}

void draw() {
 background(100);

 PVector gravity = new PVector(0,0.1);! ! $$ Apply a force to all
 ps.applyForce(gravity);! ! ! ! particles.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 27

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 ps.addParticle();
 ps.run();
}

class ParticleSystem {
 ArrayList<Particle> particles;
 PVector origin;

 ParticleSystem(PVector location) {
 origin = location.get();
 particles = new ArrayList<Particle>();
 }

 void addParticle() {
 particles.add(new Particle(origin));
 }

 // A function to apply a force to all Particles
 void applyForce(PVector f) {! ! ! ! $$ Using an enhanced loop to apply the
 for (Particle p: particles) {! ! ! ! force to all particles
 p.applyForce(f);
 }
 }

 void run() {
 Iterator it = particles.iterator();! ! ! $$ Can’t use the enhanced loop because
 while (it.hasNext()) {! ! ! ! ! we want to check for particles to delete
 Particle p = (Particle) it.next();
 p.run();
 if (p.isDead()) {
 it.remove();
 }
 }
 }
}

What if we wanted to take this example one step further and add a “Repeller” object (see inverse
of Attractor object, Chapter 2, p. XXX) that pushes any particles away that get close? This
requires a bit more sophistication because, unlike the gravity force, each force the Repeller exerts
on each particle must be custom calculated for each Particle.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 28

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Let’s start solving this problem by examining how we would incorporate a new Repeller object
into our simple particle system plus forces example. We’re going to need two major additions to
our code:

1) A Repeller object (declared, initialized, and displayed).
2) A function that passes the Repeller object into the ParticleSystem so that it can apply a force

to each particle object.

ParticleSystem ps;
Repeller repeller;! $$ New thing #1, we need a Repeller class

void setup() {
 size(200,200);
 smooth();
 ps = new ParticleSystem(new PVector(width/2,50));
 repeller = new Repeller(width/2-20,height/2); $$ New thing #1: we need a Repeller class
}

void draw() {
 background(100);
 ps.addParticle();

 // Apply gravity force to all Particles
 PVector gravity = new PVector(0,0.1);
 ps.applyForce(gravity);

 ps.applyRepeller(repeller);!! $$ New thing #2: we need a function to apply a force
! ! ! ! ! ! from a repeller

 ps.run();
 repeller.display(); $$ New thing #1: we need a Repeller class
}

Making a Repeller object is quite easy; it’s a duplicate of the Attractor class from chapter 2
(example 2.x).

class Repeller {
 PVector location;! ! $$ A Repeller doesn’t move so just location and size
 float r = 10;

 Repeller(float x, float y) {
 location = new PVector(x,y);
 }

 void display() {
 stroke(255);
 fill(255);
 ellipse(location.x,location.y,r*2,r*2);
 }
}

The more difficult question is, how do we write the applyRepeller() function? Instead of passing
a PVector into a function like we do with applyForce(), we’re going to instead pass a Repeller
object into applyRepeller() and ask that function to do the work of calculating the force between
the Repeller and all particles. Let’s look at both of these functions side by side.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 29

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

applyForce() applyRepeller()

void applyForce(PVector f) {
 for (Particle p: particles) {
 p.applyForce(f);
 }
}

void applyRepeller(Repeller r) {
 for (Particle p: particles) {
 PVector repel = r.pushParticle(p);
 p.applyForce(repel);
 }
}

The functions are almost identical. There are only two differences. One we mentioned before—a
Repeller object is the argument, not a PVector. Two is the important one. We must calculate a
custom PVector force for each and every Particle and apply that force. How is that force
calculated? In a function called repel(), which is the inverse of the attract() function we wrote
for the Attractor class.

 PVector repel(Particle p) {!! ! ! !
 PVector dir = PVector.sub(location,p.location);
 float d = dir.mag();
 dir.normalize();
 d = constrain(d,5,100);
 float force = -1 * G / (d * d);
 dir.mult(force);
 return dir;
 }

Notice how throughout this entire process of adding a Repeller to the environment, we’ve never
once considered editing the Particle class itself. A Particle doesn’t actually have to know
anything about the details of its environment; it simply needs to manage its location, velocity,
and acceleration, as well as have the ability to receive an external force and act on it.

So we can now look at this example in its entirety, again leaving out the Particle class, which
hasn’t changed.

Example 4.x: ParticleSystem with Repeller
[NEED CODE BUBBLES FOR THIS EXAMPLE]
ParticleSystem ps;
Repeller repeller;

void setup() {
 size(200,200);
 smooth();
 ps = new ParticleSystem(new PVector(width/2,50));
 repeller = new Repeller(width/2-20,height/2);
}

void draw() {
 background(100);
 ps.addParticle();

 // Apply gravity force to all Particles
 PVector gravity = new PVector(0,0.1);
 ps.applyForce(gravity);

All the same steps we had to calculate an attractive
force, only pointing the opposite direction.

• Get force direction
• Get distance (constrain distance)
• Calculate magnitude
• Make a vector out of direction and magnitude

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 30

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 ps.applyRepeller(repeller);

 ps.run();
 repeller.display();
}

class ParticleSystem {
 ArrayList<Particle> particles;
 PVector origin;

 ParticleSystem(PVector location) {
 origin = location.get();
 particles = new ArrayList<Particle>();
 }

 void addParticle() {
 particles.add(new Particle(origin));
 }

 // A function to apply a force to all Particles
 void applyForce(PVector f) {
 for (Particle p: particles) {
 p.applyForce(f);
 }
 }

 void applyRepeller(Repeller r) {
 for (Particle p: particles) {
 PVector repel = r.pushParticle(p);
 p.applyForce(repel);
 }
 }

 void run() {
 Iterator it = particles.iterator();
 while (it.hasNext()) {
 Particle p = (Particle) it.next();
 p.run();
 if (p.isDead()) {
 it.remove();
 }
 }
 }
}

class Repeller {

 // Gravitational Constant
 float G = 100;
 // Location
 PVector location;
 float r = 10;

 Repeller(float x, float y) {
 location = new PVector(x,y);
 }

 void display() {
 stroke(255);
 fill(255);
 ellipse(location.x,location.y,r*2,r*2);
 }

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 31

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 // Calculate a force to push particle away from repeller
 PVector repel(Particle p) {
 PVector dir = PVector.sub(location,p.location); // Calculate direction of force
 float d = dir.mag(); // Distance between objects
 dir.normalize(); // Normalize vector
 d = constrain(d,5,100); // Keep distance within a reasonable range
 float force = -1 * G / (d * d); // Repelling force magnitude
 dir.mult(force); // Get force vector --> magnitude * direction
 return dir;
 }
}

Exercise: Expand the above example to include many Repellers (using an array or ArrayList).

Exercise: Create a particle system in which each particle responds to every other particle. (Note
we’ll be doing this in detail in Chapter 6.)

4.9 Particle System with image textures / additive blending

Even though this book is really about behaviors and algorithms rather than computer graphics
and design, I think we wouldn’t be able to live with ourselves if we went through a discussion of
particle systems and never once looked at an example that involves texturing each particle with
an image. The way you choose to draw a particle is a big part of the puzzle in terms of designing
certain types of visual effects. Let’s try to create a smoke simulation in Processing. Take a look
at the following two images:

 A: white circles B: fuzzy images with transparency

Both of these images were generated from identical algorithms. The only difference is that a
white circle is drawn in image A for each particle and a “fuzzy” blob is drawn for each in B.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 32

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

The nice news here is that you get a lot of bang for very little buck. Before you write any code,
however, you’ve got to make your image texture! I recommend using PNG format, as
Processing will retain the alpha channel (i.e. transparency) when drawing the image, which is
needed for blending the texture as particles layer on top of each other. Once you’ve made your
PNG and deposited it in your sketch’s “data” folder, you are on your way with just a few lines of
code.

First, we’ll need to declare a PImage object.

Example 4.x: Image Texture Particle System
PImage img;

Load the image in setup().

void setup() {
 img = loadImage("texture.png");
}

And when it comes time to draw the particle, we’ll use the image reference instead of drawing an
ellipse or rectangle.

 void render() {
 imageMode(CENTER);
 tint(255,lifespan); $$ Note how tint() is the image equivalent of shape’s fill()
 image(img,loc.x,loc.y);
 }

Incidentally, this smoke example is a nice excuse to revisit a Gaussian number distribution (see
prologue, p.x). To make the smoke appear a bit more realistic, we don’t want to launch all the
particles in a purely random direction. Instead, by creating initial velocity vectors mostly around
a mean value (with a lower probability of outliers), we’ll get an effect that appears less fountain-
like and more like smoke (or fire).

Assuming a Random object called “generator”, we could create initial velocities as follows:

 float vx = (float) generator.nextGaussian()*0.3;
 float vy = (float) generator.nextGaussian()*0.3 - 1.0;
 vel = new PVector(vx,vy);

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 33

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Finally, in this example, a wind force is applied to the smoke mapped from the mouse’s
horizontal location.

void draw() {
 background(0);

 float dx = map(mouseX,0,width,-0.2,0.2);
 PVector wind = new PVector(dx,0); $$ Wind force points towards mouseX
 ps.applyForce(wind);
 ps.run();
 for (int i = 0; i < 2; i++) { $$ Two particles are added each cycle through draw
 ps.addParticle();
 }
}

Exercise: Try creating your own textures for different types of effects. Can you make it look like
fire, instead of smoke?

Exercise: Use an array of images and assign each Particle object a different image. Even
though single images are drawn by multiple particles, make sure you don’t call loadImage() any
more than you need to, i.e once for each image file.

Finally, it’s worth noting that there are many different algorithms for blending colors in computer
graphics. These are often referred to as “blend modes.” By default, when we draw something on
top of something else in Processing, we only see the top layer—this is commonly referred to as a
“normal” blend mode. When the pixels have alpha transparency (as they do in the smoke
example), Processing uses an alpha compositing algorithm that combines a percentage of the
background pixels with the new foreground pixels based on the alpha values.

However, it’s possible to draw using other blend modes, and a much loved blend mode for
particle systems is “additive.” Additive blending in Processing was pioneered by Robert Hodgin
(flight404.com) in his famous particle system and forces exploration, magnetosphere (which
later became the iTunes visualizer). (For more see: http://roberthodgin.com/magnetosphere-
part-2/)

Additive blending is in fact one of the simplest blend algorithms and involves adding the pixel
values of one layer with another (capping all values at 255 of course). This results in a space-age
glow effect due to the colors getting brighter and brighter with more layers.

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 34

http://roberthodgin.com/magnetosphere-part-2/
http://roberthodgin.com/magnetosphere-part-2/
http://roberthodgin.com/magnetosphere-part-2/
http://roberthodgin.com/magnetosphere-part-2/
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

[Make nicer image]

To achieve additive blending in Processing, you’ll need to work in OPENGL mode, i.e.

Example 4.x: Additive Blending
void setup() {
 size(200,200,OPENGL);
}

You’ll also need to set some OpenGL settings that are part of the JOGL API (the openGL engine
that Processing uses). To do this, you need access to the “GL” object, i.e. the main renderer.

PGraphicsOpenGL pgl;
GL gl;

void setup() {
 size(200,200,OPENGL);
 pgl = (PGraphicsOpenGL) g;
 gl = pgl.gl;
}

Then, before you go to draw anything, you can say:

void draw() {

 pgl.beginGL();
 gl.glDisable(GL.GL_DEPTH_TEST); $$ only necessary if objects actually move in 3D space
 gl.glEnable(GL.GL_BLEND);! ! ! ! $$ Enables blending
 gl.glBlendFunc(GL.GL_SRC_ALPHA,GL.GL_ONE); $$ Sets the blend mode to additive
 pgl.endGL();

 // All your other particle stuff would go here
}

(Thanks again to Robert Hodgin for writing a tutorial about this in March 2007: http://
www.flight404.com/blog/?p=71)

Exercise: Use tint() in combination with additive blending to create a rainbow effect.

Chapter 4 Project?

Daniel Shiffman, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 35

http://www.flight404.com/blog/?p=71
http://www.flight404.com/blog/?p=71
http://www.flight404.com/blog/?p=71
http://www.flight404.com/blog/?p=71
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Chapter 5. Physics Libraries

“A library implies an act of faith/Which generations still in darkness hid/Sign in their night in witness of the dawn.”
! -- Victor Hugo

In this Chapter:

• To library or not to library
• A Box2D world

• Bodies, Shapes, Joints
• ContactListener
• Interaction

• Toxiclibs
• Verlet Physics
• Connected Systems
• “Behaviors”

5.1 To library or not to library?

Let’s revisit some of the things we’ve done in the first four chapters.

1) Learn about concepts from the world of physics — What is a vector? What is a force? What is
a wave? etc.

2) Understand the math and algorithms behind such concepts.

3) Implement the algorithms in Processing with an object-oriented approach.

These activities have yielded a set of motion simulation examples, allowing us to creatively
define the physics of the worlds we build (whether realistic or fantastical). Of course, we aren’t
the first to try this. The world of computer graphics and programming is full of source code
dedicated to simulation. Just try Googling “open-source physics engine” and you could spend the
rest of your day pouring through rich and complex code. And so we must ask the question: If a
code library will take care of physics simulation, why should we bother learning how to write
any of the algorithms ourselves?

Here is where the philosophy behind this book comes into play. While many of the libraries out
there give us physics (and super awesome advanced physics at that) for free, there are significant
reasons for learning the fundamentals from scratch before diving into libraries. First, without an
understanding of vectors, forces, and trigonometry, we’d be completely lost just reading the
documentation of a library. Second, even though a library may take care of the math for us, it
won’t necessarily simplify our code. As we’ll see in a moment, there can be a great deal of
overhead in simply understanding how a library works and what it expects from you code-wise.
Finally, as wonderful as a physics engine might be, if you look deep down into your hearts, it’s
likely that you seek to create worlds and visualizations that stretch the limits of imagination. A

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 1

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

library is great, but it provides a limited set of features. It’s important to know both when to live
within limitations in the pursuit of a Processing project and when those limits prove to be
confining.

This chapter is dedicated to examining two open-source physics libraries—Box2D and toxiclibs
s VerletPhysics engine. With each library, we’ll evaluate its pros and cons and look at reasons
why you might choose one of these libraries for a given project.

5.2 What is Box2D and when might I use it?

Box2D began as a set of physics tutorials written in C++ by Erin Catto for the Game Developer’s
Conference in 2006. Over the last five years it has evolved into an elaborate and rich open-
source physics engine. It’s been used for countless projects, most notably highly successful
games such as the award-winning puzzle game Crayon Physics and the runaway mobile and
tablet hit Angry Birds.

One of the key things to realize about Box2D is that it is a true physics engine. Box2D knows
nothing about computer graphics and the world of pixels; it is simply a library that takes in
numbers and spits out more numbers. And what are those numbers? Meters, kilograms, seconds,
etc. All of Box2D’s measurements and calculations are for real-world measurements, only its
“world” is a two-dimensional plane with a top, bottom, left and right edge. You tell it things like:
“The world has a gravitational force of 9.5 Newtons, and a circle with a radius of four meters and
a mass of fifty kilograms is located ten meters above the world’s bottom.” Box2D will then tell
you things like “One second later, the rectangle is at nine meters from the bottom; two seconds
later, it is seven meters” etc. [MAYBE I SHOULD USE THE ACTUAL CALCULATED
VALUES HERE?] While this provides for an amazing and realistic physics engine, it also
necessitates lots of complicated code in order to translate back and forth between the physics
“world” (a key term in Box2D) and the world we want to draw on —the “pixel” world of
Processing.

So when is it worth it to have this additional overhead? If I just want to simulate a circle falling
down a Processing window with gravity, do I really need to write all the extra Box2D code just
to get that effect? Certainly, the answer is no. We saw how to do this rather easily in just the
first chapter of this book. Let’s consider another scenario. What if I want to have a hundred of
those circles falling? And what if those circles aren’t circles at all—rather, irregularly shaped
polygons? And what if I want these polygons to bounce off each other in a realistic manner
when they collide?

You may have noticed that the first four chapters of this book, while covering motion and forces
in detail, has skipped over a rather important aspect of physics simulation—collisions. Let’s
pretend for a moment that you aren’t reading a chapter about libraries and that we decided right
now to cover how to handle collisions in a particle system. We’d have to evaluate and learn two
distinct algorithms that address these questions:

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 2

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

1. How do I determine if two shapes are colliding (i.e. intersecting)?
2. How do I determine the shapes’ velocity after the collision?

If we’re thinking about shapes like rectangles or circles, question #1 isn’t too tough. You’ve
likely encountered this before. For example, we know two circles are intersecting if the distance
between them is less than the sum of their radii.

172 Learning Processing

 // Move and display balls
 ball1.move();
 ball2.move();
 ball1.display();
 ball2.display();
 }

 Now that we have set up our system for having two circles moving around the screen, we need to develop
an algorithm for determining if the circles intersect. In Processing , we know we can calculate the distance
between two points using the dist() function (see Chapter 7). We also have access to the radius of each
circle (the variable r inside each object). ! e diagram in Figure 10.3 shows how we can compare the
distance between the circles and the sum of the radii to determine if the circles overlap.

R 1

R 2

DIST

DIST > (R1 + R2)
NOT INTERSECTING

DIST < (R1 + R2)
INTERSECTING

R 1

R 2

DIST

 fi g. 10.3

 OK, so assuming the following:
 • x 1, y 1: coordinates of circle one
 • x 2, y 2: coordinates of circle two
 • r 1: radius of circle one
 • r 2: radius of circle two

 We have the statement:

 If the distance between (x1,y1) and (x2 ,y2) is less than the sum of r1 and r2, circle one intersects
circle two.

 Our job now is to write a function that returns true or false based on the above statement.

 // A function that returns true or false based on whether two circles intersect
 // If distance is less than the sum of radii the circles touch
 boolean intersect(float x1, float y1, float x2, float y2, float r1, float r2) {
 float distance = dist(x1,y2,x2,y2); // Calculate distance
 if (distance < r1 + r2) { // Compare distance to r1 + r2
 return true;
 } else {
 return false;
 }
 }

Ch010-P373602.indd 172Ch010-P373602.indd 172 7/25/2008 7:26:57 PM7/25/2008 7:26:57 PM

OK. Now that we know how to determine if two circles are colliding, how do we calculate their
velocities after the collision? This is where we’re going to stop our discussion. Why, you ask?
It’s not that understanding the math behind collisions isn’t important or valuable (and because of
this I’m including additional examples on the web site related to collisions without a physics
library.) The reason for stopping is that life is short (let this also be a reason for you to consider
going outside and frolicking instead of programming altogether). We can’t expect to master
every detail of physics simulation. And while we could continue this discussion for circles, it’s
only going to lead us to wanting to work with rectangles. And strangely shaped polygons. And
curved surfaces. And swinging pendulums colliding with springy springs. And and and and and.

If we really want to work with collisions in our Processing sketch and still have time to see our
friends and family, then we’ve found the reason for this chapter. If Erin Catto spent years
developing solutions to these problems, perhaps this is a place where we don’t need to develop
them ourselves.

In conclusion, if you find yourself describing a Processing sketch that you intend to write and the
word “collisions” comes up, then likely it’s time to learn Box2D. (We’ll also encounter other
words that might lead you down this path to Box2D, such as joint, hinge, pulley, motor, etc.)

5.3 How do I get Box2D in Processing?

So, if Box2D is a physics engine that knows nothing about pixel-based computer graphics and is
written in C++, how are we supposed to use it in Processing?

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 3

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

The good news is that Box2D is such an amazing and useful library that everyone wants to use it
—Flash, Javascript, Python, Ruby programmers. Oh, and Java programmers. There is
something called JBox2D, a Java port of Box2D. And because Processing is built on top of Java,
JBox2D can be used directly in Processing!

So here’s where we are so far.

Box2D site for reference: http://www.box2d.org/
JBox2D site for Processing compatibility: http://www.jbox2d.org/

This is all you need to get started writing Box2D code in Processing. However, as we are going
to see in a moment, there are several pieces of functionality we’ll repeatedly need in our
Processing code, and so it’s worth having one additional layer between our sketches and
JBox2D. I’m calling this PBox2D—a Processing Box2d “helper” library included as part of this
book’s code example downloads.

PBox2D: https://github.com/shiffman/PBox2D (temporary URL until book web site exists)

It’s important to realize that PBox2D is not a Processing wrapper for all of Box2D. After all,
Box2D is a thoughtfully organized and well-structured API and there’s no reason to take it apart
and re-implement. However, it’s useful to have a small set of functions that help you get your
Box2D world set up as well as help you to figure out where to draw your Box2D shapes. And
this is what PBox2D will provide.

5.4 Box2D Basics—Process

Do not despair! We really are going to get to the code very soon and in some ways blow the lid
off our previous work. But before we’re ready to do that, it’s important to walk through the
overall process of using Box2D in Processing. Let’s begin by writing a pseudo-code
generalization of all of our examples in chapters one through four.

SETUP:
1) Create all the objects in our world.

DRAW:
2) Calculate all the forces in our world.
3) Apply all the forces to our objects (F = M * A).
4) Update the locations of all the objects based on their acceleration.
5) Draw all of our objects.

Great. Let’s rewrite this pseudo-code as it will appear in our Box2D examples.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 4

http://www.box2d.org/
http://www.box2d.org/
http://www.jbox2d.org/
http://www.jbox2d.org/
https://github.com/shiffman/PBox2D
https://github.com/shiffman/PBox2D
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

SETUP:
1) Create all the objects in our world.

DRAW:
2) Draw all of our objects.

This, of course, is the fantasy of Box2D. We’ve eliminated
all of those painful steps of figuring out how the objects are
moving according to velocity and acceleration. Box2D is
going to take care of this for us! The good news is that this
does accurately reflect the overall process. Let’s imagine
Box2D as a magic box.

In setup(), we’re going to say to Box2D: “Hello there. Here
are all of the things I want in my world.” In draw(), we’re
going to politely ask Box2D: “Oh, hello again. If it’s not too
much trouble, I’d like to draw all of those things in my
world. Could you tell me where they are?”

The bad news: it’s not as simple as the above methodology would lead you to believe. For one,
making the stuff that goes in the Box2D world involves wading through the documentation for
how different kinds of shapes are built and configured. Second, we have to remember we can’t
tell Box2D anything about pixels, as it will simply get confused and fall apart. Before we tell
Box2D what we want in our world, we have to convert our pixel units to Box2D “world” units.
And the same is true when it comes time to draw our stuff. Box2D is going to tell us the location
of the things in its world, which we then have to translate for the pixel world.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 5

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

SETUP:
1) Create everything that lives in our pixel world.
2) Translate the pixel world into the Box2D world.

DRAW:
3) Ask Box2D where everything is.
4) Translate Box2D’s answer into the pixel world.
5) Draw everything.

5.5 Box2D Basics—Core Elements

Now that we understand that anything we create in
our Processing sketch has to be placed into the
Box2D world, let’s look at an overview of the
elements that make up that world.

Core Elements of a Box2D World:

1. World: The Box2D “World” manages the physics simulation. It knows everything
about the overall coordinate space as well as stores lists of every element in the world
(see 2-4 below).

2. Body: A Box2D “Body” is the primary element in the Box2D world. It has a location.
It has a velocity. Sound familiar? The Body is essentially the class we’ve been writing
on our own in our vectors and forces examples.

3. Shape: A Box2D “Shape” keeps track of all the necessary collision geometry attached
to a Body.

4. Joint: A Box2D “Joint” is a connection between two bodies (or between one body and
the world itself).

In the next four sections, we are going to walk through each of the above elements in detail,
building several examples along the way. But before we are ready to do so there is one other
important element we should briefly discuss.

5. Vec2: A Box2D “Vec2” describes a vector in the Box2D world.

And so here we are, arriving with trepidation at an unfortunate truth in the world of using physics
libraries. Any physics simulation is going to involve the concept of a vector. This is the good
part. After all, we just spent several chapters familiarizing ourselves with what it means to
describe motion and forces with vectors. We don’t have to learn anything new conceptually.

Now the part that makes the single tear fall from my eye: we don’t get to use PVector. It’s nice
that Processing has PVector for us, but anytime you use a physics library you will probably
discover that the library includes its own vector implementation. This makes sense, after all;

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 6

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

why should Box2D be expected to know about PVector? And in many cases, the physics engine
will want to implement a vector class it in a specific way so that it is especially compatible with
the rest of the library’s code. So while we don’t have to learn anything new conceptually, we do
have to get used to some new naming conventions and syntax. Let’s quickly demonstrate a few
of the basics in Vec2 as compared to those in PVector.

Let’s say we want to add two vectors together.

PVector Vec2

 PVector a = new PVector(1,-1);
 PVector b = new PVector(3,4);
 a.add(b);

 Vec2 a = new Vec2(1,-1);
 Vec2 b = new Vec2(3,4);
 a.addLocal(b);

 PVector a = new PVector(1,-1);
 PVector b = new PVector(3,4);
 PVector c = PVector.add(a,b);

 Vec2 a = new Vec2(1,-1);
 Vec2 b = new Vec2(3,4);
 Vec2 c = a.add(b);

How about multiply/scale?

PVector Vec2

 PVector a = new PVector(1,-1);
 float n = 5;
 a.mult(n);

 Vec2 a = new Vec2(1,-1);
 float n = 5;
 a.mulLocal(n);

 PVector a = new PVector(1,-1);
 float n = 5;
 PVector c = PVector.mult(a,n);

 Vec2 a = new Vec2(1,-1);
 float n = 5;
 Vec2 c = a.mul(n);

Magnitude and normalize?

PVector Vec2

 PVector a = new PVector(1,-1);
 float m = a.mag();
 a.normalize();

 Vec2 a = new Vec2(1,-1);
 float m = a.length();
 a.normalize();

As you can see, the concepts are the same, but the function names and the arguments are slightly
different. For example, instead of static and non-static add() and mult(), if a Vec2 is altered, the
word “local” is included in the function name—addLocal(), multLocal().

Full documentation of Vec2 can be found in the javadoc [ONLY SEEMS TO BE PART OF
SOURCE CHECKOUT, NEED TO GET ONLINE VERSION WITH LINK HERE?]

5.6 Living in a Box2D World

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 7

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

The Box2D “World” object is in charge of everything. It manages the coordinate space of the
world, all of the stuff that lives in the world, and decides when time moves forward in the world.

In order to have Box2D as part of our Processing sketches, the “World” is the very first thing that
needs to be set up. Here is where PBox2D comes in handy and takes care of making the world
for us.

PBox2D box2d;

void setup() {
 box2d = new PBox2D(this);
 box2d.createWorld();!! ! $$ Initializes a Box2D world with default settings
}

Even though this is all you need to get started, it’s useful to take a look at what happens in the
createWorld() function in case you need to customize your world at some point.

When creating a world, you need three parameters:

• AABB or the “axis-aligned bounding box” — This is really just a fancy term for the box
that defines the edges of your universe. It’s important because Box2D will ignore anything
that exists outside this bounding box.

• Gravity — When you make a world, you must define a gravity vector—how strong is
gravity and what is gravity’s direction? Gravity doesn’t have to be fixed; you can adjust the
gravity vector while your program is running. Gravity can be turned off by setting it to a
(0,0) vector.

• doSleep — This is a boolean argument you must pass when creating a world. If you set it
to true, it tells the world to allow bodies to sleep when they come to rest. It’s pretty
standard to leave this on, but sometimes you’ll need to “wake up” your objects.

And so if we looked under the hood of createWorld(), we’d see some code that looks like:

AABB worldAABB = new AABB();!! ! $$ Creating the AABB
worldAABB.lowerBound.set(-100,-100);
worldAABB.upperBound.set(100,100);!!

Vec2 gravity = new Vec2(0, -10);! $$ Setting some default gravity

boolean doSleep = true;!! ! ! $$ Objects can sleep if they aren’t being used

World world = new World(worldAABB, gravity, doSleep);

Which reminds us of one of the most important details of using Box2D: the Box2D coordinate
system is not your pixel coordinate system!! Let’s look at how Box2D and a Processing
window think differently of their worlds.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 8

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

[FIX DIAGRAM TO EXPLAIN AABB BETTER]

Notice how in Box2D (0,0) is in the center and up is the positive direction along the y-axis!
Box2D’s coordinate system is just like that lovely old-fashioned Cartesian coordinate system you
might have learned about in a high school geometry class. Processing, on the other hand, uses a
traditional computer graphics coordinate system where (0,0) is in the top left corner and down is
the positive direction along the y-axis. This is why if we want gravity to point down, we need to
give Box2D a vector with a negative y-value.

Vec2 gravity = new Vec2(0, -10);

Luckily for us, if we prefer to think in terms of pixel coordinates (which as Processing
programmers, we are likely to do), PBox2D offers a series of helper functions that convert
between pixel space and Box2D space. Before we move onto the next section and look at
creating Box2D bodies, let’s take a look at how these helper functions work.

Let’s say we want to tell Box2D where the mouse is in its world. We know the mouse is located
at (mouseX,mouseY) in Processing. To convert it we say we want to convert a “coordinate”
from “pixels” to “world”—coordPixelsToWorld(). Or:

Vec2 mouseWorld = box2d.coordPixelsToWorld(mouseX,mouseY); $$ Convert mouseX,mouseY to
 ! ! ! ! ! ! ! ! ! ! coordinate in Box2D world

What if we had a Box2D world coordinate and wanted to translate it to our pixel space?

Vec2 worldPosition = new Vec2(-10,25);! $$ To demonstrate, let’s just make up a
! ! ! ! ! ! ! world position

Vec2 screenPosition = box2d.coordWorldToPixels(worldPosition); $$ Convert to pixel space
ellipse(screenPosition.x,screenPosition.y,16,16); !This is necessary because ultimately we
 ! ! ! ! ! ! ! ! ! are going to want to draw the elements in
! ! ! ! ! ! ! ! ! our window

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 9

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

PBox2D has a set of functions to take care of translating back and forth between the Box2D
world and pixels. It’s probably easier to learn about all of these functions during the course of
actually implementing our examples, but let’s quickly look over the list of the possibilities.

TASK FUNCTION

Convert location from World to Pixels Vec2 coordWorldToPixels(Vec2 world)

Convert location from World to Pixels Vec2 coordWorldToPixels(float worldX, float worldY)

Convert location from Pixels to World Vec2 coordPixelsToWorld(Vec2 screen)

Convert location from Pixels to World Vec2 coordPixelsToWorld(float pixelX, float pixelY)

Scale a dimension (such as height, width, or
radius) from Pixels to World

float scalarPixelsToWorld(float val)

Scale a dimension from World to Pixels float scalarWorldToPixels(float val)

Scale a vector from Pixels To World Vec2 vectorPixelsToWorld(Vec2 v)

Scale a vector from World To Pixels Vec2 vectorWorldToPixels(Vec2 v)

There are also additional functions that allow you to pass or receive a PVector when translating
back and forth, but since we are only working with Box2D in the examples in this chapter, it’s
easiest to stick with the Vec2 class for all vectors.

Once the world is initialized, we are ready to actually put stuff in the world—Box2D bodies.

5.6 Building a Box2D Body.

A Box2D body is the primary element in the Box2D world. It’s the equivalent to the “Mover”
class we built on our own in previous chapters, it is the thing that moves around the space and
experiences forces. It can also be static (meaning fixed and not moving). It’s important to note,
however, that a Body has no geometry, it isn’t anything physically. Rather, bodies have Box2D
Shapes attached to them (this way a Body can be a single rectangle or a rectangle attached to a
circle, etc.) We’ll look at Shapes in a moment, for now let’s see how we first build a Body.

Step 1. Define a Body.

The first thing we have to do is create a “Body Definition.” This will let us define the properties
of the Body we intend to make. This may seem a bit awkward at first, but this is how Box2D is
structured. Anytime you want to make a “thing” you have to make a “thing definition” first.
This will hold true for bodies, shapes, and joints.

BodyDef bd = new BodyDef();! $$ Make a Body Definition before making a Body

Step 2. Configure the Body Definition.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 10

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

The Body Definition is where we can set specific properties or attributes of the Body we intend
to make. One attribute of a Body, for example, is its starting location. Let’s say we want to
position the Body in the center of the Processing window.

Vec2 center = new Vec2(width/2,height/2); $$ A Vec2 in the center of the Processing window

Danger, danger! I’m not going to address this with every single example, but it’s important to at
least point out the perilous path we are taking with the above line of code. Remember, if we are
going to tell Box2D where we want the Body to start, we must give Box2D a world coordinate!
Yes, we want to think of its location in terms of pixels, but Box2D doesn’t care. And so before
we pass that position to the Body Definition, we must make sure to use one of our helper
conversion functions.

Vec2 center = box2d.coordPixelsToWorld(width/2,height/2)); $$ A Vec2 in the center of the
! ! ! ! ! ! ! ! ! ! Processing window converted to Box2D
! ! ! ! ! ! ! ! World coordinates!
bd.position.set(center); $$ Setting the position attribute of the Box2D Body Definition

[CONSIDER MENTION OF OTHER PROPERTIES -- linear damping, angular damping,
isBullet, etc.]

Step 3. Create the Body

Once we’re done with the definition (BodyDef), we can create the Body object itself. PBox2D
provides a helper function for this—createBody().

Body body = box2d.createBody(bd);! $$ The Body object is created by passing in the Body
! ! ! ! ! ! Definition. (This allows for making multiple bodies from
 ! ! ! ! ! ! one definition).

Step 4. Set any other conditions for the Body’s starting state

Finally, though not required, if you want to set any other initial conditions for the Body, such as
linear or angular velocity, you can do so with the newly created Body object.

body.setLinearVelocity(new Vec2(0,3));! $$ Setting an arbitrary initial velocity
body.setAngularVelocity(1.2);!! ! $$ Setting an arbitrary initial angular velocity

5.7 Attaching a Box2D Shape to a Body.

A Body on its own doesn’t physically exist in the world. It’s like a soul with no human form to
inhabit. For a Body to have mass, we must first define a Shape and attach that Shape to the Body.

The job of a Box2D Shape is to keep track of all the necessary collision geometry attached to a
Body. A Shape also has several important properties that affect the Body’s motion. There is

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 11

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

density, which ultimately determines that Body’s mass. Shapes also have friction and restitution
(“bounciness”). One of the nice things about Box2D’s methodology, which separates the
concepts of Bodies and Shapes into two separate objects, is that you can attach multiple shapes
to a single Body in order to create more complex forms. We’ll see this in a future example.

Much like with a Body, to create a Shape, we need to first create a Shape Definition. For most
non-circular shapes, a PolygonDef will work just fine. For example, let’s look at how we define a
rectangle.

Step 1. Define a Shape.

PolygonDef sd = new PolygonDef(); $$ Define the shape: a polygon

Next up, we have to define the width and height of the rectangle. Let’s say we want our rectangle
to be 150!100 pixels. Remember, pixel units are no good for Box2D shapes! So we have to use
our helper functions to convert them first.

float box2Dw = box2d.scalarPixelsToWorld(150); $$ Scale dimensions from pixels to Box2D world
float box2Dh = box2d.scalarPixelsToWorld(100);

sd.setAsBox(box2Dw, box2Dh);! $$ Use setAsBox() function to define shape as a rectangle

Step 2. Configure the Shape’s attributes.

Once we have the Shape Definition, we can access and set the appropriate parameters that affect
the physics.

sd.friction = 0.3; $$ The coefficient of friction for the shape, typically between 0 and 1
sd.restitution = 0.5; $$ The Shape’s restitution (i.e. elasticity), typically between 0 and 1
sd.density = 1.0; $$ The Shape’s density, measured in kilograms per meter squared.

Step 3. Attach the Shape to the Body.

Once the Shape is defined, all we have left to do is attach the Shape to the Body using the
createShape() function.

body.createShape(sd);! $$ Creates the Shape object and attaches it to the Body object

Step 4. Finalize the Body.

Before we can start the physics simulation, however, we need to tell Box2D that we are finished
attaching Shapes to the Body. Then Box2D can actually go ahead and determine the bodies’ mass
(based on the attached shapes and their densities). This is done with setMassFromShapes().

body.setMassFromShapes();

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 12

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

While most of our examples will call this function only once when the Body is first built, this is
not a limitation of Box2D. Box2D allows for Shapes to be created and destroyed on the fly, and
this would require calling setMassFromShapes() again to adjust the mass accordingly. Finally,
if you don’t want Box2D to calculate the mass for you based on the Shape’s density, you can use
setMass() instead.

Exercise: Knowing what you know about Box2D so far, fill in the blank in the code below that
demonstrates how to make a circular shape in Box2D.

CircleDef cd = new CircleDef();
float radius = 10;

cd.radius = _____________________;
cd.density = 1.0;
cd.friction = 0.1;
cd.restitution = 0.3;
body.createShape(cd);
body.setMassFromShapes();

5.8 Bodies and Shapes, together at last

Before we put any of this code we’ve been writing into a Processing sketch, let’s review all the
steps we took to construct a Body.

1. Define a Body using BodyDef (set any properties, such as location).
2. Create the Body from the Body Definition.
3. Define a Shape using PolygonDef, CircleDef, or any other Shape definition class (set

any properties, such as friction, density, and restitution).
4. Attach the Shape to the Body
5. Update the Body’s mass

BodyDef bd = new BodyDef();! ! ! ! ! ! ! $$ STEP 1. Define the Body.
bd.position.set(box2d.coordPixelsToWorld(width/2,height/2));

Body body = box2d.createBody(bd);! ! ! ! ! $$ Step 2. Create the Body.

PolygonDef sd = new PolygonDef();! ! ! ! ! $$ Step 3. Define the Shape.
float w = box2d.scalarPixelsToWorld(150);
float h = box2d.scalarPixelsToWorld(100);
sd.setAsBox(w, h);
sd.density = 1.0;
sd.friction = 0.3;
sd.restitution = 0.5;

body.createShape(sd);! ! ! ! ! ! ! $$ Step 4. Attach Shape to Body

body.setMassFromShapes();! ! ! ! ! ! $$ Step 5. Update Body’s mass

5.8 Box2D and Processing, reunited and it feels so good.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 13

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Once a Body is made it lives in the Box2D physics world. Box2D will always know it’s there,
check it for collisions, move it appropriately according to the forces, etc. It’ll do all that for you
without you having to lift a finger! What it won’t do, however, is display the Body for you. This
is a good thing. This is your time to shine. When working with Box2D what we’re essentially
saying is, “I want to be the designer of my world, and I want you, Box2D, to compute all the
physics.”

Now, Box2D will keep a list of all the Bodies that exist in the world. This can be accessed by
calling the World object’s getBodyList() function. Nevertheless, what I’m going to demonstrate
here is a technique for keeping your own Body lists. Yes, this may be a bit redundant and we
perhaps sacrifice a bit of efficiency. But we more than make up for that with ease of use. This
methodology will allow us to program like we’re used to in Processing, and we can easily keep
track of which Bodies are which and render them appropriately. Let’s consider the structure of
the following Processing sketch:

This looks like any ol’ Processing sketch. We have a main tab called “Boxes” and a “Boundary”
and “Box” tab. Let’s think about the Box tab for a moment. The Box tab is where we will write a
class to describe a Box object, a simple class to describe a rectangular body in our world.

class Box {

 float x,y;! ! ! $$ Our Box object has an x,y location and a width and a height
 float w,h;

 Box() {
 x = mouseX;! ! ! $$ Our Box object starts at the mouse location
 y = mouseY;
 w = 16;
 h = 16;
 }

 void display() {! ! $$ We draw the Box object using Processing’s rect() function
 fill(175);
 stroke(0);
 rectMode(CENTER);
 rect(x,y,w,h);
 }
}

Let’s write a main tab that creates a new Box whenever the mouse is pressed and stores all the
Box objects in an ArrayList. (This is very similar to our approach in the Particle System
examples from Chapter 4.)

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 14

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Example: A comfotable and cozy Processing sketch that needs a little
Box2D

ArrayList<Box> boxes;! ! $$ A list to store all Box objects

void setup() {
 size(400,300);
 boxes = new ArrayList<Box>();
}

void draw() {
 background(255);

 if (mousePressed) {! ! ! ! $$ When the mouse is pressed, add a new Box object
 Box p = new Box(mouseX,mouseY);
 boxes.add(p);
 }

 for (Box b: boxes) {!! ! ! $$ Display all the Box objects
 b.display();
 }
}

Now, here’s our assignment. Take the above example verbatim, but instead of drawing fixed
boxes on the screen, draw boxes that experience physics (via Box2D) as soon as they appear.

We’ll need two major steps to accomplish our goal.

Step 1. Add Box2D to our main program (i.e. setup() and draw())

This part is not too tough. We saw this already in our discussion of building a Box2D world.
This is taken care of for us by the PBox2D helper class. We can create a PBox2D object and
initialize it in setup().

PBox2D box2d;! !

void setup() {
 box2d = new PBox2D(this);! $$ Initialize and create the Box2D world
 box2d.createWorld();
}

Then in draw(), we need to make sure we call one very important function: step(). Without this
function, nothing would ever happen! step() advances the Box2D world a step further in time.
Internally, Box2D sweeps through and looks at all of the Bodies and figures out what to do with
them. Just calling step() on its own moves the Box2D world forward with default settings;
however, it is customizable (and this is documented in the PBox2D source).

void draw() {
 box2d.step(); $$ We must always step through time!
}

Step 2. Link every Processing Box object with a Box2D Body object

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 15

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

As of this moment, the Box class includes variables for location and width and height. What we
now want to say is:

“I hereby relinquish the command of this object’s position to Box2D. I no longer need to keep
track of anything related to location, velocity, and acceleration. Instead, I only need to keep
track of a Box2D body and have faith that Box2D will do the rest.”

class Box {

 Body body; $$ Instead of any of the usual variables,
! ! ! we will store a reference to a Box2D Body

 float w;!
 float h;

We don’t need (x,y) anymore since, as we’ll see, the Body itself will keep track of its location.
The Body technically could also keep track of the width and height for us, but since Box2D isn’t
going to do anything to alter those values over the life of the Box object, we might as well just
hold onto them ourselves until it’s time to draw the Box.

Then, in our constructor, in addition to initializing the width and height, we can go ahead and
include all of the Body and Shape code we learned in the previous two sections!

 Box() {
 w = 16;
 h = 16;

 BodyDef bd = new BodyDef();! ! ! ! $$ Build Body
 bd.position.set(box2d.coordPixelsToWorld(mouseX,mouseY));
 body = box2d.createBody(bd);

 PolygonDef sd = new PolygonDef();! ! ! $$ Build Shape
 float box2dW = box2d.scalarPixelsToWorld(w/2);
 float box2dH = box2d.scalarPixelsToWorld(h/2);! $$ Box2D considers the width and height of a
 sd.setAsBox(box2dW, box2dH);! ! ! ! rectangle to be the distance from the
 sd.density = 1.0;! ! ! ! ! ! center to the edge (so half of what we
 sd.friction = 0.3;!! ! ! ! ! normally think of as width or height.)

 sd.restitution = 0.5; ! ! ! ! ! ! ! ! ! !
 body.createShape(sd);! ! ! ! ! $$ Attach Shape to Body
 body.setMassFromShapes();
 }

Ok, we’re almost there. Before we introduced Box2D, it was easy to draw the Box. The object’s
location was stored in variables x and y.

 void display() {! ! ! $$ Drawing the object using rect()
 fill(175);
 stroke(0);
 rectMode(CENTER);

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 16

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 rect(x,y,w,h);
 }

But now Box2D manages the object’s motion. So we can no longer use our own variables to
display the shape. But not to fear! Our Box object has a reference to the Box2D Body associated
with it. So all we need to do is politely ask the Body,“Pardon me, where are you located?” Since
this is a task we’ll need to do quite often, PBox2D includes a helper function:
getBodyPixelCoord().

Vec2 pos = box2d.getBodyPixelCoord(body);

Just knowing the location of a Body isn’t enough; we also need to know its angle of rotation.

float a = body.getAngle();

Once we have the location and angle, it’s easy to display the object using translate and rotate.
Note, however, that the Box2D coordinate system considers rotation in the opposite direction
from Processing, so we need to multiply the angle by -1.

 void display() {
 Vec2 pos = box2d.getBodyPixelCoord(body);! ! $$ We need the Body’s location and angle
 float a = body.getAngle();

 pushMatrix();
 translate(pos.x,pos.y);! ! $$ Using the Vec2 position and float angle to
 rotate(-a);! ! ! translate and rotate the rectangle
 fill(175);
 stroke(0);
 rectMode(CENTER);
 rect(0,0,w,h);
 popMatrix();
 }

In case we want to have objects that can be removed from the Box2D world, it’s also useful to
include a function to destroy a Body, such as:

 // This function removes the particle from the box2d world
 void killBody() {
 box2d.destroyBody(body);

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 17

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 }

Exercise: In the code downloads for this chapter, find the sketch
named “box2d_exercise.” Using the methodology outlined in
this chapter, add the necessary code to the main and Box tabs to
implement Box2D physics. The result should appear as in the
screenshot to the left. Be more creative in how you render the
boxes.

5.9 Fixed Box2D objects

In the example we just created, the Box objects appear at the mouse location and fall downwards
due to Box2D’s default gravity force. What if we wanted to install some immovable boundaries
in the Box2D world that would block the path of the Box objects (as in the illustration below)?

Box2D makes this easy for us by providing a means to lock a
Shape and its associated Body in place. Shapes with a density
of zero cannot be moved.

 PolygonDef sd = new PolygonDef();
 sd.setAsBox(box2dW, box2dH);
 sd.density = 0; !! ! $$ When density = 0, the Body is
! ! ! ! locked in place

We can add this feature to our Boxes example by writing a class
called “Boundary” and having each Boundary object create a
fixed Box2D body.

Example: Falling Boxes Hitting Boundaries
class Boundary {

 float x,y;! ! ! $$ A boundary is a simple rectangle with x,y,width,and height
 float w,h;
 Body b;

 Boundary(float x_,float y_, float w_, float h_) {
 x = x_;
 y = y_;
 w = w_;
 h = h_;

 BodyDef bd = new BodyDef();! ! ! ! $$ Build the Box2D Body and Shape
 bd.position.set(box2d.coordPixelsToWorld(x,y));
 b = box2d.createBody(bd);

 float box2dW = box2d.scalarPixelsToWorld(w/2);
 float box2dH = box2d.scalarPixelsToWorld(h/2);

 PolygonDef sd = new PolygonDef();

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 18

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 sd.setAsBox(box2dW, box2dH);
 sd.density = 0; ! ! ! $$ Make it fixed by setting density to 0!
 sd.friction = 0.3;

 b.createShape(sd);
 }

 void display() {! ! ! ! $$ Since we know it can never move, we can just draw it
 fill(0);! ! ! ! ! the old-fashioned way, using our original variables
 stroke(0);! ! ! ! ! No need to query Box2D.
 rectMode(CENTER);
 rect(x,y,w,h);
 }

}

5.9 A Curvy Boundary

If you want a fixed boundary that is a curved surface (as opposed to a polygon), this can be
 achieved with the Shape definition EdgeChainDef.

The EdgeChainDef is just like any other Shape, so to include one in our system, we follow the
same steps.

1. Define a Body

BodyDef bd = new BodyDef();! ! ! ! $$ The Body does not need a position; the
Body body = box2d.world.createBody(bd);! ! EdgeChainDef will take care of that for us.

2. Define the Shape

EdgeChainDef edges = new EdgeChainDef();

3. Configure the Shape

The EdgeChainDef is a series of connected vertices. We can add points to the chain with the
addVertex() function. For example, if we wanted a straight line from the left-hand side of our
window to the right-hand side, we would just need two vertices: (0,150) and (width,150).

! ! ! $$ Adding a vertex on the right side of window

edges.addVertex(box2d.coordPixelsToWorld(width,150));
edges.addVertex(box2d.coordPixelsToWorld(0,150));

 $$ Adding a vertex on the left side of window

It’s no accident that in the above code, we added the vertices
from right to left. An EdgeChain only provides a boundary in
one direction, so the order in which the vertices are added
indicate which side of the EdgeChain we want to act as a
boundary. Try swapping the order of the above two lines of code and see what happens.

An EdgeChainDef also has friction and restitution.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 19

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

edges.friction = 2.0; // How much friction
edges.restitution = 0.3; // How bouncy

You can set a boolean flag if you want the first vertex to connect to the last vertex in a loop. In
our case, we don’t want this to happen, so we set it to false.

 edges.setIsLoop(false); // We could make the edge a full loop with “true”

4. Attach the Shape to the Body

A Shape is not part of Box2D unless it is attached to a Body. Even if it is a fixed boundary and
never moves, it must still be attached.

body.createShape(edges);

Now, if we want to include an EdgeChain in our sketch, we can follow the same strategy as we
did with a fixed boundary. Let’s write a class called Surface:

Example: EdgeChainDef with three hard-coded vertices
class Surface {
 ArrayList<Vec2> surface;

 Surface() {
 surface = new ArrayList<Vec2>();

 EdgeChainDef edges = new EdgeChainDef();

 Vec2 v1 = new Vec2(width,height/2);
 Vec2 v2 = new Vec2(width/2,height/2+50);
 Vec2 v3 = new Vec2(0,height/2+50);

 edges.addVertex(box2d.coordPixelsToWorld(v1));
 edges.addVertex(box2d.coordPixelsToWorld(v2));
 edges.addVertex(box2d.coordPixelsToWorld(v3));

 surface.add(v1);
 surface.add(v2);
 surface.add(v3);

 edges.setIsLoop(false); // We could make the edge a full loop
 edges.friction = 2.0; // How much friction
 edges.restitution = 0.3; // How bouncy

 // The edge chain is now a body!
 BodyDef bd = new BodyDef();
 Body body = box2d.world.createBody(bd);
 body.createShape(edges);
 }

Notice how the above class includes an ArrayList to store a series of Vec2 objects. Even though
we fully intend to store the coordinates of the EdgeChain in the EdgeChain Shape itself, we are
choosing the ease of redundancy and keeping our own list of those points as well. Later, when
we go to draw the EdgeChain, we don’t have to ask Box2D for the locations of the vertices.

 void display() {

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 20

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 strokeWeight(1);
 stroke(0);
 noFill();
 beginShape();
 for (Vec2 v: surface) {
 vertex(v.x,v.y);
 }
 endShape();
 }
}

What we need in the main tab for our Surface object is quite simple, given that Box2D takes care
of all of the physics for us.

PBox2D box2d;

Surface surface;

void setup() {
 size(500,300);
 box2d = new PBox2D(this);
 box2d.createWorld();

 surface = new Surface();
}

void draw() {
 box2d.step();

 background(255);
 surface.display();
}

Exercise: Review how we learned to draw a wave pattern in Chapter 3. Create an EdgeChain
out of a sine wave. Try using Perlin noise (see Prologue) as well.

Sine Wave Perlin Noise

5.10 Complex Forms

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 21

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Now that we’ve seen how easy it is to make simple geometric forms in Box2D, let’s imagine that
you want to have a more complex form, such as a little alien stick
figure.

There are two strategies in Box2D for making forms that are more
advanced than a basic circle or square. One is to use the Polygon
Definition in a different way. In our previous examples, we used
PolygonDef to generate a rectangular shape with the setAsBox()
function.

 PolygonDef sd = new PolygonDef();
 sd.setAsBox(box2dW, box2dH);

This was a good way to start because of the inherent simplicity of working with rectangles.
However, PolygonDef also has a function called addVertex(), which allows you to build a
completely custom shape as a series of connected vertices.

Example: Polygon Shapes
PolygonDef sd = new PolygonDef();
sd.addVertex(box2d.vectorPixelsToWorld(new Vec2(-15,25)));
sd.addVertex(box2d.vectorPixelsToWorld(new Vec2(10,5)));
sd.addVertex(box2d.vectorPixelsToWorld(new Vec2(15,0)));
sd.addVertex(box2d.vectorPixelsToWorld(new Vec2(20,-15)));
sd.addVertex(box2d.vectorPixelsToWorld(new Vec2(-10,-10)));

When building your own polygon in Box2D, you must
remember two important details.

1. Order of vertices! If you are thinking in terms of
pixels (as above) the vertices should be defined in
counter-clockwise order. (When they are translated to
Box2D world vectors, they will actually be in
clockwise order since the vertical axis is flipped.)

2. Convex shapes only! A concave shape is one
where the surface curves inward. Convex is the
opposite (see illustration below). Note how in a

concave shape every internal angle must be 180 degrees or less. Box2D is not capable of
handling collisions for “concave” shapes. If you need a concave shape, you will have to build
one out of multiple convex shapes (more about that in a moment).

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 22

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Now, when it comes time to display the shape in Processing, we can no longer just use rect() or
ellipse(). Since the shape is built out of custom vertices, we’ll want to use Processing’s
beginShape(), endShape(), and vertex() functions. As we saw with the EdgeChainDef, we
could choose to store the pixel locations of the vertices in our own ArrayList for drawing.
However, it’s also useful to see how we can ask Box2D to report back to use the vertex locations.

 void display() {
 Vec2 pos = box2d.getBodyPixelCoord(body);
 float a = body.getAngle();

 PolygonShape ps = (PolygonShape) body.getShapeList(); $$ Get the Shape attached to the Body

 Vec2[] vertices = ps.m_vertices; $$ The Shape keeps track of its array of vertices

 rectMode(CENTER);
 pushMatrix();
 translate(pos.x,pos.y);
 rotate(-a);
 fill(175);
 stroke(0);
 beginShape();
 for (int i = 0; i < vertices.length; i++) {! ! $$ We can loop through that array and
 Vec2 v = box2d.vectorWorldToPixels(vertices[i]); ! convert each vertex from Box2D
! vertex(v.x,v.y);! ! ! ! ! ! ! space to pixels.
 }
 endShape(CLOSE);
 popMatrix();
 }

Exercise: Using PolygonDef, create your own Polygon design (remember, it must be concave).
Some possibilities below.

[ILLUSTRATE SOME OTHER POLYGON EXAMPLES]

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 23

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

A polygon shape will get us pretty far in Box2D. Nevertheless, the convex
shape requirement will severely limit the range of possibilities. The good
news is that we can completely eliminate this limit by creating a single
Box2D body out of multiple shapes! Let’s return to our little alien creature
and simplify the shape to be a thin rectangle with a circle on top.

How can we build a single Body with two Shapes? Let’s first review how
we built a single Body with one Shape.

Step 1. Define the Body
Step 2. Create the Body
Step 3. Define the Shape
Step 4. Attach the Shape to the Body
Step 5. Finalize the Body’s mass

Attaching more than one Shape to a Body is as simple as repeating steps 3 and 4 over and over
again.

Step 3a. Define Shape 1
Step 4a. Attach Shape 1 to the Body
Step 3b. Define Shape 2
Step 4b. Attach Shape 2 to the Body
etc. etc. etc.

Let’s see what this would look like with actual Box2D code.

BodyDef bd = new BodyDef();! ! ! ! ! $$ Making the Body
bd.position.set(box2d.coordPixelsToWorld(center));
body = box2d.createBody(bd);

PolygonDef sd = new PolygonDef();! ! ! ! $$ Making Shape 1 (the rectangle)
float box2dW = box2d.scalarPixelsToWorld(w/2);
float box2dH = box2d.scalarPixelsToWorld(h/2);
sd.setAsBox(box2dW, box2dH);
sd.density = 1.0;
sd.friction = 0.3;
sd.restitution = 0.5;

CircleDef cd = new CircleDef();! ! ! ! $$ Making Shape 2 (the circle)
cd.radius = box2d.scalarPixelsToWorld(h/2);
cd.density = 1.0;
cd.friction = 0.3;! ! $$ These values could be different if we want!!
cd.restitution = 0.5;

body.createShape(sd);! ! ! ! ! ! $$ Attach both Shapes!
body.createShape(cd);

body.setMassFromShapes();! ! ! ! ! $$ Finalize Body

The above looks pretty good, but sadly, if we run it, we’ll get the following result:

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 24

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

When you attach a Shape to a Body, by default, the center of the Shape will be located at the
center of the Body. But in our case, if we take the center of the rectangle to be the center of the
Body, we want the center of the circle to be offset along the y-axis from the Body’s center.

This is achieved by using the localPosition property of a Shape Definition.

 Vec2 offset = new Vec2(0,-h);! $$ Our offset in pixels
 cd.localPosition = box2d.vectorPixelsToWorld(offset); $$ Converting the vector to Box2D
! ! ! ! ! ! ! ! ! ! world and setting the local position

Then when we go to draw the Body, we use both rect() and ellipse() with the circle offset the
same way.

 Example: Multiple Shapes on one Body
 void display() {
 Vec2 pos = box2d.getBodyPixelCoord(body);
 float a = body.getAngle();

 rectMode(CENTER);
 pushMatrix();
 translate(pos.x,pos.y);
 rotate(-a);
 fill(175);
 stroke(0);
 rect(0,0,w,h);! ! $$ First the rectangle at (0,0)
 ellipse(0,-h,h,h);!! $$ Then the ellipse offset at (0,-h)
 popMatrix();
 }

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 25

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Finishing off this section, I want to stress the following: the stuff you draw in your Processing
window doesn’t magically experience physics simply because we created some Box2D Bodies
and Shapes. These examples work because we very carefully matched how we draw our
elements with how we defined the Bodies and Shapes we put into the Box2D world. If you
accidentally draw your shape differently,you won’t get an error, not from Processing or from
Box2D. However, your sketch will look odd and the physics won’t work correctly. For
example, what if we had written:

Vec2 offset = new Vec2(0,-h);!

when we created the Shape, but:

ellipse(0,h,h,h);

when it came time to display the Shape? The results would look
like the image to the right, where clearly, the collisions are not
functioning as expected. This is not because the physics is
broken; it’s because we did not communicate properly with
Box2D either when we put stuff in the magic world or queried
the world for locations.

Exercise: Make your own little alien being using multiple Shapes attached to a single Body. Try
using more than one Polygon to make a concave shape. Remember, you aren’t limited to using
the shape drawing functions in Processing; you can use images, colors, add hair with lines, etc.
Think of the Box2D shapes as only a skeleton for your creative and fantastical design!

5.11 Feeling Attached—Box2D Joints

Box2D joints allow you to connect one Body to another, enabling more advanced simulations of
swinging pendulums, elastic bridges, squishy characters, wheels spinning on an axle, etc. There
are many different kinds of Box2D joints. In this chapter we’re going to look at three: distance
joints, revolute joints, and “mouse” joints.

Let’s begin with a distance joint, a joint that connects two Bodies with
a fixed length. The joint is attached to each Body at a specified
anchor point (a point relative to the Body’s center.) For any Box2D
joint, we need to follow these steps. This, of course, is similar to the
methodology we used to build Bodies and Shapes, with some quirks.

Step 1. Make sure you have two Bodies ready to go.
Step 2. Define the Joint.
Step 3. Configure the Joint’s properties (What are the Bodies?
Where are the anchors? What is its rest length? Is it elastic or rigid?)
Step 4. Create the Joint.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 26

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Let’s assume we have two Particle objects that each store a reference to a Box2D Body. We’ll
call them Particles p1 and p2.

Particle p1 = new Particle();
Particle p2 = new Particle();

OK, onto Step 2. Let’s define the Joint.

DistanceJointDef djd = new DistanceJointDef();

Easy, right? Now it’s time to configure the Joint. First we tell the Joint which two Bodies it
connects:

djd.body1 = p1.body;
djd.body2 = p2.body;

Then we set up a rest length. Remember, if our rest length is in pixels, we need to convert it!

djd.length = box2d.scalarPixelsToWorld(10);

A distance joint also includes two optional settings that can make the joint soft, like a spring
connection: frequencyHz and damping ratio.

 djd.frequencyHz = ___; $$ Measured in Hz, like the frequency of harmonic oscillation; try
 values between 1 and 5
 djd.dampingRatio = ___; $$ Dampens the spring, typically a number between 0 and 1

Finally, we create the Joint.

DistanceJoint dj = (DistanceJoint) box2d.world.createJoint(djd);

Box2D won’t keep track of what kind of Joint we are making, so we have to cast it as a
DistanceJoint upon creation.

We can create Box2D joints anywhere in our Processing sketch. Here’s an example of how we
might write a class to describe two Box2D bodies connected with a single joint.

Example: DistanceJoint
class Pair {

 Particle p1;! ! $$ Two objects that each have a Box2D body
 Particle p2;
 float len = 32;!! $$ Arbitrary rest length

 Pair(float x, float y) {

 p1 = new Particle(x,y);
 p2 = new Particle(x+random(-1,1),y+random(-1,1)); $$ Problems can result if the bodies are
 initialized at the same location

 DistanceJointDef djd = new DistanceJointDef();! $$ Making the joint!
 djd.body1 = p1.body;
 djd.body2 = p2.body;

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 27

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 djd.length = box2d.scalarPixelsToWorld(len);
 djd.frequencyHz = 0; // Try a value less than 5
 djd.dampingRatio = 0; // Ranges between 0 and 1

 // Make the joint. Note we aren't storing a reference to the joint anywhere!
 // We might need to someday, but for now it's OK.
 DistanceJoint dj = (DistanceJoint) box2d.world.createJoint(djd);
 }

 // Draw the bridge
 void display() {
 Vec2 pos1 = box2d.getBodyPixelCoord(p1.body);
 Vec2 pos2 = box2d.getBodyPixelCoord(p2.body);
 stroke(0);
 line(pos1.x,pos1.y,pos2.x,pos2.y);

 p1.display();
 p2.display();
 }
}

Exercise: Create a simulation of a bridge by using distance
joints to connect a sequence of circles (or rectangles) as
illustrated to the right. Assign a density of zero to lock the
endpoints in place. Experiment with different values to make
the bridge more or less “springy.” It should also be noted that
the joints themselves have no physical geometry, so in order for
your bridge not to have holes, spacing between the nodes will be
important.

Another joint you can create in Box2D is a Revolute Joint.

A revolute connects two Box2D bodies at a common anchor point, which can also be referred to
as a “hinge.” The joint has an “angle” which describes the relative rotation of each Body. To
use a Revolute Joint, we follow the same steps we did with the Distance Joint.

Step 1. Make sure you have two bodies ready to go.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 28

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Let’s assume we have two “Box” objects, each of which stores a reference to a Box2D Body.

Box box1 = new Box();
Box box2 = new Box();

Step 2. Define the Joint.

Now we want a RevoluteJointDef.

RevoluteJointDef rjd = new RevoluteJointDef();

Step 3. Configure the Joint’s properties.

The most important properties of a RevoluteJoint are the two bodies it connects.

rjd.body1 = box1.body;
rjd.body2 = box2.body;

However, there are several other properties you can set, including the local anchor points (where
the connections are made on the Body), as well as upper and lower limits to the angle.

An exciting aspect to the RevoluteJoint is that you can motorize it so it spins autonomously. For
example:

rjd.enableMotor = true; $$ Turn on the motor.
rjd.motorSpeed = PI*2; $$ How fast is the motor?
rjd.maxMotorTorque = 1000.0; $$ How powerful is the motor?

The motor can be enabled and disabled while the program is running.

Step 4. Create the Joint.

RevoluteJoint joint = (RevoluteJoint) box2d.world.createJoint(rjd);

Let’s take a look at all of these steps together in a class called Windmill, which connects two
boxes with a revolute joint. In this case, “box1” has a density of zero, so only “box2” spins
around a fixed point.

Example: Spinning Windmill
class Windmill {

 RevoluteJoint joint; $$ Our “Windmill” is two boxes and one joint
 Box box1;
 Box box2;

 Windmill(float x, float y) {

 box1 = new Box(x,y,120,10,false);
 box2 = new Box(x,y,10,40,true); $$ In this example, the Box class expects a boolean
 ! ! ! ! ! ! argument argument that will be used to determine if the

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 29

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

! ! ! ! ! ! Box is fixed or not. See web site for the Box class code.

 RevoluteJointDef rjd = new RevoluteJointDef();! $$ The Joint connects two Bodies
 rjd.body1 = box1.body;
 rjd.body2 = box2.body;

 Vec2 v1 = box2d.coordPixelsToWorld(x,y);
 rjd.localAnchor1 = box1.body.getLocalPoint(v1);
 Vec2 v2 = box2d.coordPixelsToWorld(x,y-20);! $$ Here we are customizing the anchor points
 rjd.localAnchor2 = box1.body.getLocalPoint(v2);

 rjd.motorSpeed = PI*2; $$ A Motor!
 rjd.maxMotorTorque = 1000.0;
 rjd.enableMotor = true;

 joint = (RevoluteJoint) box2d.world.createJoint(rjd); $$ Create the Joint
 }

 void toggleMotor() {!! $$ Turning the motor on or off
 boolean motorstatus = joint.isMotorEnabled();
 joint.enableMotor(!motorstatus);
 }

 void display() {
 box1.display();
 box2.display();
 }
}

Exercise: Use a RevoluteJoint for the wheels of a Car. Use motors so that the car drives
autonomously. Try using an EdgeChain for the road’s surface.

The last joint we’ll look at is the MouseJoint. The MouseJoint is typically used for moving a
Body with the mouse. However, it can also be used to drag an object around the screen
according to some arbitrary x and y. The joint functions by pulling the Body towards a “target”
position.

Before we look at the MouseJoint itself, let’s ask ourselves why we even need it in the first place.
If you look at the Box2D documentation, there is a function called setXForm() that specifically
“sets the position of the body's origin and rotation (radians).” If a Body has a position, can’t we
just assign the Body’s position to the mouse?

Vec2 mouse = box2d.screenToWorld(x,y);
body.setXForm(mouse,0);

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 30

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

While this will in fact move the Body, it also will have the unfortunate result of breaking the
physics. Let’s imagine you built a teleportation machine that allows you to teleport from your
bedroom to your kitchen (good for late night snacking.) Now, go ahead and rewrite Newton’s
laws of motion to account for the possibility of teleportation. Not so easy, right? Box2D has the
same problem. If you manually assign the location of an body, it’s like saying “teleport that
body” and Box2D no longer knows how to compute the physics properly. However, Box2D
does allow you to tie a rope to yourself and get a friend of yours to stand in the kitchen and drag
you there. This is what the Mouse Joint does. It’s like a string you attach to a Body and pull
towards a target.

Let’s look at making this joint, assuming we have a Box object: box. This code will look
identical to our distance joint with one small difference.

MouseJointDef md = new MouseJointDef();! ! $$ Just like before, define the Joint

md.body1 = box2d.world.getGroundBody();! ! $$ Whoa, this is new!
md.body2 = box.body;! ! ! ! ! $$ Attach the Box Body

md.maxForce = 5000.0;! ! ! ! ! $$ Set properties
md.frequencyHz = 5.0;
md.dampingRatio = 0.9;

MouseJoint mouseJoint = (MouseJoint) box2d.world.createJoint(md);! $$ Create the Joint

So, what’s this line of code all about?

md.body1 = box2d.world.getGroundBody();

Well, as we’ve stated, a joint is a connection between two bodies. With the MouseJoint, we’re
saying that the second body is, well, the ground. Hmm. What the heck is the ground in Box2D?
One way to imagine it is to think of the screen as the ground. What we’re doing is making a
joint that connects a rectangle drawn on the window with the Processing window itself. And the
point in the window to which the connection is tied is a moving target.

Once we have a MouseJoint, we’ll want to update the target location continually while the sketch
is running.

Vec2 mouseWorld = box2d.coordPixelsToWorld(mouseX,mouseY);
mouseJoint.setTarget(mouseWorld);

To make this work in an actual Processing sketch, we’ll want to have the following:

• Box class—An object that references a Box2D Body.
• Spring class—An object that manages the MouseJoint that drags the Box object around.
• Main tab—Whenever mousePressed() is called, the MouseJoint is created; whenever

mouseReleased() is called, the MouseJoint is destroyed. This allows us to interact with a
Body only when the mouse is pressed.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 31

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Let’s take a look at the main tab. You can find the rest of the code for the Box and Spring classes
on the book web site.

Example: MouseJoint demonstration
PBox2D box2d;

Box box;! ! $$ One Box
Spring spring;! $$ Object to manage MouseJoint

void setup() {
 size(400,300);
 box2d = new PBox2D(this);
 box2d.createWorld();

 box = new Box(width/2,height/2);
 spring = new Spring();! $$ The MouseJoint is really null until we click the mouse
}

void mousePressed() {
 if (box.contains(mouseX, mouseY)) {! $$ Was the mouse clicked inside the Box?
 spring.bind(mouseX,mouseY,box);! $$ If so, attach the MouseJoint
 }
}

void mouseReleased() {
 spring.destroy();! ! $$ When the mouse is released, we’re done with the Joint
}

void draw() {
 background(255);

 box2d.step();

 spring.update(mouseX,mouseY);! $$ We must always update the MouseJoint’s target

 box.display();
 spring.display();
}

Exercise: Move a Box2D Body around the screen according to an algorithm or input other than
the mouse. For example, assign it a location according to Perlin noise or key presses. Or build
your own controller using an Arduino (http://www.arduino.cc/).

5.12 Bringing it all back home to forces

In Chapter 2, we spent a lot of time thinking about building environments with multiple forces.
An object might respond to gravitational attraction, wind, air resistance, etc. Clearly there are
forces at work in Box2D as we watch rectangles and circles spin and fly around the screen. But
so far, we’ve only had the ability to manipulate a single global force—gravity.

 box2d = new PBox2D(this);
 box2d.createWorld();
 box2d.setGravity(0, -20);! ! $$ Setting the global gravity force

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 32

http://www.arduino.cc/
http://www.arduino.cc/
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

If we want to use any of our Chapter 2 techniques with Box2D, we need look no further than our
trusty applyForce() function. In our Mover class we wrote a function called applyForce(),
which received a vector, divided it by mass, and accumulated it into the Mover’s acceleration.
With Box2D, the same function exists, but we don’t need to write it ourselves. Instead, we can
call the Box2D Body’s applyForce() function!

class Box {
 Body body;

 // etc. etc.
 void applyForce(Vec2 force) {
 Vec2 pos = body.getMemberWorldCenter();
 body.applyForce(force, pos);
 }
}

Here we are receiving a force vector and passing it along to the Box2D Body object. The key
difference is that Box2D is a more sophisticated engine that our examples from Chapter 2. Our
earlier forces examples assumed that the force was always applied at the Mover’s center. Here
we get to specify exactly where on the Body the force is applied. In the above code, we’re just
applying it to the center by asking the Body for its center, but this could be adjusted.

Let’s say we wanted to use a gravitational attraction force. Remember the code we wrote back in
Chapter 2 in our Attractor class?

 PVector attract(Mover m) {
 PVector force = PVector.sub(location,m.location);
 float distance = force.mag();
 distance = constrain(distance,5.0,25.0);
 force.normalize();
 float strength = (g * mass * m.mass) / (distance * distance);
 force.mult(strength);
 return force;
 }

We can rewrite the exact same function using Vec2 instead and use it in a Box2D example. Note
how for our force calculation we can stay completely within the Box2D coordinate system and
never think about pixels.

 Vec2 attract(Mover m) {
 Vec2 pos = body.getMemberWorldCenter(); $$ We have to ask Box2D for the locations first!
 Vec2 moverPos = m.body.getMemberWorldCenter();
 Vec2 force = pos.sub(moverPos);

 float distance = force.length();
 distance = constrain(distance,1,5);
 force.normalize();
 float strength = (G * 1 * m.body.m_mass) / (distance * distance);
 force.mulLocal(strength);!! $$ Remember, it’s mulLocal() for Vec2
 return force;
 }

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 33

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Exercise: Take any example you made previously using a force
calculation and bring that force calculation into Box2D.

5.13 Collision Events

Now we’ve seen a survey of what can be done with Box2D. Since this book is not called “The
Nature of Box2D”, it’s not my intention to cover every single possible feature of the Box2D
engine. But hopefully by looking at the basics of building bodies, shapes, and joints, when it
comes time to use an aspect of Box2D that we haven’t covered, the skills we’ve gained here will
make that process considerably less painful. There is one more feature of Box2D, however, that
I do think is worth covering.

Let’s ask a question you’ve likely been wondering:

What if I want something to happen when two Box2D bodies collide? I mean, don’t get me
wrong—I’m thrilled that Box2D is handling all of the collisions for me. But if it takes care of
everything for me, how am I supposed to know when things are happening?

Your first thoughts when considering an event during which two objects collide might be as
follows: Well, if I know all the bodies in the system, and I know where they are all located, then
I can just start comparing the locations, see which ones are intersecting, and determine that
they’ve collided. That’s a nice thought, but hello??!? The whole point of using Box2D is that
Box2D will take care of that for us. If we are going to do the geometry to test for intersection
ourselves, then all we’re doing is re-implementing Box2D.

Of course, Box2D has thought of this problem before. It’s a pretty common one. After all, if
you intend to make a bajillion dollars selling some game called Angry Birds, you better well
make something happen when an ill-tempered pigeon smashes into a cardboard box. Box2D
alerts you to moments of collision with something called an “interface.” It’s worth learning
about interfaces, an advanced feature of object-oriented programming. You can take a look at the
Java Interface tutorial (http://download.oracle.com/javase/tutorial/java/concepts/interface.html)
as well as the JBox2D ContactListener class. (I have also included an example on the web site
that demonstrates using the interface directly.)

If you are using PBox2D, as we are here, you don’t need to implement your own interface.
Detecting collision events is done through a callback function no different than mousePressed().

void mousePressed() {! ! ! ! $$ The mousePressed event with which we are comfortable
 println(“The mouse was pressed!”);
}

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 34

http://download.oracle.com/javase/tutorial/java/concepts/interface.html
http://download.oracle.com/javase/tutorial/java/concepts/interface.html
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

void addContact(ContactPoint cp) {!! $$ What our “addContact” event looks like
 println(“Something collided in the Box2D World!”);
}

Before the above will work, you must first let PBox2D know you intend to listen for collisions.
(This allows the library to reduce overhead by default; it won’t bother listening if it doesn’t have
to.)

void setup() {
 box2d = new PBox2D(this);
 box2d.createWorld();
 box2d.listenForCollisions();! $$ Add this line if you want to listen for collisions
}

There are four collision event callbacks.

• addContact()—this is triggered whenever two shapes first come into contact with each
other.

• persistContact()—this is triggered over and over again as long as shapes continue to be in
contact.

• removeContact()—this is triggered when two shapes that were previouslytouching
separate.

• resultContact()—this is triggered after a contact event is resolved. [OK, I DON’T
REALLY KNOW WHAT THIS MEANS.]

For simplicity, we are going to look at addContact() only. This will cover the majority of
conventional cases in which you want to trigger an action when a collision occurs.

void addContact(ContactPoint cp) {!!

}

Notice that the addContact() method above includes an argument of type ContactPoint. A
ContactPoint object includes all the data associated with a collision—the geometry and the
forces. Let’s say we have a Processing sketch with Particle objects that store a reference to a
Box2D body. Here is the process we are going to follow.

[ILLUSTRATION]

1. ContactPoint, could you tell me the two shapes that collided?

Shape s1 = cp.shape1;! $$ The ContactPoint stores the shapes in variables shape1 and shape2.
Shape s2 = cp.shape2;

2. Shapes, could you tell me which Body you are attached to?

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 35

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Body b1 = s1.getBody();! $$ getBody() gives us the Body that the Shape is attached
Body b2 = s2.getBody();

3. Bodies, could you tell me which Particles you are associated with?

OK, this is the harder part. After all, Box2D doesn’t know anything about our code. Sure, it is
doing all sorts of stuff to keep track of the relationships between Shapes and Bodies and Joints,
but it’s up to us to manage our own objects and their associations with Box2D elements.
Luckily for us, Box2D provides a function that allows us to attach our Processing object (a
Particle) to a Box2D Body via the setUserData() and getUserData() methods.

Let’s take a look at the constructor in our Particle class where the Body is made. We are
expanding our Body-making procedure by one line of code, noted below.

class Particle {
 Body body;

 Particle(float x, float y, float r) {
 BodyDef bd = new BodyDef();
 bd.position = box2d.coordPixelsToWorld(x,y);
 body = box2d.world.createBody(bd);
 CircleDef cd = new CircleDef();
 cd.radius = box2d.scalarPixelsToWorld(r);
 cd.density = 1.0;
 cd.friction = 0.01;
 cd.restitution = 0.3;
 body.createShape(cd);
 body.setMassFromShapes();!
! ! ! !

 body.setUserData(this); ! $$ “this” refers to this Particle object.

! ! ! ! ! ! ! ! ! We are telling the Box2D Body to store a
 ! ! ! ! ! ! ! ! ! reference to this Particle that we can
 ! ! ! ! ! ! ! ! ! access later.
 }

Later, in our addContact() function, once we know the Body, we can access the Particle object
with getUserData().

Example: CollisionListening

void addContact(ContactPoint cp) {
 Shape s1 = cp.shape1;
 Shape s2 = cp.shape2;

 Body b1 = s1.getBody();
 Body b2 = s2.getBody();

 Particle p1 = (Particle) b1.getUserData();! !
 Particle p2 = (Particle) b2.getUserData();! $$ When we pull the “user data” object out of the
 ! ! ! ! ! ! ! ! Body object, we have to remind our program that it
! ! ! ! ! ! ! ! is a Particle object. Box2D doesn’t know this.
 p1.change();! !
 p2.change();! ! ! $$ Once we have the particles, we can do anything to them. Here we
! ! ! ! ! just call a function that changes their color.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 36

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

}

Now, in many cases, we cannot assume that the objects that collided are all Particle objects. We
might have a sketch with Boundary objects, Particle objects, Box objects, etc. So often we will
have to query the “user data” and find out what kind of object it is before proceeding.

 Object o1 = b1.getUserData();! ! ! $$ Getting a generic object
 if (o1.getClass() == Particle.class) {!! $$ Asking that object if it’s a Particle
 Particle p = (Particle) o1;
 p.change();
 }

Exercise: Consider how polymorphism could help in this case. Build an example in which
several classes extend one class and therefore eliminate the need for the above testing.

It should also be noted that due to how Box2D triggers these callbacks, you cannot create or
destroy Box2D entities inside of addContact(), removeContact(), persistContact(), or
resultContact(). If you want to do this, you’ll need to set a variable inside an object (something
like: markForDeletion = true), which you check during draw() and then delete objects.

Exercise: Create a simulation in which Particle objects disappear when they collide. Use the
methodology I just described.

5.14 A Brief Interlude -- Integration Methods

Has the following ever happened to you? You’re at a fancy cocktail party regaling your friends
with tall tales of software physics simulations. Someone pipes up: “Enchanting! But what
integration method are you using?” “What?!” you think to yourself. “Integration?”

Maybe you’ve heard the term before. Along with “differentiation,” it’s one of the two main
operations in calculus. Right, calculus. The good news is, we’ve gotten through about 90% of
the material in this book related to physics simulation and we haven’t really needed to dive into
calculus. But as we’re coming close to finishing this topic, it’s worth taking a moment to
examine the calculus behind what we have been doing and how it relates to the methodology in
certain physics libraries (like Box2D and the upcoming toxiclibs).

Let’s begin by answering the question: “What does integration have to do with location, velocity,
and acceleration?” Well, first let’s define differentiation. The derivative of a function is a
measure of how a function changes over time. Consider location and its derivative. Location is
a point in space, while velocity is change in location over time. Therefore, velocity can be
described as the “derivative” of location. What is acceleration? The change in velocity over
time—i.e. the “derivative” of velocity.

Now that we understand the derivative (differentiation), we can define the integral (integration)
as the inverse of the derivative. In other words, the integral of an object's velocity over time tells

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 37

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

us the object’s new location when that time period ends. Location is the integral of velocity, and
velocity is the integral of acceleration. Sinceour physics simulation is founded upon the process
of calculating acceleration based on forces , we need integration to figure out where the object is
after a certain period of time (like one frame of animation!).

So we’ve been doing integration all along! It looks like this:

velocity.add(acceleration);
location.add(velocity);

The above methodology is known as Euler Integration (named for the mathematician Leonhard
Euler, pronounced “Oiler”) or the Euler Method. It’s essentially the simplest form of
integration and very easy to implement in our code (see the two lines above!). However, it is not
necessarily the most efficient form, nor is it close to being the most accurate. Why is Euler
inaccurate? Let’s think about it this way. When you drive a car down the road pressing the gas
pedal with your foot and accelerating, does the car sit in one location at time equals 1 second,
then disappear and suddenly reappear in a new location at time equals 2 seconds, and do the
same thing for 3 seconds, and 4, and 5? No, of course not. The car moves continuously down
the road. But what’s happening in our Processing sketch? A circle is at one location at frame 0,
another at frame 1, another at frame 2. Sure, at 30 frames per second, we’re seeing the illusion
of motion. But we only calculate a new location every N units of time, whereas the real world is
perfectly continuous. This results in some inaccuracies, as shown in the diagram below:

The “real world” is the curve; Euler simulation is the series of line segments.

One option to improve on Euler is to use smaller timesteps—instead of once per frame, we could
recalculate an object’s location twenty times per frame. But this isn’t practical; our sketch would
then run too slowly.

I still believe that Euler is the best method for learning the basics, and it’s also perfectly adequate
for most of the projects we might make in Processing. Anything we lose in efficiency or
inaccuracy we make up in ease of use and understandability. For better accuracy, Box2D uses

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 38

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

something called symplectic Euler (or semi-explicit Euler), a slight modification of Euler (see:
http://en.wikipedia.org/wiki/Symplectic_Euler_method).

There is also an integration method called Runge–Kutta (named for German mathematicians C.
Runge and M.W. Kutta), which is used in some physics engines.

A very popular integration method that our next physics library uses is known as “Verlet
Integration.” A simple way to describe Verlet Integration is to think of our typical motion
algorithm without velocity. After all, we don't really need to store the velocity. If we always
know where an object was at one point in time and where it is now, we can extrapolate its
velocity. Verlet Integration does precisely this, though instead of having a variable for velocity,
it calculates velocity while the program is running. Verlet Integration is particularly well suited
for particle systems, especially particle systems with spring connections between the particles.
We don't need to worry about the details because toxiclibs, as we’ll see below, takes care of them
for us. However, if you are interested, here is the seminal paper on Verlet physics, from which
just about every Verlet computer graphics simulation is derived:

http://www.gamasutra.com/resource_guide/20030121/jacobson_01.shtml

And of course, you can find out more about Verlet Integration via Wikipedia:

http://en.wikipedia.org/wiki/Verlet_integration

5.15 Verlet Physics with Toxiclibs

From toxiclibs.org:

“toxiclibs is an independent, open-source library collection for computational design tasks with
Java & Processing developed by Karsten “toxi” Schmidt (thus far). The classes are purposefully
kept fairly generic in order to maximize re-use in different contexts ranging from generative
design, animation, interaction/interface design, data visualization to architecture and digital
fabrication, use as teaching tool and more.”

In other words, we should thank our lucky stars for toxiclibs. We are only going to focus on a
few examples related to Verlet physics, but toxiclibs includes a suite of other wonderful packages
that help with audio, color, geometry, and more. In particular, if you are looking to work with
form and fabrication in Processing, take a look at the geometry package. Many demos can be
found here:

http://www.openprocessing.org/portal/?userID=4530

We should note that toxiclibs was designed specifically for use with Processing. This is great
news. The trouble we had with making Box2D work in Processing (multiple coordinate systems,

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 39

http://en.wikipedia.org/wiki/Symplectic_Euler_method
http://en.wikipedia.org/wiki/Symplectic_Euler_method
http://www.gamasutra.com/resource_guide/20030121/jacobson_01.shtml
http://www.gamasutra.com/resource_guide/20030121/jacobson_01.shtml
http://en.wikipedia.org/wiki/Verlet_integration
http://en.wikipedia.org/wiki/Verlet_integration
http://www.openprocessing.org/portal/?userID=4530
http://www.openprocessing.org/portal/?userID=4530
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Box2D vs JBox2D vs PBox2D) is not an issue here. toxiclibs is a library that you just download,
stick in your libraries folder, and use. And the coordinate system that we’ll use for the physics
engine is the coordinate system of Processing, so no translating back and forth. In addition,
toxiclibs is not limited to a 2D world and all of the physics simulations and functions work in
both two and three dimensions. So how do you decide which library you should use? Box2D or
toxiclibs? If you fall into one of the following two categories, your decision is a bit easier:

My project involves collisions. I have circles, squares, and other strangely shaped objects that
knock each other around and bounce off each other.

In this case, you are going to need Box2D. toxiclibs does not handle collisions.

My project involves lots of particles flying around the screen. Sometimes they attract each
other. Sometimes they repel each other. And sometimes they are connected with springs.

In this case, toxiclibs is your best choice. It is simpler to use than Box2D and particularly well
suited to connected systems of particles. It is also faster because of the Verlet integration
algorithm and its ability to ignore all of the collision geometry [Is this true? It must be true,
right?]

Here is a little chart that covers some of the features for each physics library.

Feature Box2D toxiclibs VerletPhysics

Collision geometry Yes No

3D physics No Yes

Particle attraction / repulsion forces No Yes

Spring connections Yes Yes

Other connections: revolute, pulley, gear, prismatic Yes No

Motors Yes No

Friction Yes No

5.16 Getting toxiclibs

Everything you need to download and install toxiclibs can be found at:

http://toxiclibs.org/

When you download the library, you’ll notice that it comes with eight modules (i.e. sub-folders),
each a library in its own right. For the examples in this chapter, you will only need

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 40

http://toxiclibs.org/
http://toxiclibs.org/
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

“verletphysics” and “toxiclibscore”; however, I recommend you take a look at and consider
using all of the modules!

Once you have the library installed to your Processing library folder (see: http://
wiki.processing.org/w/How_to_Install_a_Contributed_Library), you are ready to start looking at
the following examples.

5.16 Core Elements of VerletPhysics

We spent a lot of time working through the core elements of a Box2D world: world, body, shape,
joint. This gives us a head start on understanding toxiclibs, since it follows a similar structure.

Box2D Toxiclibs VerletPhysics

World VerletPhysics

Body VerletParticle

Shape Nothing! Toxiclibs does not handle shape geometry

Joint VerletSpring

5.17 Vectors with toxiclibs

Here we go again. Remember all that time we spent learning the ins and outs of PVector? Then
remember how when we got to Box2D, we had to translate all those concepts to a Box2D vector
class: Vec2? Well, it’s time to do it again. toxiclibs also includes its own vector classes, one for
two dimensions and one for three: Vec2D and Vec3D.

Again, toxiclibs vectors are the same conceptually, but we need to learn a bit of new syntax. You
can find all of the documentation for these vector classes here:

http://toxiclibs.org/docs/core/toxi/geom/Vec2D.html
http://toxiclibs.org/docs/core/toxi/geom/Vec3D.html

And let’s just review some of the basic vector math operations with PVector translated to Vec2D
(we’re sticking with 2D for simplicity’s sake).

PVector Vec2D

 PVector a = new PVector(1,-1);
 PVector b = new PVector(3,4);
 a.add(b);

 Vec2D a = new Vec2D(1,-1);
 Vec2D b = new Vec2D(3,4);
 a.addSelf(b);

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 41

http://wiki.processing.org/w/How_to_Install_a_Contributed_Library
http://wiki.processing.org/w/How_to_Install_a_Contributed_Library
http://wiki.processing.org/w/How_to_Install_a_Contributed_Library
http://wiki.processing.org/w/How_to_Install_a_Contributed_Library
http://toxiclibs.org/docs/core/toxi/geom/Vec2D.html
http://toxiclibs.org/docs/core/toxi/geom/Vec2D.html
http://toxiclibs.org/docs/core/toxi/geom/Vec3D.html
http://toxiclibs.org/docs/core/toxi/geom/Vec3D.html
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

PVector Vec2D

 PVector a = new PVector(1,-1);
 PVector b = new PVector(3,4);
 PVector c = PVector.add(a,b);

 Vec2D a = new Vec2D(1,-1);
 Vec2D b = new Vec2D(3,4);
 Vec2D c = a.add(b);

 PVector a = new PVector(1,-1);
 float m = a.mag();
 a.normalize();

 Vec2D a = new Vec2D(1,-1);
 float m = a.magnitude();
 a.normalize();

5.17 Building the toxiclibs Physics World

The first thing we need to do to use VerletPhysics in our examples is import the library itself.

import toxi.physics2d.*;
import toxi.physics2d.behaviors.*;
import toxi.geom.*;

Then we’ll need a reference to our physics world, a VerletPhysics or VerletPhysics2D object
(depending on whether we are working in two or three dimensions.) The examples in this
chapter will operate in 2D only for simplicity, but they could easily be extended into 3D (and 3D
versions are available with the chapter download).

VerletPhysics2D physics;

void setup() {
 physics=new VerletPhysics2D();

Once you have your Physics object, you can set some global properties for your world. For
example, if you want it to have hard boundaries past which objects cannot travel, you can set its
limits:

 physics.setWorldBounds(new Rect(0,0,width,height));

In addition, you can add gravity to the physics world with a GravityBehavior object. A
GravityBehavior requires a vector—how strong and in what direction is the gravity?

 physics.addBehavior(new GravityBehavior(new Vec2D(0,0.5)));
}

Finally, in order to calculate the physics of the world and move the objects in the world, we have
to call update(). Typically this would happen once per frame in draw().

void draw() {
 physics.update();
}

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 42

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

5.18 Adding Particles to the toxiclibs world

In the Box2D examples, we saw how we can create our own class (called, say, Particle) and
include a reference to a Box2D Body.

class Particle {
 Body body;

This technique is somewhat redundant since Box2D itself keeps track of all of the Bodies in its
world. However, it allows us to manage which Body is which (and therefore how each Body is
drawn) without having to rely on iterating through Box2D’s internal lists.

Let’s look at how we might take the same approach with the class VerletParticle2D in toxiclibs.
We want to make our own Particle class so that we can draw our Particle a certain way and
include any custom properties. We’d probably write our code as follows:

class Particle {
 VerletParticle2D p;! ! ! $$ Our Particle has a reference to a VerletParticle

 Particle(Vec2D pos) {
 p = new VerletParticle2D(pos); $$ A VerletParticle needs an initial location (an x and y)
 }

 void display() {
 fill(0,150);
 stroke(0);
 ellipse(p.x,p.y,16,16);! ! $$ When it comes time to draw the Particle, we ask the
 }! ! ! ! ! ! VerletParticle for its x and y coordinate
}

Looking at the above, we should first be thrilled to notice that drawing the Particle is as simple
as grabbing the x and y and using them. No awkward conversions between coordinate systems
here since toxiclibs is designed to think in pixels. Second, you might notice that this Particle
class’s sole purpose is to store a reference to a VerletParticle2D. This hints at something.
Remember our discussion of inheritance back in Chapter 4: Particle Systems?

What is a Particle object other than an “augmented” VerletParticle? Why bother making a
VerletParticle inside a Particle when we could simply extend VerletParticle?

class Particle extends VerletParticle2D {

 Particle(Vec2D loc) {!
 super(loc);! ! $$ Calling super() so that the object is initialized properly
 }

 void display() {! $$ We want to be just like a VerletParticle, only with a display() method
 fill(175);
 stroke(0);
 ellipse(x,y,16,16);!$$ We’ve inherited x and y from VerletParticle!
 }

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 43

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

}

Remember our multi-step process with the Box2D examples? We had to ask the Body for its
location, then convert that location to pixels, then use that location in a drawing function. Now,
because we have inherited everything from VerletParticle, our only step is to draw the shape at
the x and y!

Incidentally, it’s interesting to note that the VerletParticle2D class is a subclass of Vec2D. So in
addition to inheriting everything from VerletParticle2D, our Particle class actually has all of the
Vec2D functions available as well.

We can now create Particle objects anywhere within our sketch.

 Particle p1 = new Particle(new Vec2D(100,20));
 Particle p2 = new Particle(new Vec2D(100,180));

Just making a Particle object isn’t enough, however. We have to make sure we tell our physics
world about them with the addParticle() function.

 physics.addParticle(p1);
 physics.addParticle(p2);

If you look at the toxiclibs documentation, you’ll see that the addParticle() expects a
VerletParticle2D object.

addParticle(VerletParticle2D p)

And how can we then pass into the function our own “Particle” object? Remember that other
tenet of object-oriented programming—polymorphism? Here, because our Particle class
extends VerletParticle2D, we can choose to treat our Particle object in multiple ways—as a
Particle or as a VerletParticle2D. This is an incredibly powerful feature of object-oriented
programming. If we build our custom classes based on classes from toxiclibs, we can use our
objects in conjunction with all of the functions toxiclibs has to offer.

5.19 Connecting Particles

toxiclibs has a set of classes that allow you to connect two VerletParticle objects with spring
forces. There are three types of springs in toxiclibs:

• VerletSpring: This class creates a springy connection between two VerletParticles in space.
A Spring’s properties can be configured in such a way as to create a stiff stick-like
connection or a highly elastic stretchy connection. A Particle can also be locked so that
only one end of the Spring can move.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 44

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

• VerletConstrainedSpring: A VerletConstrainedSpring is a spring whose maximum distance
can be limited. This can help the whole spring system achieve better stability.

• VerletMinDistanceSpring: A VerletMinDistanceSpring is a Spring that only enforces its
rest length if the current distance is less than its rest length. This is handy if you want to
ensure objects are at least a certain distance from each other, but don’t care if the distance
is bigger than the enforced minimum.

The inheritance and polymorphism technique we employed in the previous section proves also to
be useful when creating VerletSprings. A VerletSpring expects two VerletParticles when the
spring is created. And again, because our Particle class extends VerletParticle, VerletSpring will
accept our Particles passed into the constructor. Let’s take a look at some example code that
assumes the existence of our two previous Particles p1 and p2 and creates a connection between
them with a given rest length and strength.

float len = 80;! ! ! $$ What is the rest length of the spring?
float strength = 0.01;!! $$ How strong is the spring?
VerletSpring2D spring=new VerletSpring2D(p1,p2,len,strength);

Just as with Particles, in order for the connection to actually be part of the physics world, we
need to explicitly add it.

physics.addSpring(spring);

5.20 Putting it all together: A simple interactive Spring

One thing we saw with Box2D is that the physics simulation broke down when we overrode it
and manually set the location of a Body. With toxiclibs’ VerletPhysics, we don’t have this
problem. If we want to move the location of a Particle, we can simply set its x and y location
manually. However, before we do so, it’s generally a good idea to call the lock() function.

lock() is typically used to lock a Particle in place and is identical to setting a Box2D body’s
density to zero. However, here we are going to show how to lock a particle temporarily, move
it, and then unlock it so that it continues to move according to the physics simulation.

Let’s say you want to move a given particle whenever you click the mouse.

 if (mousePressed) {! ! $$ First lock the particle, then set the x and y, then unlock() it
 p2.lock();
 p2.x = mouseX;
 p2.y = mouseY;
 p2.unlock();
 }

And now we’re ready to put all of these elements together in a simple example that connects two
particles with a Spring. One Particle is locked in place, and the other can be moved by dragging

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 45

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

the mouse. Note that this example is virtually identical to Example 3.x: Oscillating Spring (see
p.XX).

Example 15-x: Simple Spring with toxiclibs
import toxi.physics2d.*;
import toxi.physics2d.behaviors.*;
import toxi.geom.*;

VerletPhysics2D physics;!
Particle p1;! ! !
Particle p2;

void setup() {
 size(200,200);

 physics=new VerletPhysics2D();! $$ Creating a physics world
 physics.addBehavior(new GravityBehavior(new Vec2D(0,0.5)));
 physics.setWorldBounds(new Rect(0,0,width,height));

 p1 = new Particle(new Vec2D(100,20));! $$ Creating 2 Particles
 p2 = new Particle(new Vec2D(100,180));
 p1.lock();! ! ! ! ! $$ Locking Particle 1 in place

 VerletSpring2D spring=new VerletSpring2D(p1,p2,80,0.01);!$$ Creating 1 Spring

 physics.addParticle(p1);! ! $$ Must add everything to the world
 physics.addParticle(p2);
 physics.addSpring(spring);
}

void draw() {
 physics.update();! ! ! $$ Must update the physics

 background(255);

 line(p1.x,p1.y,p2.x,p2.y);!! $$ Drawing everything
 p1.display();
 p2.display();

 if (mousePressed) {! ! ! $$ Moving a Particle according to the Mouse
 p2.lock();
 p2.x = mouseX;
 p2.y = mouseY;
 p2.unlock();
 }
}

class Particle extends VerletParticle2D {! $$ How cute is our simple Particle class!

 Particle(Vec2D loc) {
 super(loc);
 }

 void display() {
 fill(175);
 stroke(0);
 ellipse(x,y,16,16);
 }
}

5.20 Connected Systems Part I: String

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 46

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

The above example, two particles connected with a single spring, is the core building block for
what toxiclibs’ VerletPhysics is particularly well suited for: soft body simulations. For example,
a string can be simulated by connecting a line of particles with springs. A blanket can be
simulated by connecting a grid of particles with springs. And a cute, cuddly, squishy cartoon
character can be simulated by a custom layout of particles connected with springs.

[USE NOKIA FRIENDS’ IMAGE + SKELETON? -- ask karsten for permission]

Let’s begin by simulating a “soft pendulum”—a bob hanging from a string, instead of a rigid arm
like we had in Chapter 3, Examples 3.x. Let’s use Figure 3.x above as our model.

First, we’ll need a list of Particle objects (let’s use the same Particle class we built in the previous
example).

ArrayList<Particle> particles = new ArrayList<Particle>();

Now, let’s say we want to have 20 particles, all spaced 10 pixels apart.

float len = 10;
float numParticles = 20;

We can loop from i equals 0 all the way up to 20, with each Particle’s y location set to i * 10 so
that the first particle is at (0,10), the second at (0,20), the third at (0,30), etc.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 47

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

for(int i=0; i < numPoints; i++) {
 Particle particle=new Particle(i*len,10);! $$ Spacing them out along the x-axis
 physics.addParticle(particle);! ! ! $$ Add particle to our list
 particles.add(particle);! ! ! ! $$ Add particle to physics world
}

Even though it’s a bit redundant, we’re going to add the Particle to both the toxiclibs physics
world and to our own list. In case we eventually have multiple strings, this will allow us to know
which particles are connected to which strings.

Now for the fun part: It’s time to connect all the particles. Particle 1 will be connected to particle
0, particle 2 to particle 1, 3 to 2, 4 to 3, etc.

In other words, Particle i needs to be connected to Particle i-1 (except for when i = 0).

if (i != 0) {
 Particle previous = particles.get(i-1);!$$ First we need a reference to the previous particle

 VerletSpring2D spring = new VerletSpring2D(particle,previous,len,strength);
 ! ! ! ! ! $$ Then we make a spring connection between particle and previous
! ! ! ! ! particle with a rest length and strength (both floats)

 physics.addSpring(spring);! $$ We must not forget to add the spring to the physics world
}

Now, what if we want the string to hang from a fixed point? We can lock one of the particles—
the first, the last, the middle one, etc. Here’s how we would access the first particle (in the
ArrayList) and lock it.

Particle head=particles.get(0);
head.lock();

And if we want to draw all the particles connected with a line along with a circle for the last
particle, we can use beginShape(), endShape(), and vertex(), accessing the particle locations
from our ArrayList.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 48

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Example 5.x: Soft Swinging Pendulum
stroke(0);
noFill();
beginShape();
for (Particle p : particles) {
 vertex(p.x,p.y);! $$ Each particle is one point in the line
}
endShape();
Particle tail = particles.get(numPoints-1);
tail.display(); $$ This draws the last particle as a circle

The full code available with the chapter download also demonstrates how to drag the tail particle
with the mouse.

Exercise: Create a hanging cloth simulation using the technique above, but connect all the
particles with a grid as demonstrated in the screenshot below.

5.21 Connected Systems Part II: Force Directed Graph

Have you ever encountered the following scenario?

“I have a whole bunch of stuff I want to draw on the screen and I want all that stuff to be spaced
out evenly in a nice, neat, organized manner. Otherwise I have trouble sleeping at night.”

This is not an uncommon problem in computational design. One solution is typically referred to
as a “force-directed graph.” A force-directed graph is a visualization of elements—let’s call
them “nodes”—in which the positions of those nodes are not manually assigned. Rather, the
nodes arrange themselves according to a set of forces. While any forces can be used, a typical
example involves spring forces. And so toxiclibs is perfect for this scenario.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 49

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

How do we implement the above?

First, we’ll need a Node class. This is the easy part; it can extend VerletParticle2D. Really, this
is just what we did before, only we’re calling it Node now instead of Particle.

class Node extends VerletParticle2D {
 Node(Vec2D pos) {
 super(pos);
 }

 void display() {
 fill(0,150);
 stroke(0);
 ellipse(x,y,16,16);
 }
}

Next we can write a class called Cluster, which will describe a list of Nodes.

class Cluster {

 ArrayList<Node> nodes;

 float diameter;! $$ We’ll use this variable for the rest length between all the nodes

 Cluster(int n, float d, Vec2D center) {
 nodes = new ArrayList<Node>();
 diameter = d;

 for (int i = 0; i < n; i++) {
 nodes.add(new Node(center.add(Vec2D.randomVector())));
! ! ! ! ! $$ Here’s a funny little detail. We’re going to have a problem
 }!! ! ! ! if all the Node objects start in exactly the same location.
 }! ! ! ! ! So we add a random vector to the center location so that each
! ! ! ! ! Node is slightly offset.

Let’s assume we added a display() function to draw all the Node objects in the Cluster and then
created a Cluster object setup() and displayed it in draw(). If we ran the sketch as is, nothing
would happen. Why? Because we forgot the whole force-directed graph part! We need to

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 50

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

connect every single Node to every other Node with a force. But what exactly do we mean by
that? Let’s assume we have four Node objects: 0, 1, 2 and 3. Here are our connections:

0 connected to 1
0 connected to 2
0 connected to 3
1 connected to 2
1 connected to 3
2 connected to 3

So how do we write code to make these connections for N number of nodes?

Look at the left column. It reads: 000 11 22. So we know we need to access each Node in the
list from 0 to N-1.

 for (int i = 0; i < nodes.size()-1; i++) {
 VerletParticle2D ni = nodes.get(i);

Now, we know we need to connect Node 0 to Nodes 1,2,3. For Node 1: 2,3. For Node 2: 3. So
for every Node i, we must loop from i+1 until the end of the list.

! ! $$ Look how we start j at i + 1
 for (int j = i+1; j < nodes.size(); j++) {
 VerletParticle2D nj = nodes.get(j);

With every two Nodes we find, all we have to do then is make a VerletSpring2D.

! ! ! ! ! ! ! $$ The Spring connects Nodes “ni” and “nj”
 physics.addSpring(new VerletSpring2D(ni,nj,diameter,0.01));
 }
 }

Assuming those connections are made in the Cluster constructor, we can now create a Cluster in
our main tab and see the results!

Notice two important details about our connection list.

• No Node is connected to itself. We don’t have 0 connected
to 0 or 1 connected to 1.

• We don’t need to repeat connections in reverse. In other
words, if we’ve already said 0 is connected to 1, we don’t
need to say 1 is connected to 0 because, well, it already is!

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 51

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

!
Example 5.x: Cluster
import toxi.geom.*;
import toxi.physics2d.*;

VerletPhysics2D physics;
Cluster cluster;

void setup() {
 size(300,300);
 physics=new VerletPhysics2D();
 cluster = new Cluster(8,100,new Vec2D(width/2,height/2));
! $$ Make a cluster
}

void draw() {
 physics.update();
 background(255);
 cluster.display();! ! $$ Draw the Cluster
}

Exercise: Use the Cluster structure as a skeleton for a cute, cuddly, squishy creature (à la
“Nokia Friends”). Add gravity and also allow the creature to be dragged with the mouse.

Exercise: Expand the Force Directed Graph to have more than one Cluster object. Use a
VerletMinDistanceSpring2D to connect Cluster to Cluster.

5.22 Attraction and Repulsion Behaviors

When we looked at adding an attraction force to Box2D, we found that the Box2D Body object
included an applyForce() function. All we needed to do was calculate the attraction force (Force
= G * mass1 * mass2 / distance squared) as a vector and apply it to the Body. toxiclibs also
includes a function called addForce() that we can use to apply any calculated force to a
VerletParticle.

However, toxiclibs also takes this idea one step further by allowing us to attach some common
forces (let’s call them “Behaviors”) to VerletParticles, calculating them and applying them for us!

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 52

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

For example, if we attach an AttractionBehavior to a VerletParticle, then all other particles in the
physics world will be attracted to that particle.

Let’s say we have a Particle object (which extends VerletParticle).

Particle p = new Particle(new Vec2D(200,200));

Once we have that Particle, we can create an AttractionBehavior object associated with that
Particle.

float distance = 20;
float strength = 0.1;
AttractionBehavior behavior = new AttractionBehavior(p, distance, strength);

Notice how the behavior is created with two parameters—distance and strength. The distance
specifies the range within which the behavior will be applied. For example, in the above
scenario, only other Particle objects within 20 pixels will feel the Attraction force. The strength,
of course, specifies how strong the force is.

Finally, in order for the force to be activated, the behavior needs to be added to the physics
world.

physics.addBehavior(behavior);

This means everything that lives in the physics simulation will always be attracted to that
Particle object, as long as it is within the distance threshold.

Even though toxiclibs does not handle collisions, you can create a collision-like effect by adding
a repulsive behavior to each and every Particle (so that every Particle repels every other Particle).
Let’s look at how we might modify our Particle class to do this.

class Particle extends VerletParticle2D {

 float r;! ! $$ We’ve added a radius to every Particle

 Particle (Vec2D loc) {
 super(loc);
 r = 4;
 physics.addBehavior(new AttractionBehavior(this, r*4, -1));
 }! ! ! $$ Every time a Particle is made, an AttractionBehavior is
 ! ! ! generated and added to the physics world. Note that when the strength
! ! ! is negative, it’s a repulsive force!

 void display () {
 fill (255);
 stroke (255);
 ellipse (x, y, r*2, r*2);
 }
}

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 53

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

We could now recreate our Attraction example by having a single Attractor object that exerts an
AttractionBehavior over the entire window.

Example 5.x: Attraction / Repulsion
class Attractor extends VerletParticle2D {

 float r;

 Attractor (Vec2D loc) {
 super (loc);
 r = 24;
 physics.addBehavior(new AttractionBehavior(this, width, 0.1));
! ! ! ! $$ The AttractionBehavior “distance” equals
 ! ! ! ! the width so that it covers the entire window.
 }! ! ! !

 void display () {
 fill(0);
 ellipse (x, y, r*2, r*2);
 }
}

Exercise: Create an object that both attracts and repels. What if it attracts any Particle that are
far away but repels those Particles at a short distance?

Exercise: Use AttractionBehavior in conjunction with Spring forces.

Daniel Shiffman, Chapter 5 Physics Libraries, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 54

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Chapter 6. Autonomous Agents

“This is an exercise in fictional science, or science fiction, if you like that better.”
! —Valentino Braitenberg

6.1 Forces from within

Believe it or not, there is a purpose. Well, at least there’s a purpose for the first five chapters of

this book. We could stop right here; after all, we’ve looked at several different ways of

modeling motion and simulating physics. Angry Birds, here we come!

Still, let’s think for a moment. Why are we here? The nature of code, right? What have we

been designing so far? Inanimate objects. Lifeless shapes sitting on our screens that flop

around when affected by forces in their environment. What if we could breathe life into those

shapes? What if those shapes could live by their own rules? Can shapes have hopes and dreams

and fears? This is what we are here in this chapter to do—develop autonomous agents.

The term autonomous agent generally refers to an entity that makes its own choices about how

to act in its environment without any influence from a leader or global plan. For us, “acting” will

mean moving. This addition is a significant conceptual leap. Instead of a box sitting on a

boundary waiting to be pushed by another falling box, we are now going to design a box that has

the ability and “desire” to leap out of the way of that other falling box, if it so chooses. While

the concept of forces that come from within is a major shift in our design thinking, our code base

will barely change, as these desires and actions are simply that—forces.

Here are three key components of autonomous agents that we’ll want to keep in mind as we

build our examples.

• An autonomous agent has a limited ability to perceive environment. It makes sense

that a living, breathing being should have an awareness of its environment. What does

this mean for us, however? As we look at examples in this chapter, we will point out

programming techniques for allowing objects to store references to other objects and

therefore “perceive” their environment. It’s also crucial that we consider the word

limited here. Are we designing a all-knowing rectangle that flies around a Processing

window aware of everything else in that window? Or are we creating a shape that can

only examine any other object within 15 pixels of itself? Of course, there is no right

answer to this question; it all depends. We’ll explore some possibilities as we move

forward. For a simulation to feel more “natural,” however, limitations are a good thing.

An insect, for example, may only be aware ofthe sights and smells that immediately

surround it? For a real-world creature, we could study the exact science of these

limitations. Luckily for us, we can just make stuff up and try it out.

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 1

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

• An autonomous agent processes the information from its environment and

calculates an action. This will be the easy part for us, as the action is a force. The

environment might tell the agent that there’s a big scary-looking shark swimming right

at it, and the action will be a powerful force in the opposite direction.

• An autonomous agent has no leader. This third principle is something we care a little

less about. After all, if you are designing a system where it makes sense to have a

leader barking commands at various entities, then that’s what you’ll want to implement.

Nevertheless, many of these examples will have no leader for an important reason. As

we get to the end of this chapter and examine group behaviors, we will look at

designing collections of autonomous agents that exhibit the properties of complex

systems— intelligent and structured group dynamics that emerge not from a leader, but

from the local interactions of the elements themselves.

In the late 1980s, computer scientist Craig Reynolds developed algorithmic steering behaviors

for animated characters. These behaviors allowed individual elements to navigate their digital

environments in a “lifelike” manner with strategies for fleeing, wandering, arriving, pursuing,

evading, etc. Used in the case of a single autonomous agent, these behaviors are fairly simple to

understand and implement. In addition, by building a system of multiple characters that steer

themselves according to simple locally based rules, surprising levels of complexity emerge. The

most famous example is Reynolds’s “boids” model for “flocking/swarming” behavior.

6.2 Vehicles and Steering

Now that we understand the core concepts behind autonomous agents, we can begin writing the

code. There are many places we could start. Artificial simulations of ant and termite colonies are

fantastic demonstrations of systems of autonomous agents (for more, I encourage you to read

Turtles, Termites, and Traffic Jams by Mitchel Resnick). However, we want to start by

examining agent behaviors that build on the work we’ve done in the first five chapters of this

book: modeling motion with vectors and driving motion with forces. And so it’s time to rename

our Mover class that became our Particle class once again. This time we are going to call it

Vehicle.

class Vehicle {

 PVector location;
 PVector velocity;
 PVector acceleration;
! ! ! ! ! $$ What else do we need to add?

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 2

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

In his 1999 paper “Steering Behaviors for

Autonomous Characters”, Reynolds uses the word

“Vehicle” to describe his autonomous agents, so we

will follow suit.

Reynolds describes the motion of idealized vehicles

(idealized because we are not concerned with the

actual engineering of such vehicles, but simply

assume that they exist and will respond to our

rules)as a series of three layers—Action Selection,

Steering, and Locomotion.

1. Action Selection. A Vehicle has a goal (or goals) and can select an action (or a

combination of actions) based on that goal. This is essentially where we left off with

autonomous agents. The vehicle takes a look at its environment and calculates an

action based on a desire: “I see a zombie marching towards me. Since I don’t want

my brains to be eaten, I’m going to flee from the zombie.” The goal is to keep one’s

brains and the action is to flee. Reynolds’s paper describes many goals and

associated actions such as: seek a target, avoid an obstacle, and follow a path.. In a

moment, we’ll start building these examples out with Processing code.

2. Steering. Once an action has been selected, the vehicle has to calculate its next

move. For us, the next move will be a force; more specifically, a steering force.

Luckily, Reynolds has developed a simple steering force formula that we’ll use

throughout the examples in this chapter: Steering Force = Desired Velocity minus

Current Velocity. We’ll get into the details of this formula and why it works so

effectively in the next section.

3. Locomotion. For the most part, we’re going to ignore this third layer. In the case of

fleeing zombies, the locomotion could be described as “left foot, right foot, left foot,

right foot, as fast as you can.” In our Processing world, however, a rectangle or

circle or triangle’s actual movement across a window is irrelevant given that it’s all an

illusion in the first place. Nevertheless, this isn’t to say that you should ignore

locomotion. You will find great value in thinking about the locomotive design of

your vehicle and how you choose to animate it. The examples in this chapter will

remain visually bare, and a good exercise would be to elaborate on the animation

style —could you add spinning wheels or oscillating paddles or shuffling legs?

Ultimately, the most important layer for you to consider is #1 -- Action Selection. What are the

elements of your system and what are their goals? In this chapter, we are going to look at a

series of steering behaviors (i.e. actions): seek, flee, follow a path, follow a flow field, flock with

your neighbors, etc. It’s important to realize, however, that the point of understanding how to

write the code for these behaviors is not becauseyou should use them in all of your projects.

Rather, these are a set of building blocks, a foundation from which you can design and develop

Why Vehicle?

In 1986, Italian neuroscientist and cyberneticist
Valentino Braitenberg described a series of
hypothetical vehicles with simple internal
structures in his book Vehicles: Experiments in
Synthetic Psychology. Braitenberg argues that his
extraordinarily simple mechanical vehicles
manifest behaviors such as fear, aggression, love,
foresight, and optimism. Reynolds took his
inspiration from Braitenberg, and we’ll take ours
from Reynolds.

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 3

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

vehicles with creative goals and new and exciting behaviors. And even though we will think

literally in this chapter (follow that pixel), you should allow yourself to think more abstractly

(like Braitenberg). What would it mean for your vehicle to have “love” or “fear” as its goal, its

driving force? Finally (and we’ll address this later in the chapter) you won’t get very far by

developing simulations with only one action. Yes, our first example will be “seek a target.” But

for you to be creative—to, as they say in American Idol, make these steering behaviors your own

—it will all come down to mixing and matching multiple actions within the same vehicle. So

view these examples not as singular behaviors to be emulated, but as pieces of a larger puzzle

that you will eventually assemble.

6.3 The Steering Force

We can entertain ourselves by discussing the theoretical principles behind autonomous agents

and steering as much as we like, but we can’t get anywhere without first understanding the

concept of a steering force. Consider the following scenario. A “Vehicle” moving with velocity

desires to seek a target.

Its goal and subsequent action is to seek the target in the above figure. If you think back to

Chapter 2, you might begin by making the target an “attractor” and apply a gravitational force

that pulls the vehicle to the target. This would be a perfectly reasonable solution, but

conceptually it’s not what we’re looking for here. We don’t want to simply calculate a force that

pushes the Vehicle towards its target; rather, we are asking the Vehicle to make an intelligent

decision to steer towards the target based on its perception of its state and environment (i.e. how

fast and in what direction is it currently moving). The vehicle should look at how it desires to

move (a vector pointing to the target), compare that goal with how quickly it is currently moving

(its velocity), and apply a force accordingly.

STEERING FORCE = DESIRED VELOCITY - CURRENT VELOCITY

Or as we might write in Processing:

PVector steer = PVector.sub(desired,velocity);

In the above formula, velocity is no problem. After all, we’ve got a variable for that. However,

we don’t have the desired velocity; this is something we have to calculate. Let’s take a look at

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 4

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Figure X again. If we’ve defined the vehicle’s goal as “seeking the target”, then its desired

velocity is a vector that points from its current location to the target location. Assuming a

PVector target, we then have:

PVector desired = PVector.sub(target,location);

But this isn’t particularly realistic. What if we have a very high-resolution window and the target

is thousands of pixels away? Sure, the vehicle might desire to teleport itself instantly to the

target location with a massive velocity, but this won’t make for an effective animation. What we

really want to say is:

The vehicle desires to move towards the target at maximum speed.

In other words, the vector should point from location to target and with a magnitude equal to

maximum speed (i.e. the fastest the vehicle can go.) So first, we need to make sure we add a

variable in our Vehicle class to store maximum speed.

class Vehicle {
 PVector location;
 PVector velocity;
 PVector acceleration;
 float maxspeed; ! // Maximum speed

Then, in our desired velocity calculation, we scale according to maximum speed.

PVector desired = PVector.sub(target,location);
desired.normalize();
desired.mult(maxspeed);

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 5

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Putting this all together, we can write a function called seek() that receives a PVector target and

calculates a steering force towards that target.

 void seek(PVector target) {
 PVector desired = PVector.sub(target,location);
 desired.normalize();
 desired.mult(maxspeed);! ! $$ Calculating the desired velocity to target at max speed

 PVector steer = PVector.sub(desired,velocity);
 ! ! ! ! ! ! $$ Reynolds formula for steering force

 applyForce(steer);!! ! $$ Using our physics model and applying the force

 }! ! ! ! ! ! to the object’s acceleration

Note how in the above function we finish by passing the steering force into applyForce(). This

assumes that we are basing this example on the foundation we built in Chapter 2. However, you

could just as easily use the steering force with Box2D’s applyForce() function or toxiclibs’

addForce() function.

So why does this all work so well? Let’s see what the steering force looks like relative to the

vehicle and target locations.

Again, notice how this is not at all the same force as gravitational attraction. Remember one of

our principles of autonomous agents: An autonomous agent has a limited ability to perceive its

environment. Here is that ability, subtly embedded into Reynolds’s steering formula. If the

vehicle weren’t moving at all (zero velocity) desired minus velocity would be equal to desired.

But this is not the case. The vehicle is aware of its own velocity and its steering force

compensates accordingly. This creates a more active simulation, as the way in which the vehicle

moves towards the targets depends on the way it is moving in the first place.

In all of this excitement, however, we’ve missed one last step. What sort of vehicle is this? Is it

a super sleek race car with amazing handling? Or a giant Mack truck that needs a lot of advance

notice to turn? A graceful panda, or a lumbering elephant? Our example code, as it stands, has

no feature to account for this variability in steering ability. Steering ability can be controlled

with a variable that limits the magnitude of the steering force. Let’s call it maxforce. And so

finally, we have:

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 6

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

class Vehicle {
 PVector location;
 PVector velocity;
 PVector acceleration;
 float maxspeed;!! // Maximum speed
 float maxforce;!! // Maximum force

followed by:

 void seek(PVector target) {
 PVector desired = PVector.sub(target,location);
 desired.normalize();
 desired.mult(maxspeed);
 PVector steer = PVector.sub(desired,velocity);

 steer.limit(maxforce);! $$ Limit the magnitude of the steering force

 applyForce(steer);
 }! ! ! !

Limiting the steering force brings up an important point. We must always remember that it’s not

actually our goal to get the Vehicle to the target as fast as possible. If that were the case, we

would just say “location equals target” and there the vehicle would be. Our goal, as Reynolds

puts it, is to move the vehicle in a lifelike and improvisational manner. We’re trying to make it

appear as if the vehicle is steering its way to the target, and so it’s up to us to play with the forces

and variables of the system to achieve the result we want. For example, a large maximum

steering force would result in a very different path than a small one. One is not inherently better

or worse than the other; it depends on your desired effect. (And of course, these values need not

be fixed and could change based on other conditions. Perhaps a vehicle has health: the better its

health, the better it can steer.)

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 7

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Here is the full Vehicle class, incorporating the rest of the elements from the Chapter 2 “Mover”

object.

Example 6-1: Seeking a Target

class Vehicle {

 PVector location;
 PVector velocity;
 PVector acceleration;
 float r;! ! ! ! $$ Additional variable for size

 float maxforce;
 float maxspeed;

 Vehicle(float x, float y) {
 acceleration = new PVector(0,0);
 velocity = new PVector(0,0);
 location = new PVector(x,y);
 r = 3.0;
 maxspeed = 4;!! ! $$ Arbitrary values for maxspeed and force; try varying these!

 maxforce = 0.1;
 }

 void update() {!! ! $$ Our standard “Euler integration” motion model! !

 velocity.add(acceleration);
 velocity.limit(maxspeed);
 location.add(velocity);
 acceleration.mult(0);
 }

 void applyForce(PVector force) {! $$ Newton’s second law; we could divide by mass if we wanted
 acceleration.add(force);
 }

 void seek(PVector target) {!! $$ Our seek steering force algorithm
 PVector desired = PVector.sub(target,location);
 desired.normalize();
 desired.mult(maxspeed);
 PVector steer = PVector.sub(desired,velocity);
 steer.limit(maxforce);
 applyForce(steer);
 }

 void display() {! ! ! ! ! $$ Vehicle is a triangle pointing in

 float theta = velocity.heading2D() + PI/2;! the direction of velocity; since it is drawn
 fill(175);! ! ! ! ! ! pointing up, we rotate it an additional 90
 stroke(0);! ! ! ! ! ! degrees
 pushMatrix();
 translate(location.x,location.y);
 rotate(theta);!
 beginShape();!!
 vertex(0, -r*2);
 vertex(-r, r*2);
 vertex(r, r*2);
 endShape(CLOSE);
 popMatrix();
 }

Exercise: Implement a “fleeing” steering behavior (desired vector is inverse of “seek”).

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 8

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Exercise: Implement seeking a moving target, often referred to as “pursuit.” In this case, your

desired vector won’t point towards the object’s current location, rather its “future” location as

extrapolated based on its current velocity. We’ll see this ability for a Vehicle to “predict the

future” in later examples.

Exercise: Create a sketch where a Vehicle’s maximum force and maximum speed do not remain

constant, but rather vary according to environmental factors.

6.4 “Arrive”

After working for a bit with the seeking behavior, you probably are asking yourself, “What if I

want my vehicle to slow down as it approaches the target?” Before we can even begin to answer

this question, we should look at the reasons behind why the seek behavior causes the vehicle to

fly past the target so that it has to turn around and go back. Let’s consider the brain of a seeking

vehicle. What is it thinking?

Frame 1: I want to go as fast as possible towards the target!

Frame 2: I want to go as fast as possible towards the target!

Frame 3: I want to go as fast as possible towards the target!

Frame 4: I want to go as fast as possible towards the target!

Frame 5: I want to go as fast as possible towards the target!

etc.

The Vehicle is so gosh darn excited about getting to the target that it doesn’t bother to make any

intelligent decisions about its speed relative to the target’s proximity. Whether it’s far away or

very close, it always wants to go as fast as possible.

In some cases, this is the desired behavior (if a missile is flying at a target, it should always travel

at maximum speed). However, in many other cases (a car pulling into a parking spot, a bee

landing on a flower), the Vehicle’s thought process needs to consider its speed relative to the

distance from its target. For example:

Frame 1: I’m very far away, I want to go as fast as possible towards the target!

Frame 2: I’m very far away, I want to go as fast as possible towards the target!

Frame 3: I’m somewhat far away, I want to go as fast as possible towards the target!

Frame 4: I’m getting close, I want to go more slowly towards the target!

Frame 5: I’m almost there, I want to go very slowly towards the target!

Frame 6: I’m there, I want to stop!

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 9

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

How can we implement this “arriving” behavior in code? Let’s return to our seek() function and

find the line of code where we set the magnitude of the desired vector.

 PVector desired = PVector.sub(target,location);
 desired.normalize();
 desired.mult(maxspeed);

In the above example, the magnitude of the desired vector is always “maximum” speed.

What if we instead said the desired velocity is equal to half the distance?

 PVector desired = PVector.sub(target,location);
 desired.div(2);

While this is a reasonable first step and nicely demonstrates our goal of a desired speed tied to

our distance from the target, it’s not particularly reasonable. After all, 10 pixels away is rather

close and a desired speed of 5 is rather large. Something like a desired velocity with a

magnitude of 5% of the distance would work much better.

 PVector desired = PVector.sub(target,location);
 desired.mult(0.05);

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 10

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Reynolds describes a more sophisticated approach. Let’s imagine a circle around the target with

a given radius. If the Vehicle is within that circle it slows down—at the edge of the circle its

desired speed is maximum speed, and at the target itself its desired speed is 0.

In other words, if the distance from the target is less than r, the desired speed is between 0 and

maximum speed mapped according to that distance.

Example 6.x: Arrive Steering Behavior

 void arrive(PVector target) {
 PVector desired = PVector.sub(target,location);

 float d = desired.mag();!$$ The distance is the magnitude of the vector pointing from
! ! ! ! ! location to target
 desired.normalize();
 if (d < 100) {! ! ! ! ! $$ If we are closer than 100 pixels

 float m = map(d,0,100,0,maxspeed);!! $$ Set the magnitude according to how close

 desired.mult(m);

 } else {

 desired.mult(maxspeed);!! ! ! $$ Otherwise, proceed at maximum speed

 }

 PVector steer = PVector.sub(desired,velocity);! $$ The usual steering = desired - velocity

 steer.limit(maxforce);
 applyForce(steer);
 }

[ADD A LITTLE MORE ABOUT THE MAGIC OF DESIRED - VELOCITY]

6.5 Your Own Desires

The first two examples we’ve covered—seek and arrive—boil down to calculating a single

vector for each behavior:the desired velocity. And in fact, every single one of Reynolds’s

steering behaviors follows this same pattern. In this chapter, we’re going to walk through several

more of Reynolds’s behaviors—flow field, path-following, flocking. First, however, I want to

emphasize again that these are examples—demonstrations of common steering behaviors that are

useful in procedural animation. They are not the be-all and end-all of what you can do. As long

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 11

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

as you can come up with a vector that describes a vehicle’s desired velocity, then you have

created your own steering behavior.

Let’s see how Reynolds defines the desired velocity for his wandering behavior.

“Wandering is a type of random steering which has some long term order: the steering direction

on one frame is related to the steering direction on the next frame. This produces more

interesting motion than, for example, simply generating a random steering direction each

frame.” —http://www.red3d.com/cwr/steer/Wander.html

For Reynolds, the goal of wandering is not simply random motion, but rather a sense of moving

in one direction for a little while, wandering off to the next for a little bit, and so on and so forth.

So how does Reynolds calculate a desired vector to achieve such an effect?

The above diagram illustrates how the vehicle predicts its future location as a fixed distance in

front of it (in the direction of its velocity), draws a circle with radius r at that location, and picks

a random point along the circumference of the circle. That random point moves randomly

around the circle in each frame of animation. And that random point is the vehicle’s target, its

desired vector pointing in that direction.

Exercise: Write the code for the wander behavior. Use polar coordinates to

calculate the vehicle’s target along a circular path.

Sounds a bit absurd, right? Or, at the very least, rather arbitrary. In fact, this

is a very clever and thoughtful solution—it uses randomness to drive a

vehicle’s steering, but constrains that randomness along the path of a circle to

keep the vehicle’s movement from appearing totally random and jittery.

But the seemingly random and arbitrary nature of this solution should drive home the point I’m

trying to make—these are made-up behaviors inspired by real-life motion. You can just as easily

concoct some elaborate scenario to compute a desired velocity yourself. And you should.

Let’s say we want to create a steering behavior called “stay within walls.” We’ll define the

desired velocity as:

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 12

http://www.red3d.com/cwr/steer/Wander.html
http://www.red3d.com/cwr/steer/Wander.html
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

If a Vehicle comes within a distance d of a wall, it desires to move at maximum speed in the

opposite direction of the wall.

If we define the walls of the space as the edges of a Processing window and the distance d as 25,

the code is rather simple.

Example 6.x: Stay within bounds steering behavior

if (location. x > 25) {
 PVector desired = new PVector(maxspeed,velocity.y);

! ! ! $$ Make a desired vector that retains the y direction of

! ! ! the vehicle but points the x direction directly away from

! ! ! window’s left edge

 PVector steer = PVector.sub(desired, velocity);
 steer.limit(maxforce);
 applyForce(steer);
}

Exercise: Come up with your own arbitrary scheme for calculating a desired velocity.

6.6 Flow Field

Now back to the task at hand. Let’s examine a couple more of Reynolds’s steering behaviors.

First, flow field following. What is a flow field? Think of your Processing window as a grid.

In each cell of the grid lives an arrow pointing in some direction—you know, a vector. As a

Vehicle moves around the screen, it asks, “Hey, what arrow is beneath me? That’s my desired

velocity!”

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 13

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Reynolds’s flow field following example has the vehicle predicting its future location and

following the vector at that spot, but for simplicity’s sake, we’ll have the Vehicle simply look to

the vector at its current location.

Before we can write the additional code for our Vehicle class, we’ll need to build a class that

describes the flow field itself, the grid of vectors. A two-dimensional array is a convenient data

structure in which to store a grid of information. (If you are not familiar with 2D arrays, I suggest

reviewing this online Processing tutorial: http://processing.org/learning/2darray/). The 2D array

is convenient because we reference each element with two indices, which we can think of as

columns and rows.

class FlowField {

 PVector[][] field;! $$ Declaring a 2D array of PVectors

 int cols, rows;!! $$ How many columns and how many rows in the grid?

 int resolution;!! $$ Resolution of grid relative to window width and height in pixels

Notice how we are defining a third variable called “resolution” above. What is this variable?

Let’s say we have a Processing window that is 200 pixels wide by 200 pixels high. We could

make a flow field that has a PVector object for every single pixel, or 40,000 PVectors (200 *

200). This isn’t terribly unreasonable, but in our case, it’s overkill. We don’t need a PVector for

every single pixel; we can achieve the same effect by having one, say, every ten pixels (20 * 20 =

400). We use this resolution to define the number of columns and rows based on the size of the

window divided by resolution:

 FlowField() {
 resolution = 10;! ! !

 cols = width/resolution;!! $$ Total columns equals width divided by resolution

 rows = height/resolution;!! $$ Total rows equals height divided by resolution

 field = new PVector[cols][rows];
 }

Now that we’ve set up the flow field’s data structures, it’s time to compute the vectors in the

flow field itself. How do we do that? However we feel like it! Perhaps we want to have every

vector in the flow field pointing to the right.

for (int i = 0; i < cols; i++) {! ! $$ Using a nested loop to hit every column

 for (int j = 0; j < rows; j++) {!! and every row of the flow field

 field[i][j] = new PVector(1,0);! $$ Arbitrary decision to make each vector point to right

 }
}

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 14

http://processing.org/learning/2darray/
http://processing.org/learning/2darray/
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Or a random vector.

 for (int i = 0; i < cols; i++) {! !

 for (int j = 0; j < rows; j++) {!

 float theta = random(TWO_PI);
 field[i][j] = new PVector(cos(theta),sin(theta));! $$ A random PVector

 }
 }

What if we use 2D Perlin noise (mapped to an angle)?

 float xoff = 0;
 for (int i = 0; i < cols; i++) {
 float yoff = 0;
 for (int j = 0; j < rows; j++) {
 float theta = map(noise(xoff,yoff),0,1,0,TWO_PI);! $$ Noise

 field[i][j] = new PVector(cos(theta),sin(theta));

 yoff += 0.1;
 }
 xoff += 0.1;
 }

Now we’re getting somewhere. Flow fields can be used for simulating various effects, such as

an irregular gust of wind or the meandering path of a river. Calculating the direction of your

vectors using Perlin noise is one way to achieve such an effect. Of course, there’s no “correct”

way to calculate the vectors of a flow field; it’s really up to you to decide what you’re looking to

simulate.

Exercise: Write the code to calculate a PVector at every location in the flow field that points

towards the center of a window.

PVector v = new PVector(____________,____________);

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 15

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

v.______________();
field[i][j] = v;

Now that we have a two-dimensional array storing all of the flow field vectors, we need a way

for a Vehicle to look up its desired vector from the flow field. Let’s say we have a vehicle that

lives at a PVector: its location. We first need to divide by the resolution of the grid. For

example, if the resolution is 10 and the vehicle is at (100,50), we need to look up column 10 and

row 5.

int column = int(location.x/resolution);
int row = int(location.y/resolution);

Because a vehicle could theoretically wander off the Processing window, it’s also useful for us to

employ the constrain() function to make sure we don’t look outside of the flow field array. Here

is a function we’ll call lookup() that goes in the FlowField class—it receives a PVector

(presumably the location of our vehicle) and returns the corresponding flow field PVector for that

location.

 PVector lookup(PVector lookup) {
 int column = int(constrain(lookup.x/resolution,0,cols-1));! $$ Using constrain()

 int row = int(constrain(lookup.y/resolution,0,rows-1));
 return field[column][row].get();! !

 }! ! ! ! $$ Note the use of get() to ensure we return a copy of the PVector

Before we move on to the Vehicle class, let’s take a look at the FlowField class all together.

class FlowField {

 PVector[][] field;! ! ! $$ A flow field is a two-dimensional array of PVectors

 int cols, rows;
 int resolution;

 FlowField(int r) {
 resolution = r;
 cols = width/resolution;!! $$ Determine the number of columns and rows

 rows = height/resolution;
 field = new PVector[cols][rows];
 init();
 }

 void init() {! ! ! ! $$ In this example, we use Perlin noise to seed the vectors

 float xoff = 0;! ! !
 for (int i = 0; i < cols; i++) {
 float yoff = 0;
 for (int j = 0; j < rows; j++) {
 float theta = map(noise(xoff,yoff),0,1,0,TWO_PI);
 field[i][j] = new PVector(cos(theta),sin(theta));
 yoff += 0.1;! ! $$ Polar to cartesian coordinate transformation to get x and y
! ! ! ! ! components of the vector

 }
 xoff += 0.1;
 }
 }

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 16

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 PVector lookup(PVector lookup) {!! $$ A function to return a PVector based on a location

 int column = int(constrain(lookup.x/resolution,0,cols-1));
 int row = int(constrain(lookup.y/resolution,0,rows-1));
 return field[column][row].get();
 }
}

So let’s assume we have a FlowField object

“flow”. Using the lookup() function above, our

vehicle can then retrieve a desired vector from

the FlowField object and use Reynolds’s rules

(steering = desired minus velocity) to calculate a

steering force.

Example 6-x: Flow Field Following

class Vehicle {

 void follow(FlowField flow) {
 PVector desired = flow.lookup(location); $$ What is the vector at that spot
! ! ! ! ! ! ! in the flow field?

 desired.mult(maxspeed);
 PVector steer = PVector.sub(desired, velocity);! $$ Steering is desired minus velocity
 steer.limit(maxforce);
 applyForce(steer);
 }

Exercise: Adapt the flow field example so that the PVectors change over time (hint: try using the

3rd dimension of Perlin noise!)

Exercise: Can you seed a flow field from a PImage? For example, try having the PVectors point

from dark to light colors (or vice versa).

6.7 The Dot Product

In a moment, we’re going to work through the algorithm (along with accompanying

mathematics) and code for another of Craig Reynolds’s steering behaviors: path following (see:

http://www.red3d.com/cwr/steer/PathFollow.html). Before we can do this, however, we have to

spend some time learning about another piece of vector math that we skipped in Chapter 1—the

dot product. We haven’t needed it yet, but it’s likely going to prove quite useful for you (beyond

just this path-following example), so we’ll go over it in detail now.

Remember all the basic vector math we covered in Chapter 1? Add, subtract, multiply and

divide?

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 17

http://www.red3d.com/cwr/steer/PathFollow.html
http://www.red3d.com/cwr/steer/PathFollow.html
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Notice how in the above diagram vector multiplication involved multiplying a vector by a scalar

value. This makes sense; when we want a vector to be twice as large (but facing the same

direction), we multiply it by 2. When we want it to be half the size, we multiply it by 0.5.

However, there are two other multiplication-like operations with vectors that are useful in certain

scenarios—the dot product and the cross product. For now we’re going to focus on the dot

product, which is defined as follows. Assume vectors A and B:

A = (ax,ay)

B = (bx,by)

THE DOT PRODUCT: A B = ax*bx + ay* by

For example, if we have the following two vectors:

A = (-3,5)

B = (10,1)

A B = -3*10 + 5*1 = -30 + 5 = -25

Notice that the result of the dot product is a scalar value (a single number) and not a vector.

In Processing, this would translate to:

PVector a = new PVector(-3,5);
PVector b = new PVector(10,1);

float n = a.dot(b); ! $$ The PVector class includes a function to calculate the dot product

And if we were to look in the guts of the PVector source, we’d find a pretty simple

implementation of this function:

public float dot(PVector v) {
 return x*v.x + y*v.y + z*v.z;
}

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 18

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

This is simple enough, but why do we need the dot product, and when is it going to be useful for

us in code?

One of the more common uses of the dot product is to find the angle between two vectors.

Another way the dot product can be expressed is:

THE DOT PRODUCT:

In other words, A dot B is equal to the magnitude of A times magnitude of B times cosine of

theta (with theta defined as the angle between the two vectors A and B.)

The two formulas for dot product can be derived from one another with trigonometry (see: http://

mathworld.wolfram.com/DotProduct.html), but for our purposes we can be happy with operating

on the assumption that:

A B = |A| * |B| * cos(theta)

A B = ax*bx + ay* by

both hold true and therefore:

ax*bx + ay* by = |A| * |B| * cos(theta)

Now, let’s start with the following problem. We have the vectors A and B:

A = (10,2)

B = (4,-3)

We now have a situation where we know everything except for theta. We know the components

of the vector (ax,ay,bx,by) and we can calculate the magnitude of each vector as we did in

Chapter 1 with the Pythagorean theorem. We can therefore solve for cos(theta):

cos(theta) = A B / |A| * |B|

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 19

http://mathworld.wolfram.com/DotProduct.html
http://mathworld.wolfram.com/DotProduct.html
http://mathworld.wolfram.com/DotProduct.html
http://mathworld.wolfram.com/DotProduct.html
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Once we’ve solved for cosine of theta, we can take the inverse cosine (often expressed as

arccosine) to solve for theta.

theta = arccos (A B / |A| * |B|)

Let’s now do the math with actual numbers:

|A| = 10.2

|B| = 5

Therefore:

theta = arccos (10*4 + 2*-3 / 10.2 * 5)

theta = arccos (34 / 51)

theta = ~ 48 degrees

The Processing version of this would be:

PVector a = new PVector(10,2);
PVector b = new PVector(4,-3);
float theta = acos(a.dot(b) / (a.mag() * b.mag()));

And, again, if we were to dig into the guts of the Processing source code, we would see a

function that implements this exact algorithm.

 static public float angleBetween(PVector v1, PVector v2) {
 float dot = v1.dot(v2);
 float theta = (float) Math.acos(dot / (v1.mag() * v2.mag()));
 return theta;
 }

Exercise: Create a sketch that displays the angle between two PVector

objects.

A couple things to note here:

1) If two vectors (A and B) are orthogonal (i.e. perpendicular), the dot

product (A B) is equal to zero.

2) If two vectors are unit vectors then the dot product is simply equal to cosine of the angle

between, i.e. A B = cos(theta) if A and B are of length 1.

6.8 Path Following

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 20

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Now that we’ve got a basic understanding of the dot product under our belt, we can return to a

discussion of Craig Reynolds’s path-following algorithm. Let’s quickly clarify something. We

are talking about path following, not path finding. Pathfinding refers to a research topic

(commonly studied in artificial intelligence) related to solving for the shortest distance between

two points, often in a maze. With path following, the path already exists and we’re asking a

vehicle to follow that path.

Before we work out the individual pieces, let’s take a look at the overall algorithm for path

following, as defined by Reynolds.

Step 1. Predict the future. Compute the vehicle’s theoretical location N frames in the future.

This is yet another example of how our vehicles have an intelligent ability to perceive their

environment. Instead of knowing only its current location, a vehicle can extrapolate its future

location according to its velocity.

Step 2. How far away from the path are we? Calculate the distance between the vehicle’s

future location and the path. If it is within the path, do nothing. Otherwise, continue:

Step 3. Find a target point on the path. Take the point on the path that is “normal” (more on

this in a moment) to the vehicle’s future location. Then look ahead on the path and set a target

location.

Step 4. Steer. Set the vehicle’s steering force to seek that target.

Before we deal with the vehicle, let’s define what we mean by a path. There are many ways we

could implement a path, but for us, the simplest will be to define a path as a series of connected

points:

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 21

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

To start, let’s think of our path in an even simpler way, as a line between two points.

We’re also going to consider a path to have a radius. If we think of the path as a road, the radius

determines the road’s width. With a smaller radius, our vehicles will have to follow the path

more closely; a wider radius will allow them to stray a bit more.

Putting this into a class, we have:

class Path {

 PVector start;! $$ A Path is only two points, start and end

 PVector end;

 float radius;! $$ A path has a radius, i.e how wide is it

 Path() {
 radius = 20;! $$ Picking some arbitrary values to initialize path

 start = new PVector(0,height/3);
 end = new PVector(width,2*height/3);
 }

 void display() {! $$ Display the path

 strokeWeight(radius*2);
 stroke(0,100);
 line(start.x,start.y,end.x,end.y);
 strokeWeight(1);
 stroke(0);
 line(start.x,start.y,end.x,end.y);
 }
}

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 22

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Now, let’s assume we have a Vehicle (as depicted below) outside of the path’s radius, moving

with a velocity.

The first thing we want to do is predict, assuming a constant velocity, where that vehicle will be

in the future:

PVector predict = vel.get();! $$ Start by making a copy of the velocity

predict.normalize();! ! $$ Normalize it and look 25 pixels ahead by scaling vector up

predict.mult(25);

PVector predictLoc = PVector.add(loc, predict);
! ! ! ! $$ Add vector to location to find the predicted location

Once we have that location, it’s now our job to find out its distance from the path that predicted

location. If it’s very far away, well, then, we’ve strayed from the path and need to steer back

towards it. If it’s close, then we’re doing OK and are following the path nicely.

So, how do we find the distance between a point and a line? This concept is key. The distance

between a point and a line is defined as the length of the “normal” between that point and line.

The normal is a vector that extends from that point and is perpendicular to the line.

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 23

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Let’s figure out what we do know. We know we have a vector (call it A) that extends from the

path’s starting point to the vehicle’s predicted location:

PVector a = PVector.sub(predictLoc,path.start);

We also know that we can define a vector (call it B) that points from the start of the path to the

end.

PVector b = PVector.sub(path.end,path.start);

Now, with basic trigonometry, we know that the distance from the path’s start to the normal point

is |A| * cos(theta).

If we knew theta, we could easily define that normal point as follows:

float d = a.mag()*cos(theta);!$$ The distance from START to NORMAL
b.normalize();
b.mult(d);! ! ! $$ Scale PVector b to that distance

PVector normalPoint = PVector.add(path.start,b);
! ! ! ! $$ The normal point can be found by adding the scaled version of b

 ! ! ! ! to the path’s starting point

And if the dot product has taught us anything, it’s that given two vectors, we can get theta, the

angle between.

float theta = PVector.angleBetween(a,b);! $$ What is theta? The angle between A and B

b.normalize();
b.mult(a.mag()*cos(theta));
PVector normalPoint = PVector.add(path.start,b);

While the above code will work, there’s one more simplification we can make. If you notice

that the desired magnitude for vector B is:

a.mag()*cos(theta)

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 24

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

or

|A|*cos(theta)

And if you recall:

A B = |A|*|B|*cos(theta)

Now, what if vector B is a unit vector, i.e. length 1? Then:

A B = |A|*1*cos(theta)

or

A B = |A|*cos(theta)

And what are we doing in our code? Normalizing b!

b.normalize();

Because of this fact, we can simplify our code as:

float theta = PVector.angleBetween(a,b);

b.normalize();
b.mult(a.dot(b));! $$ We can use the dot product to scale B’s length

PVector normalPoint = PVector.add(path.start,b);

This process is commonly known as “scalar projection.”

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 25

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

|A| cos(!) is the scalar projection of A onto B. And if we normalize B before computing the dot

product, the scalar projection of A onto B is equal to A • B.

Once we have the normal point along the path, we have to decide whether the vehicle should

steer towards the path and how. Reynolds’s algorithm states that the vehicle should only steer

towards the path if it strays beyond the path (i.e., if the distance between the normal point and

the predicted future location is greater than the path radius).

float distance = PVector.dist(predictLoc, normalPoint);

if (distance > path.radius) {!! $$ If the vehicle is outside the path, seek the target

 seek(target);! ! ! $$ We don’t have to work out the desired velocity and

}! ! ! ! ! steering force; all that is taken care of by seek(),
! ! ! ! ! which we already wrote in Example 6.x

But what is the target?

Reynolds’s algorithm involves picking a point ahead of the normal on the path (see step #3

above). But for simplicity, we could just say that the target is the normal itself. This will work

fairly well:

float distance = PVector.dist(predictLoc, normalPoint);
if (distance > path.radius) {
 seek(normalPoint);! ! $$ Seek the normal point on the path

}

Since we know the vector that defines the path (we’re calling it “b”), we can implement

Reynolds’s “point ahead on the path” without too much trouble.

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 26

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

float distance = PVector.dist(predictLoc, normalPoint);
if (distance > path.radius) {
 b.normalize();! $$ Normalize and scale b (pick 25 pixels arbitrarily)

 b.mult(25);
 PVector target = PVector.add(normalPoint,b);!
 ! ! ! $$ By adding b to normalPoint, we now move 25 pixels ahead on the path

 seek(target);

}

Putting it all together, we have the following

steering function in our Vehicle class.

Example 6.x: Simple Path Following

 void follow(Path p) {

! $$ Step 1. Predict vehicle’s future location

 PVector predict = vel.get();! !

 predict.normalize();
 predict.mult(25);
 PVector predictLoc = PVector.add(loc, predict);

 PVector a = p.start;! ! ! $$ Step 2. Find normal point along path

 PVector b = p.end;
 PVector normalPoint = getNormalPoint(predictLoc, a, b);

 PVector dir = PVector.sub(b, a);! ! $$ Step 3. Move a little further along path

 dir.normalize();! ! ! ! and set a target

 dir.mult(10);
 PVector target = PVector.add(normalPoint, dir);

 float distance = PVector.dist(normalPoint, predictLoc);
 if (distance > p.radius) {! ! $$ Step 4. If we are off the path, seek that target

 seek(target);! ! ! ! in order to stay on the path.

 }
 }

Now, you may notice above that instead of using all that dot product/scalar projection code to

find the normal point, we instead call a function: getNormalPoint(). In cases like this, it’s

useful to break out the code that performs a specific task (finding a normal point) into a function

that it can be used generically in any case where it is required. The function takes three

PVectors: the first defines a point in Cartesian space and the second and third arguments define a

line segment.

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 27

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 PVector getNormalPoint(PVector p, PVector a, PVector b) {
 PVector ap = PVector.sub(p, a);! $$ PVector that points from a to p

 PVector ab = PVector.sub(b, a);! $$ PVector that points from a to b

 ab.normalize();! ! ! $$ Using the dot product for scalar projection

 ab.mult(ap.dot(ab));
 PVector normalPoint = PVector.add(a, ab);
! ! ! ! ! $$ Finding the normal point along the line segment
 return normalPoint;
 }

What do we have so far? We have a Path class that defines a path as a line between two points.

We have a Vehicle class that defines a vehicle that can follow the path (using a steering behavior

to seek a target along the path). What is missing?

Take a deep breath. We’re almost there.

We’ve built a great example so far, yes, but it’s pretty darn limiting. After all, what if we want

our path to be something that looks more like:

While it’s true that we could make this example work for a curved path, we’re much less likely

to end up needing a cool compress on our forehead if we stick with line segments. In the end, we

can always employ the same technique we discovered with Box2D—we can draw whatever

fancy curved path we want and approximate it behind the scenes with simple geometric forms.

So, what’s the problem? If we made path following work with one line segment, how do we

make it work with a series of connected line segments? Let’s take a look again at our vehicle

driving along the screen. Say we arrive at Step 3.

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 28

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Step 3. Find a target point on the path.

To find the target, we need to find the normal to the line segment. But now that we have a series

of line segments, we have a series of normal points (see above)! Which one do we choose? The

solution we’ll employ is to pick the normal point that is (a) closest and (b) on the path itself.

If we have a point and an infinitely long line, we’ll always have a normal. But, as in the path-

following example, if we have a point and a line segment, we won’t necessarily find a normal

that is on the line segment itself. So if this happens for any of the segments, we can disqualify

those normals. Once we are left with normals that are on the path itself (only two in the above

diagram), we simply pick the one that is closest to our vehicle’s location.

In order to write the code for this, we’ll have to expand our Path class to have an ArrayList of

points (rather than just two, a start and an end.)

class Path {

 ArrayList<PVector> points;!
! ! $$ A Path is now an ArrayList of points

 ! ! (PVector objects)

 float radius;

 Path() {
 radius = 20;
 points = new ArrayList<PVector>();
 }

 void addPoint(float x, float y) {! ! $$ This function allows us to add points

 PVector point = new PVector(x,y);!! to the path
 points.add(point);
 }

 void display() {! ! ! ! $$ Display the path as a series of points

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 29

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 stroke(0);
 noFill();
 beginShape();
 for (PVector v : points) {
 vertex(v.x,v.y);
 }
 endShape();
 }
}

Now that we have the Path defined, it’s the vehicle’s turn to deal with multiple line segments.

All we did before was find the normal for one line segment. We can now find the normals for all

the line segments in a loop.

for (int i = 0; i < p.points.size()-1; i++) {
 PVector a = p.points.get(i);
 PVector b = p.points.get(i+1);
 PVector normalPoint = getNormalPoint(predictLoc, a, b);
! ! ! ! $$ Finding the normals on each line segment

Then we should make sure the normalPoint is actually between points a and b. Since we know

our path goes from left to right in this example, we can test if the x location of normalPoint is

outside the x locations of a and b.

 if (normalPoint.x < a.x || normalPoint.x > b.x) {
 normalPoint = b.get(); $$ Use the end point of the segment as our normal point if we

 }! ! ! ! can’t find one.

As a little trick, we’ll say that if it’s not within the line segment, let’s just pretend the end point of

that line segment is the normal. This will ensure that our vehicle always stays on the path, even

if it strays out of the bounds of our line segments.

Finally, we’ll need to make sure we find the normal point that is closest to our vehicle. To

accomplish this, we can start with a “world record” of some very high number and progressively

save normal point that beats the record as we go through the loop in a variable called “target”.

When all is said and done, we’ll have the closest normal point in that variable.

Example 6.x: Path Following

PVector target = null;
float worldRecord = 1000000; !$$ Start with a very high record

! ! ! ! that can easily be beaten

for (int i = 0; i < p.points.size()-1; i++) {
 PVector a = p.points.get(i);
 PVector b = p.points.get(i+1);
 PVector normalPoint = getNormalPoint(predictLoc, a, b);
 if (normalPoint.x < a.x || normalPoint.x > b.x) {
 normalPoint = b.get();
 }

 float distance = PVector.dist(predictLoc, normalPoint);

 if (distance < worldRecord) {! $$ If we beat the record then this should be our target!

 worldRecord = distance;

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 30

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 target = normalPoint.get();
 }

}

Exercise: Update the path-following example so that the path can go in any direction. (Hint,

you’ll need to use the min() and max() function when determining if the normal point is inside

the line segment.)

if (normalPoint.x < ____(____,____) || normalPoint.x > ____(____,____)) {
 normalPoint = b.get();
}

Exercise: Create a path that changes over time. Can the points that define the path itself have

their own steering behaviors?

6.8 Complex Systems

Remember our purpose? To breathe life into the things that move around our Processing

windows? By learning to write the code for an autonomous agent and building a series of

examples of individual behaviors, hopefully our souls feel a little more full. But this is no place

to stop and rest on our laurels. We’re just getting started. After all, there is a deeper purpose at

work here. Yes, a vehicle is a sentient being making decisions about how to seek and flow and

follow. But what is a life led by oneself, without the love and support of others? Our purpose

here is not only to build individual behaviors for our vehicles, but to put our vehicles into

systems of many vehicles and allow those vehicles to interact with each other.

Why? Well, for one, we’re just following the natural creative coding progression—“Oooh, I

made one thing that is cool. You know what would be even cooler? Let’s try putting hundreds of

those things on the screen!” But more is not necessarily better. Our reasons for not stopping this

chapter at a perfectly reasonable thirty pages is because we have an opportunity to breathe even

more life into our Processing sketches.

Let’s think about a tiny, crawling ant—one single ant. An ant is an autonomous agent; it can

perceive its environment (using antennae to gather information about the direction and strength

of chemical signals) and make decisions about how to move based on those signals. But can a

single ant acting alone build a nest, gather food, defend its queen? An ant is a simple unit and

can only perceive its immediate environment. A colony of ants, however, is a sophisticated

complex system, a “superorganism” that collectively works together to accomplish difficult and

complicated goals.

We want to take what we’ve learned during the process of building autonomous agents in

Processing into simulations that involve many agents operating in parallel—agents that have an

ability not only to perceive their physical environment but also the actions of their fellow agents,

and then act accordingly. We want to create complex systems in Processing.

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 31

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

What is a complex system? A complex system is typically defined as a system that is “more than

the sum of its parts.” While the individual elements of the system may be incredibly simple and

easily understood, the behavior of the system as a whole can be highly complex, intelligent, and

difficult to predict. Here are three key principles of complex systems.

• Simple units with short-range relationships. This is what we’ve been building all along:

vehicles that have a limited perception of their environment.

• Simple units operate in parallel. This is what we need to simulate in code. For every

cycle through Processing’s draw() loop, each unit will decide how to move (to create the

appearance of them all working in parallel.)

• System as a whole exhibits emergent phenomena. Out of the interactions between these

simple units emerges complex behavior, patterns, and intelligence. Here we’re talking

about the result we are hoping for in our sketches. Yes, we know this happens in nature

(ant colonies, termites, migration patterns, earthquakes, snowflakes, etc.), but can we

achieve the same result in our Processing sketches?

As we move beyond this chapter, we’ll see further examples of complexity. But we’ll begin by

adding one more feature to our Vehicle class: an ability to look at neighboring vehicles.

6.9 Group Behaviors Part I: Let’s not run into each other.

A group is certainly not a new concept. We’ve done this before—in Chapter 4, where we

developed a framework for managing collections of particles in a ParticleSystem class. There,

we stored a list of particles in an ArrayList. We’ll do the same thing here: store a bunch of

Vehicle objects in an ArrayList.

ArrayList<Vehicle> vehicles;!! $$ Declare an ArrayList of Vehicle objects

void setup() {
 vehicles = new ArrayList<Vehicle>;! $$ Initialize and fill the ArrayList with a bunch

 for (int i = 0; i < 100; i++) {! ! of Vehicles

 vehicles.add(new Vehicle(random(width),random(height)));
 }
}

Now when it comes time to deal with all the vehicles in draw(), we simply loop through all of them and
call the necessary functions.

void draw(){
 for (Vehicle v : vehicles) {
 v.update();
 v.display();
 }
}

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 32

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

OK, so maybe we want to add a behavior, a force to be applied to all the vehicles. This could be

seeking the mouse.

 v.seek(mouseX,mouseY);

But that’s an individual behavior. We’ve already spent thirty-odd pages worrying about

individual behaviors. We’re here because we want to apply a group behavior. Let’s begin with

“separation”, a behavior that states, “Avoid colliding with your neighbors!”

 v.separate();

Is that right? It sounds good, but it’s not. What’s missing? In the case of seek, we said “Seek

mouseX and mouseY.” In the case of separate, we’re saying “separate from everyone else.”

Who is everyone else? It’s the list of all the other vehicles.

 v.separate(vehicles);

This is the big leap beyond what we did before with Particle Systems. Instead of having each

element (particle or vehicle) operate on its own, we’re now saying, “You, the vehicle, when it

comes time for you to operate, you need to operate with an awareness of everyone else. So I’m

going to go ahead and pass you the ArrayList of everyone else.”

This is how we’ve mapped out setup() and draw() to deal with a group behavior.

ArrayList<Vehicle> vehicles;

void setup() {
 size(320,240);
 vehicles = new ArrayList<Vehicle>();
 for (int i = 0; i < 100; i++) {
 vehicles.add(new Vehicle(random(width),random(height)));
 }
}

void draw() {
 background(255);

 for (Vehicle v : vehicles) {
 v.separate(vehicles);! ! $$ This is really the only new thing we’re doing in this

 v.update();! ! ! ! section. We’re asking a Vehicle object to examine all the

 v.display();! ! ! ! other vehicles in the process of calculating a separation
 }! ! ! ! ! ! force.
}

Of course, this is just the beginning. The real work happens inside the separate() function itself.

Let’s figure out how we want to define separation. Reynolds states: “Steer to avoid crowding.” In

other words, if a given vehicle is too close to you, steer away from that vehicle. Sound familiar?

Remember the seek behavior where a vehicle steers towards a target? Reverse that force and we

have the flee behavior.

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 33

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

But what if more than one vehicle is too close? In this case, we’ll define separation as the

average of all the vectors pointing away from any close vehicles.

Let’s begin to write the code. As we just worked out, we’re writing a function called separate()

that receives an ArrayList of Vehicle objects as an argument.

void separate (ArrayList<Vehicle> vehicles) {

}

Inside this function, we’re going to loop through all of the vehicles and see if any are too close.

 float desiredseparation = 20;! $$ This variable specifies how close is too close.

 for (Vehicle other : vehicles) {

 float d = PVector.dist(location, other.location);! $$ What is the distance between me

! ! ! ! ! ! ! ! ! ! and another Vehicle?

 if ((d > 0) && (d < desiredseparation)) {

! ! $$ Here is the code that will be executed if the Vehicle! !

! ! is within 20 pixels.

 }
 }

Notice how in the above code, we are not only checking if the distance is less than a desired

separation (i.e. too close!), but also if the distance is greater than zero. This is a little trick that

makes sure we don’t ask a vehicle to separate from itself. Remember, all the vehicles are in the

ArrayList, so if you aren’t careful you’ll be comparing each vehicle to itself!

Once we know that two vehicles are too close, we need to make a vector that points away from

the offending vehicle.

 if ((d > 0) && (d < desiredseparation)) {
 PVector diff = PVector.sub(location, other.location);!

 diff.normalize();!! ! ! $$ A PVector pointing away from the other’s location.

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 34

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 }

This is not enough. We have that vector now, but we need to make sure we calculate the average

of all vectors pointing away from close vehicles. How do we compute average? We add up all

the vectors and divide by the total.

 PVector sum = new PVector();! $$ Start with an empty PVector

 int count = 0;! ! ! ! $$ We have to keep track of how many Vehicles are too close

 for (Vehicle other : vehicles) {
 float d = PVector.dist(location, other.location);
 if ((d > 0) && (d < desiredseparation)) {
 PVector diff = PVector.sub(location, other.location);
 diff.normalize();
 sum.add(diff);! ! ! $$ All the vectors together and increment the count

 count++;

 }
 }

 if (count > 0) {! ! ! $$ We have to make sure we found at least one close

 sum.div(count);! ! ! vehicle. We don’t want to bother doing anything

 }! ! ! ! ! ! if nothing is too close (not to mention we can’t

! ! ! ! ! ! divide by zero!)

Once we have the average vector (stored in the PVector object “sum”), that PVector can be

scaled to maximum speed and become our desired velocity—we desire to move in that direction

at maximum speed! And once we have the desired velocity, it’s the same old Reynolds story:

steering equals desired minus velocity.

 if (count > 0) {
 sum.div(count);

 sum.normalize();! ! $$ Scale average to maxspeed (this becomes desired)

 sum.mult(maxspeed);

 PVector steer = PVector.sub(sum,vel);! $$ Reynolds Steering formula

 steer.limit(maxforce);

 applyForce(steer);!! $$ Apply the force to the Vehicle’s acceleration

 }

Let’s see the function in its entirety. There are two additional improvements, noted in the code

bubbles.

 Example 6.x: Group Behavior: Separation
 void separate (ArrayList<Vehicle> vehicles) {
 float desiredseparation = r*2;!! $$ Note how the desired separation is based

 PVector sum = new PVector();! ! on the Vehicle’s size.
 int count = 0;
 for (Vehicle other : vehicles) {
 float d = PVector.dist(location, other.location);
 if ((d > 0) && (d < desiredseparation)) {
 PVector diff = PVector.sub(location, other.location);
 diff.normalize();
 diff.div(d); !! ! ! $$ What is the magnitude of the PVector pointing away

 sum.add(diff);!! ! ! from the other vehicle? The closer it is, the more
 count++; ! ! ! ! we should flee. The farther, the less. So we divide
! ! ! ! ! ! ! by the distance to weight it appropriately.

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 35

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 }! ! ! ! ! !
 }
 if (count > 0) {
 sum.div(count);
 sum.normalize();
 sum.mult(maxspeed);
 PVector steer = PVector.sub(sum, vel);
 steer.limit(maxforce);
 applyForce(steer);
 }

 }

Exercise: Rewrite separate() to work in the opposite fashion (“cohesion”). If a vehicle is beyond

a certain distance, steer towards that vehicle. This will keep the group together. (Note that in a

moment, we’re going to look at what happens when we have both cohesion and separation in the

same simulation.)

Exercise: Add the separation force to path following to

create a simulation of Reynolds’s “Crowd Path

Following.”

6.10 Combinations

The previous two exercises (6.x, 6.x) hint at what is perhaps the most important aspect of this

chapter—our true purpose for being here. After all, what is a Processing sketch with one steering

force compared to one with many? How could we even begin to simulate emergence in our

sketches with only one rule? The most exciting and intriguing behaviors will come from mixing

and matching multiple steering forces, and we’ll need a mechanism for doing so.

You may be thinking, Duh, this is nothing new. We do this all the time. You would be right. In

fact, we did this as early as Chapter 2.

 PVector wind = new PVector(0.001,0);
 PVector gravity = new PVector(0,0.1);
 mover.applyForce(wind);
 mover.applyForce(gravity);

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 36

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Here we have a Mover object that responds to two forces. This all works nicely because of the

way we designed the Mover object to accumulate the force vectors into its acceleration vector.

In this chapter, however, our forces stem from internal desires of the Mover objects (now called

“Vehicles” themselves). And those desires can be weighted. Let’s consider a sketch where all

vehicles have two desires:

• Seek the mouse location.

• Separate from any vehicles that are too close.

We might begin by adding a function to the Vehicle class that manages all of the behaviors. Let’s

call it applyBehaviors().

void applyBehaviors(ArrayList<Vehicle> vehicles) {
 separate(vehicles);
 seek(new PVector(mouseX,mouseY));
}

Here we see how a single function takes care of calling the other functions that apply the forces

—separate() and seek(). We could start mucking around with those functions and see if we can

adjust the strength of the forces they are calculating. But it would be easier for us to ask those

functions to return the forces so that we can adjust their strength before applying them to the

Vehicle’s acceleration.

 void applyBehaviors(ArrayList<Vehicle> vehicles) {
 PVector separate = separate(vehicles);! ! !

 PVector seek = seek(new PVector(mouseX,mouseY));
 applyForce(separate);! ! ! $$ We have to apply the force here since

 applyForce(seek); !! ! ! seek() and separate() no longer do so.
 }

Let’s look at how the seek function changed.

 PVector seek(PVector target) {! ! $$ Seek now returns a PVector

 PVector desired = PVector.sub(target,loc);
 desired.normalize();
 desired.mult(maxspeed);
 PVector steer = PVector.sub(desired,vel);
 steer.limit(maxforce);
 applyForce(steer); ! $$ Instead of applying the force, we return the PVector

 return steer;

 }

This is a subtle change, but incredibly important for us: itallows us alter the strength of these

forces.

Example 6.x: Combining Steering Behaviors: Seek and Separate

void applyBehaviors(ArrayList<Vehicle> vehicles) {
 PVector separate = separate(vehicles);
 PVector seek = seek(new PVector(mouseX,mouseY));

 separate.mult(1.5);! $$ These values can be whatever you want them to be!

 seek.mult(0.5);!! They can be variables that are customized for

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 37

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 ! ! ! ! each vehicle as well as change over time.

 applyForce(separate);
 applyForce(seek);
}

Exercise: Redo example 6.x so that the behavior weights are not constants. What happens if they

change over time (according to a sine wave or Perlin noise)? Or if some vehicles are more

concerned with seeking and others more concerned with separating? Can you introduce other

steering behaviors as well?

6.11 Flocking

Flocking is an group animal behavior that is characteristic of many living creatures, such as

birds, fish, and insects. In 1986, Craig Reynolds created a computer simulation of flocking

behavior and documented the algorithm in his paper, “Flocks, Herds, and Schools: A Distributed

Behavioral Model.” Recreating this simulation in Processing will bring together all the

concepts in this chapter.

1. We will use the steering force formula (steer = desired - velocity) to implement the rules of

flocking.

2. These steering forces will be group behaviors and require each vehicle to look at all the other

vehicles.

3. We will combine and weight multiple forces.

4. The result will be a complex system—intelligent group behavior will emerge from the simple

rules of flocking without the presence of a centralized system or leader.

The good news is, we’ve already done items 1 through 3 in this chapter, so this section will be

about just putting it all together and seeing the result.

Before we begin, I should mention that we’re going to change the name of our Vehicle class (yet

again). Reynolds uses the term “boid” (a made-up word that refers to a bird-like object) to

describe the elements of a flocking system and we will do the same.

Let’s take an overview of the three rules of flocking.

1. Separation (also known as “avoidance”): Steer to avoid colliding with your neighbors.

2. Alignment (also known as “copy”): Steer in the same direction as your neighbors.

3. Cohesion (also known as “center”): Steer towards the center of your neighbors (stay with the

group).

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 38

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Just as we did with our separate and seek example, we’ll want our Boid objects to have a single

function that manages all the above behaviors. We’ll call this function flock().

 void flock(ArrayList<Boid> boids) {
 PVector sep = separate(boids); ! ! $$ The three flocking rules
 PVector ali = align(boids);
 PVector coh = cohesion(boids);

 sep.mult(1.5);! ! ! ! ! $$ Arbitrary weights for these forces

 ali.mult(1.0);! ! ! ! ! (Try different ones!)
 coh.mult(1.0);

 applyForce(sep);! ! ! ! ! $$ Applying all the forces

 applyForce(ali);
 applyForce(coh);
 }

Now, it’s just a matter of implementing the three rules. We did separation before; it’s identical

to our previous example. Let’s take a look at alignment—steer in the same direction as your

neighbors. As with all of our steering behaviors, we’ve got to boil down this concept into a

desire: the boid’s desired velocity is the average velocity of its neighbors.

So our algorithm is to calculate the average velocity of all the other boids and set that to desired.

 PVector align (ArrayList<Boid> boids) {
 PVector sum = new PVector(0,0);! $$ Add up all the velocities and divide by the total

 for (Boid other : boids) {! ! to calculate the average velocity.

 sum.add(other.velocity);
 }
 sum.div(boids.size());

 sum.normalize();! ! ! ! $$ We desire to go in that direction at maximum speed

 sum.mult(maxspeed);!! !

 PVector steer = PVector.sub(sum,velocity);!$$ Reynolds steering force formula
 steer.limit(maxforce);
 return steer;
 }

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 39

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

The above is pretty good, but it’s missing one rather crucial detail. One of the key principles

behind complex systems like flocking is that the elements (in this case, boids) have short-range

relationships. Thinking about ants again, it’s pretty easy to imagine an ant being able to sense

its immediate environment, but less so an ant having an awareness of what another ant is doing

hundreds of feet away. The fact that the ants can perform such complex collective behavior from

only these neighboring relationships is what makes them so exciting in the first place.

In our alignment function, we’re taking the average velocity of all the boids, whereas we should

really only be looking at the boids within a certain distance. That distance threshold is up to you,

of course. You could design boids that can see only twenty pixels away or boids that can see a

hundred pixels away.

Much like we did with separation (we only calculated a force for others within a certain

distance), we’ll want to do the same with alignment (and cohesion).

 PVector align (ArrayList<Boid> boids) {
 float neighbordist = 50;!! ! ! $$ This is an arbitrary value and could

 PVector sum = new PVector(0,0);! ! vary from boid to boid
 int count = 0;

 for (Boid other : boids) {
 float d = PVector.dist(location,other.location);
 if ((d > 0) && (d < neighbordist)) {
 sum.add(other.velocity);
 count++;! ! ! ! ! ! $$ For average, we need to keep track of

 }! ! ! ! ! ! ! how many boids are within the distance
 }
 if (count > 0) {

 sum.div(count);
 sum.normalize();
 sum.mult(maxspeed);
 PVector steer = PVector.sub(sum,velocity);
 steer.limit(maxforce);
 return steer;
 } else {
 return new PVector(0,0);! ! ! $$ If we don’t find any close boids the steering

 }!! ! ! ! ! ! ! force is zero.

 }

Exercise: Can you write the above code so that boids can only see other boids that are actually

within their “peripheral” vision (as if they had eyes)?

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 40

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Finally, we are ready for cohesion. Here our code is virtually identical to alignment—only

instead of calculating the average velocity of the boid’s neighbors, we want to calculate the

average location of the boid’s neighbors (and use that as a target to seek).

 PVector cohesion (ArrayList<Boid> boids) {
 float neighbordist = 50;
 PVector sum = new PVector(0,0);
 int count = 0;
 for (Boid other : boids) {
 float d = PVector.dist(location,other.location);
 if ((d > 0) && (d < neighbordist)) {
 sum.add(other.location);! ! ! ! $$ Adding up all the others’ locations

 count++;
 }
 }
 if (count > 0) {
 sum.div(count);
 return seek(sum);!! ! $$ Here we make use of the seek() function we wrote in

 } else {! ! ! ! Example 6.x. The target we seek is the average location
 return new PVector(0,0);! of our neighbors.
 }
 }

It’s worth taking the time to also write a class called Flock, which will be virtually identical to

the ParticleSystem class we wrote in Chapter 4 with only one tiny change: When we call run()

on each Boid object (as we did to each Particle object), we’ll pass in a reference to the entire

ArrayList of boids.

class Flock {
 ArrayList<Boid> boids;

 Flock() {
 boids = new ArrayList<Boid>();
 }

 void run() {
 for (Boid b : boids) {
 b.run(boids); ! ! $$ Each Boid object must know about all the other Boids
 }
 }

 void addBoid(Boid b) {
 boids.add(b);
 }
}

And our main program will look like:

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 41

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Flock flock;! ! $$ A Flock object manages the entire

! ! ! ! group.!
void setup() {
 size(300,200);
 flock = new Flock();
 for (int i = 0; i < 100; i++) {! !

 Boid b = new Boid(width/2,height/2);
 flock.addBoid(b);! $$ The Flock starts out with 100 Boids

 }
}

void draw() {
 background(255);
 flock.run();
}

Exercise: Combine Flocking with some other steering behaviors.

Exercise: In “The Computational Beauty of Nature” (Gary Flake, MIT

Press, 2000), Gary Flake describes a fourth rule for flocking: “View:

move laterally away from any boid that blocks the view.” Implement

this rule.

Exercise: Create a flocking simulation where all of the parameters (separation weight, cohesion

weight, alignment weight, maximum force, maximum speed) change over time. They could be

controlled by Perlin noise or by user interaction (for example, you could use a library such as

controlp5 to tie the values to slider positions.)

Exercise: Visualize the flock in an entirely different way.

6.12 Algorithmic Efficiency (or Why does my $#@(*%#! run so slow?)

I would like to hide the dark truth of what we’ve done from you, because I would like you to be

happy and live a fulfilling and meaningful life. But I also would like to be able to sleep at night

without worrying about you so much. So it is with a heavy heart that I must bring up this topic.

Group behaviors are wonderful. But they can be slow, and the more elements in the group, the

slower they can be. Usually, when we talk about Processing sketches running slowly, it’s

because drawing to the screen can be slow—the more you draw, the slower your sketch runs.

This is actually a case, however, where the slowness derives from the algorithm itself. Let’s

discuss.

Computer scientists classify algorithms with something called “Big O notation”, which describes

the efficiency of an algorithm: how many computational cycles does it require to complete?

Let’s consider a simple analog search problem. You have a basket full of one hundred chocolate

treats, only one of which is pure dark chocolate. That’s the one you want to eat. To find it, you

pick the chocolates out of the basket one by one. Sure, you might be lucky and find it on the first

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 42

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

try, but in the worst-case scenario you have to check all one hundred before you find the dark

chocolate. To find one thing in one hundred, you have to check one hundred things (or to find

one thing in N things, you have to check N times.) Your Big O Notation is N. This incidentally

is the Big O Notation that describes our simple particle system. If we have N particles, we have

to run and display those particles N times.

Now, let’s think about a group behavior (such as flocking). For every Boid object, we have to

check every other Boid object (for its velocity and location). Let’s say we have one hundred

boids. For Boid #1, we need to check one hundred boids; for Boid #1, we need to check one

hundred boids, and so on and so forth. For one hundred boids, we need to perform one hundred

times one hundred checks, or ten thousand. No problem: computers are fast and can do things

ten thousand times pretty easily. Let’s try one thousand.

1,000 x 1,000 = 1,000,000 cycles.

OK, this is rather slow, but still somewhat manageable. Let’s try 10,000 elements:

10,000 x 10,000 elements = 100,000,000 cycles.

Now, we’re really getting slow. Really, really, really slow.

Notice something odd? As the number of elements increases by a factor of 10, the number of

required cycles increases by a factor of 100. Or as the number of elements increases by a factor

of N, the cycles increase by a factor of N times N. This is known as Big O Notation N-Squared.

I know what you are thinking. You are thinking: “No problem; with flocking, we only need to

consider the boids that are close to other boids. So even if we have 1,000 boids, we can just look

at, say, the five closest boids and then we only have 5,000 cycles.” You pause for a moment,

and then start thinking: “So for each boid I just need to check all the boids and find the five

closest ones and I’m good!” See the catch-22? Even if we only want to look at the close ones,

the only way to know what the close ones are would be to check all of them.

Or is there another way?

Let’s take a number that we might actually want to use, but would still run too slow: 2,000

(4,000,000 cycles required.)

What if we could divide the screen into a grid? We would take all 2,000 boids and assign each

boid to a cell within that grid. We would then be able to look at each boid and compare it to its

neighbors within that cell at any given moment. Imagine a 10 x 10 grid. In a system of 2,000

elements, on average, approximately 20 elements would be found in each cell (20 x 10 x 10 =

2,000). Each cell would then require 20 x 20 = 400 cycles. With 100 cells, we’d have 100 x 400

= 40,000 cycles, a massive savings over 4,000,000.

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 43

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

This technique is known as “bin-lattice spatial subdivision” and is outlined in more detail in

(surprise, surprise) Reynolds’s 2000 paper: “Interaction with Groups of Autonomous

Characters” (see: http://www.red3d.com/cwr/papers/2000/pip.pdf). How do we implement such

an algorithm in Processing? One way is to keep multiple ArrayLists. One ArrayList would keep

track of all the boids, just like in our Flocking example.

ArrayList<Boid> boids;

In addition to that ArrayList, we store an additional reference to each Boid object in a two-

dimensional ArrayList. For each cell in the grid, there is an ArrayList that tracks the objects in

that cell.

ArrayList<Boid>[][] grid;

In the main draw() loop, each Boid object then registers itself in the appropriate cell according to

its location.

int column = int(boid.x) / resolution;
int row = int(boid.y) /resolution;
grid[column][row].add(boid);

Then when it comes time to have the boids check for neighbors, they can look at only those in

their particular cell (in truth, we also need to check neighboring cells to deal with border cases).

Example 6.x: Bin-Lattice Spatial Subdivision

int column = int(boid.x) / resolution;
int row = int(boid.y) /resolution;
boid.flock(boids);
boid.flock(grid[column][row]);! $$ Instead of looking at all the boids, just this cell

We’re only covering the basics here; for the full code, check the web site.

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 44

http://www.red3d.com/cwr/papers/2000/pip.pdf
http://www.red3d.com/cwr/papers/2000/pip.pdf
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Now, there are certainly flaws with this system. What if all the boids congregate in the corner

and live in the same cell? Then don’t we have to check all 2,000 against all 2,000?

The good news is that this need for optimization is a common one and there are a wide variety of

similar techniques out there. For us, it’s likely that a basic approach will be good enough (in

most cases, you won’t need one at all) and we can stop here.

6.13 A few last notes: optimization tricks.

This is something of a momentous occasion. The end of Chapter 6 marks the end of our story of

motion (in the context of this book, that is). We started with the concept of a vector, moved onto

forces, designed systems of many elements, examined physics libraries, built entities with hopes

and dreams and fears, and simulated emergence. The story doesn’t end here, but it does take a

bit of a turn. The next two chapters won’t focus on moving bodies, but rather on systems of

rules. Before we get there, I have a few quick items I’d like to mention that are important when

working with the examples in Chapters 1-6. They also relate to optimizing your code, which fits

in with the previous section.

Magnitude squared (or sometimes distance squared)

What is magnitude squared and when should you use it? Let’s revisit how the magnitude of a

vector is calculated.

float mag() {
 return sqrt(x*x + y*y);
}

Magnitude requires the square root operation. And it should. After all, if you want the

magnitude of a vector then you’ve got to look up the Pythagorean theorem and compute it (we

did this in Chapter 1). However, if you could somehow skip using the square root, your code

would run faster. Let’s consider a situation where you just want to know the relative magnitude

of a vector. For example, is the magnitude greater than ten? (Assume a PVector v).

if (v.mag() > 10) {
 // Do Something!
}

Well, this is equivalent to saying:

if (v.magSquared() > 100) {
 // Do Something!
}

And how is magSquared calculated?

float magSquared() {

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 45

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 return x*x + y*y;
}

Same as magnitude, but without the square root. In the case of a single PVector object, this will

never make a significant difference on a Processing sketch. However, if you are computing the

magnitude of thousands of PVector objects each time through draw(), using magSquared()

instead of mag() could help your code run a wee bit faster.

Sine and cosine lookup tables.

There’s a pattern here. What kinds of functions are slow to compute? Square root. Sine. Cosine.

Tangent. Again, if you just need a sine or cosine value here or there in your code, you are never

going to run into a problem. But what if you had something like this?

void draw() {
 for (int i = 0; i < 10000; i++) {
 println(sin(PI));
 }
}

Sure, this is a totally ridiculous code snippet that you would never write. But it illustrates a

certain point. If you are calculating the sine of pi ten thousand times, why not just calculate it

once, save that value, and refer to it whenever necessary? This is the principle behind sine and

cosine lookup tables. Instead of calling the sine and cosine functions in your code whenever

you need them, you can build an array that stores the results of sine and cosine at angles between

0 to TWO_PI and just look up the values when you need them. For example, here are two arrays

that store the sine and cosine values for every angle, 0 to 359 degrees.

float sinvalues[] = new float[360];
float cosvalues[] = new float[360];
for (int i = 0; i < 360; i++) {
 sinvalues[i] = sin(radians(i));
 cosvalues[i] = cos(radians(i));
}

Now, what if you need the value of of sine of pi?

int angle = int(degrees(PI));
float answer = sinvalues[angle];

A more sophisticated example of this technique is available on the Processing wiki:

http://wiki.processing.org/w/Sin/Cos_look-up_table

Making gajillions of unnecessary PVector objects

I have to admit, I am perhaps the biggest culprit of this last note. In fact, in the interest of

writing clear and understandable examples, I often choose to make extra PVector objects when I

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 46

http://wiki.processing.org/w/Sin/Cos_look-up_table
http://wiki.processing.org/w/Sin/Cos_look-up_table
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

absolutely do not need to. For the most part, this is not a problem at all. But sometimes, it can

be. Let’s take a look at an example.

void draw() {
 for (Vehicle v : vehicles) {
 PVector mouse = new PVector(mouseX,mouseY);
 v.seek(mouse);
 }
}

Let’s say our ArrayList of vehicles has one thousand vehicles in it. We just made one thousand

new PVector objects every single time through draw(). Now, on any ol’ laptop or desktop

computer you’ve purchased in recent times, your sketch will likely not register a complaint, run

slowly, or have any problems. After all, you’ve got tons of RAM, and Java will be able to handle

making a thousand or so temporary objects and dispose of them without much of a problem.

If your numbers grow larger (and they easily could) or perhaps more likely, if you are working

with Processing on Android, you will almost certainly run into a problem. In cases like this you

want to look for ways to reduce the number of PVector objects you make. An obvious fix for the

above code is:

void draw() {
 PVector mouse = new PVector(mouseX,mouseY);
 for (Vehicle v : vehicles) {
 v.seek(mouse);
 }
}

Now you’ve made just one PVector instead of one thousand. Even better, you could turn the

PVector into a global variable and just assign the x and y value:

PVector mouse = new PVector();

void draw() {
 mouse.x = mouseX;
 mouse.y = mouseY;
 for (Vehicle v : vehicles) {
 v.seek(mouse);
 }
}

Now you never make a new PVector; you use just one over the length of your sketch!

In my examples, you’ll find lots of opportunities to reduce the number of temporary objects.

Let’s look at one more. Here is a snippet from our seek() function.

 PVector desired = PVector.sub(target,location);
 desired.normalize();
 desired.mult(maxspeed);

 PVector steer = PVector.sub(desired,velocity);

 steer.limit(maxforce);! ! $$ Create a new PVector to store the steering force

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 47

https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

 return steer;

See how we’ve made two PVector objects? First, we figure out the desired vector, then we

calculate the steering force. Notice how we could rewrite this to create only one PVector.

 PVector desired = PVector.sub(target, location);
 desired.normalize();
 desired.mult(maxspeed);

 desired.sub(velocity);! ! $$ Calculate the steering force in the desired PVector

 desired.limit(maxforce);

 return desired;

We don’t actually need a second PVector called steer. We could just use the desired PVector

object and turn it into the steering force by subtracting velocity. I didn’t do this in my example

because it is more confusing to read. But in some cases, it may be greatly more efficient.

Exercise: Eliminate as many temporary PVector objects from the flocking example as possible.

Also use magSquared() where possible.

[MENTION SOMETHING ABOUT OPENSTEER? http://opensteer.sourceforge.net/]

Exercise: Use steering behaviors with Box2D or Toxiclibs.

Daniel Shiffman, Chapter 6 Autonomous Agents, Nature of Code Draft, http://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project Page 48

http://opensteer.sourceforge.net/
http://opensteer.sourceforge.net/
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project
https://www.kickstarter.com/projects/shiffman/the-nature-of-code-book-project

Chapter 7. Cellular Automata

“To play life you must have a fairly large checkerboard and a plentiful supply of flat counters of two colors. It is possible to work
with pencil and graph paper but it is much easier, particularly for beginners, to use counters and a board.”
! —Martin Gardner, Scientific American (October 1970)

7.1 I miss vectors.

In this chapter, we’re going to take a break from talking about vectors and motion. In fact, the

rest of the book will mostly focus on systems and algorithms (albeit ones that we can, should,

and will apply to moving bodies). In the previous chapter, we encountered our first Processing

example of a complex system: flocking. We briefly stated the core principles behind complex

systems: more than the sum of its parts, a complex system is a system of elements, operating in

parallel, with short-range relationships that as a whole exhibit emergent behavior. This entire

chapter is going to be dedicated to building another complex system simulation in Processing.

Oddly, we are going to take some steps backward and simplify the elements of our system. No

longer are the individual elements going to be members of a physics world; instead we will build

a system out of the simplest digital element possible, a single bit. This bit is going to be called a

cell and its value (zero or one) will be called its state. Working with such simple elements will

help us understand more of the details behind how complex systems work, and we’ll also be able

to elaborate on some programming techniques that we can apply to code-based projects.

7.2 What is a cellular automaton?

First, let’s get one thing straight. The term cellular automata is plural. Our code examples will

simulate just one—a cellular automaton, singular. To simplify our lives, we’ll also refer to

cellular automata as “CA.”

In Chapters 1 through 6, our objects (Mover, Particle, Vehicle, Boid) generally existed in only

one “state”. They might have moved around with advanced behaviors and physics, but ultimately

they have remained the same type of object over the course of their digital lifetime. We’ve

alluded to the possibility that these entities can change over time (for example, the weights of

steering “desires” can vary), but we haven’t fully put this into practice. In this context, cellular

automata make a great first step in building a system of many objects that have varying states

over time.

A cellular automaton is a model of a system of “cell” objects with the following characteristics.

• The cells live on a grid. (We’ll see examples in both one and two dimensions in this

chapter, though a cellular automaton can exist in any finite number of dimensions.)

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 1

• Each cell has a state. The number of state possibilities is typically finite. The simplest

example has the two possibilities of one and zero (otherwise referred to as “on” and “off”

or “alive” and “dead.”)

• Each cell has a neighborhood. This can be defined in any number of ways, but it is

typically a list of adjacent cells.

7.3 Where do cellular automata come from?

The development of cellular automata systems is typically attributed Stanis!aw Ulam and John

von Neumann, who were both researchers at the Los Alamos National Laboratory in New

Mexico in the 1940s. Ulam was studying the growth of crystals and von Neumann was

imagining a world of self-replicating robots. That’s right, robots that build copies of themselves.

Once we see some examples of CA visualized, it’ll be clear how one might imagine modeling

crystal growth; the robots idea is perhaps less obvious. If you forget about robots for a moment

and think about a grid of cells displaying a pattern, and through a set of simple rules that pattern

is able to create copies of itself on that grid, then what you have is a CA that exhibits behavior

similar to the biological processes of reproduction and evolution. (Incidentally, von Neumann’s

cells had 29 possible states.) Von Neumann’s work in self-replication and CA is conceptually

similar to what is probably the most famous cellular automaton: the game of life, which we will

discuss in detail in section 7.5.

[FIGURE? Can I find some nice diagram / illustration of Ulam or von Neumann’s work?]

Perhaps the most significant scientific (and lengthy) work studying cellular automata arrived in

2002: Stephen Wolfram’s 1,280-page A New Kind of Science. Wolfram’s book, available in its

entirety for free online (http://www.wolframscience.com/nksonline/toc.html), discusses how CA

are not simply neat tricks, but are relevant to the study of biology, chemistry, physics, and all

branches of science. This chapter will barely scratch the surface of the theories Wolfram outlines

(we will focus on the code implementation) so if the examples provided spark your curiosity,

you’ll find plenty more to read about in his book.

7.4 Elementary Cellular Automata

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 2

http://www.wolframscience.com/nksonline/toc.html
http://www.wolframscience.com/nksonline/toc.html

The examples in this chapter will beginwith a simulation of Wolfram’s work, followed by the

game of life. To understand Wolfram’s elementary CA, we should ask ourselves the question:

“What is the simplest cellular automaton we can imagine?” What’s truly exciting about this

question and its answer is that even with the simplest CA imaginable, we will see the properties

of complex systems at work.

Let’s build Wolfram’s elementary CA from scratch. Concepts first, then code. What are the

three key elements of a CA?

1) Grid. The simplest grid would be one-dimensional. A line of cells.

2) States. The simplest set of states (beyond having only one state) would be two states: 0 or 1.

3) Neighborhood. The simplest neighborhood in one dimension for any given cell would be the

cell itself and its two adjacent neighbors: one to the left and one to the right.

So we begin with a line of cells, each with an initial state (let’s say it is random), and each with

two neighbors. We’ll have to figure out what we want to do with the cells on the edges (since

those have only one neighbor each), but this is something we can sort out later.

We haven’t yet discussed, however, what is perhaps the most important detail of how cellular

automata work—time. We’re not really talking about real-world time here, but we’re talking

about the CA living over a period of time, which could also be called a generation and, in our

case, will likely refer to the frame count of an animation. The figures above shows us the CA at

time equals zero or generation 0. The questions we have to ask ourselves is: how do we compute

the states for all cells at generation 1? And generation 2? And so on and so forth.

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 3

Let’s say we have an individual cell in the CA, and let’s call it CELL. The formula for

calculating CELL’s state at any given time (“T”) is as follows:

CELL state at time T = f (CELL neighborhood at time T - 1)

In other words, a cell’s new state is a function of all the states in the cell’s neighborhood at the

previous moment in time (or during the previous generation). We calculate a new state value by

looking at all the previous neighbor states.

Now, in the world of cellular automata, there are many ways we could compute a cell’s state

from a group of cells. Consider blurring an image. (Guess what? Image processing works with

CA-like rules.) A pixel’s new state (i.e. its color) is the average of all of its neighbors’ colors.

We could also say that a cell’s new state is the sum of all of its neighbors’ states. With

Wolfram’s elementary CA, however, we can actually do something a bit simpler and seemingly

absurd: We can look at all the possible configurations of a cell and its neighbor and define the

state outcome for every possible configuration. It seems ridiculous—wouldn’t there be way too

many possibilities for this to be practical? Let’s give it a try.

We have three cells, each with a state of 0 or 1. How many possible ways can we configure the

states? If you love binary, you’ll notice that three cells define a 3-bit number, and how high can

you count with three bits? Up to eight. Let’s have a look.

Once we have defined all the possible neighborhoods, we need to define an outcome (new state

value: 0 or 1) for each neighborhood configuration.

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 4

The standard Wolfram model is to start Generation 0 with all cells having a state of 0 except for

the middle cell, which should have a state of 1.

Referring to the ruleset above, let’s see how a given cell (let’s pick the center one) would change

from Generation 0 to Generation 1.

[This diagram should note: Generation 0, Generation 1]

Try applying the same logic to all of the cells above and fill in the empty cells.

Now, let’s go past just one generation and color the cells —0 means white, 1 means black—and

stack the generations, with each new generation appearing below the previous one.

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 5

The low-resolution shape we’re seeing above is the “Sierpi"ski triangle.” Named after the Polish

mathematician Wac!aw Sierpi"ski, it’s a fractal pattern that we’ll examine in the next chapter.

That’s right: this incredibly simple system of zeros and ones, with little neighborhoods of three

cells, can generate a shape as sophisticated and detailed as the Sierpi"ski triangle. Let’s look at

it again, only with each cell a single pixel wide so that the resolution is much higher.

This particular result didn’t happen by accident. I picked this set of rules because of the pattern

it generates. Take a look at Figure X one more time. Notice how there are eight possible

neighborhood configurations; we therefore define a “ruleset” as a list of eight bits.

So this particular rule can be illustrated as follows:

[taken from http://mathworld.wolfram.com/ElementaryCellularAutomaton.html, need to

redraw]

Eight zeros and ones means an 8-bit number. How many combinations of eight zeros and ones

are there? Two hundred and fifty six. This is just like how we define the components of an RGB

color. We get 8 bits for red, green, and blue, meaning we make colors with values from 0 to 255

(256 possibilities).

In terms of a Wolfram elementary CA, we have now discovered that there are two hundred and

fifty-six possible rulesets. The above ruleset is commonly referred to as “Rule 90” because if

you convert the binary sequence—01011010—to a decimal number, you’ll get the integer 90.

Let’s try looking at the results of another ruleset.

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 6

http://mathworld.wolfram.com/ElementaryCellularAutomaton.html
http://mathworld.wolfram.com/ElementaryCellularAutomaton.html

As we can now see, the simple act of creating a CA and

defining a ruleset does not guarantee visually interesting

results. Out of all 256 rulesets, only a handful produce

compelling outcomes. However, the fact that even one of

these rulesets for a one-dimensional CA with only two

possible states can produce the patterns we see every day

in nature (see figure X) is quite incredible and

demonstrates how valuable these systems can be in

simulation and pattern generation.

Before we go too far down the road of how Wolfram

classifies the results of varying rulesets, let’s look at how

we actually build a Processing sketch that generates the

Wolfram CA and visualizes it onscreen.

7.5 How to Program an Elementary CA

You may be thinking: “OK, I’ve got this cell thing. And the cell thing has some properties, like a

state, what generation it’s on, who its neighbors are, where it lives pixel-wise on the screen.

And maybe it has some functions: it can display itself, it can generate its new state, etc.” This

line of thinking is an excellent one and would likely lead you to write some code like this:

class Cell {

}

This line of thinking, however, is not the road we will first travel. Later in this chapter, we will

discuss why an object-oriented approach could prove valuable in developing a CA simulation,

http://en.wikipedia.org/wiki/
File:Textile_cone.JPG
Photographer: Richard Ling
[Shall I use this or something else? If I use
this, make sure I can and that it’s cited
properly]

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 7

http://en.wikipedia.org/wiki/File:Textile_cone.JPG
http://en.wikipedia.org/wiki/File:Textile_cone.JPG
http://en.wikipedia.org/wiki/File:Textile_cone.JPG
http://en.wikipedia.org/wiki/File:Textile_cone.JPG

but to begin,we can work with a more elementary data structure. After all, what is an elementary

CA but a list of zeros and ones? Certainly, we could describe the following CA generation using

array:

int[] cells = {1,0,1,0,0,0,0,1,0,1,1,1,0,0,0,1,1,1,0,0};

To draw that array, we simply check if we’ve got a zero or a one and create a fill accordingly.

for (int i = 0; i < cells.length; i++) {!! $$ Loop through every cell

 if (cells[i] == 0) fill(255);

 else fill(0);! ! ! ! ! ! $$ Create a fill based on its state (0 or 1)

 stroke(0);

 rect(i*50,0,50,50);

}

Now that we have the array to describe the cell states of a given generation (which we’ll

ultimately consider the “current” generation), we need a mechanism by which to compute the

next generation. Let’s think about the pseudo-code of what we are doing at the moment.

For every cell in the array:

• Take a look at the neighborhood states: left, middle, right.

• Look up the new value for the cell state according to some ruleset.

• Set the cell’s state to that new value.

This may lead you to write some code like this:

for (int i = 0; i < cells.length; i++) {! ! $$ For every cell in the array

 int left = cell[i-1];! ! ! ! $$ Take a look at the neighborhood

 int middle = cell[i];

 int right = cell[i+1];

 int newstate = rules(left,middle,right);! $$ Look up new value according to rules

 cell[i] = newstate;! ! ! ! ! $$ Set the cell’s state to the new value

}

We’re fairly close to getting this right, but we’ve made one minor blunder and one major blunder

in the above code. Let’s talk about what we’ve done well so far.

Notice how easy it is to look at a cell’s neighbors. Because an array is an ordered list of data, we

can use the fact that the indices are numbered to know which cells are next to which cells. We

know that cell number fifteen, for example, has cell fourteen to its left and sixteen for its right.

More generally, we can say that for any cell i, its neighbors are (i-1) and (i+1).

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 8

We’re also farming out the calculation of a new state value to some function called rules().

Obviously, we’re going to have to write this function ourselves, but the point we’re making here

is modularity. We have a basic framework for the CA in this function, and if we later want to

change how the rules operate, we don’t have to touch that framework; we can simply rewrite the

rules() function to compute the new states differently.

So what have we done wrong? Let’s begin talking through how the code will execute. First, we

look at cell index i equals 0. Now let’s look at 0’s neighbors. Left is index -1. Middle is index

0. And right is index 1. However, our array by definition does not have an element with the

index -1. It starts with 0. This is a problem we’ve alluded to before: the edge cases. How do we

deal with the cells on the edge who don’t have a neighbor to both their left and right? Here are

three possible solutions to this problem:

1) Edges remain constant. This is perhaps the simplest solution. We never bother to evaluate

the edges and always leave their state value constant (0 or 1).

2) Edges wrap around. Think of the CA as a strip of paper and turn that strip of paper into a

ring. The cell on the left edge is a neighbor of the cell on the right and vice versa. This can

create the appearance of an infinite grid and is probably the most used solution.

3) Edges have different neighborhoods and rules. If we wanted to, we could treat the edge cells

differently and create rules for cells that have a neighborhood of two instead of three. You

may want to do this in some circumstances, but in our case, it’s going to be a lot of extra lines

of code for little benefit.

To make the code easiest to read and understand right now, we’ll go with option #1 and just skip

the edge cases, leaving their values constant. This can be accomplished by starting the loop one

cell later and ending one cell earlier:

for (int i = 1; i < cells.length-1; i++) {! $$ A loop that ignores the first

 int left = cell[i-1];! ! ! ! and last cell

 int middle = cell[i];

 int right = cell[i+1];

 int newstate = rules(left,middle,right);!

 cell[i] = newstate;! ! ! ! !

}

There’s one more problem we have to fix before we’re done. It’s subtle and you won’t get a

compilation error; the CA just won’t perform correctly. However, identifying this problem is

absolutely fundamental to the techniques behind programming CA simulations. It all lies in this

line of code:

 cell[i] = newstate;! ! ! ! !

This seems like a perfectly innocent line. After all, we’ve computed the new state value and

we’re simply giving the cell its new state. But in the next iteration, you’ll discover a massive

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 9

bug. Let’s say we’ve just computed the new state for cell #5. What do we do next? We

calculate the new state value for Cell #6.

Cell #6, generation 0 = some state, 0 or 1

Cell #6, generation 1 = a function of states for Cell #5, Cell #6, and Cell #7 at generation 0

Notice how we need the value of Cell #5 at generation 0 in order to calculate Cell #6’s new state

at Generation 1? A cell’s new state is a function of the previous neighbor states. Do we know

Cell #5’s value at Generation 0? Remember, Processing just executes this line of code for i = 5.

 cell[i] = newstate;! ! ! ! !

Once this happens, we no longer have access to Cell #5’s state at Generation 0, and cell index 5

is storing the value for Generation 1. We cannot overwrite the values in the array while we are

processing the array, because we need those values to calculate the new values. A solution to

this problem is to have two arrays, one to store the current generation states and one for the next

generation states.

int[] newcells = new int[cells.length];! ! $$ Another array to store the states for the next

! ! ! ! ! ! ! ! generation.

for (int i = 1; i < cells.length-1; i++) {!

 int left = cell[i-1];! ! ! !

 int middle = cell[i];

 int right = cell[i+1];

 int newstate = rules(left,middle,right);!

 newcells[i] = newstate;! ! ! ! $$ Saving the new state in the new array

}

Once the entire array of values is processed, we can then discard the old array and set it equal to

the new array of states.

cells = newcells;!! ! ! ! $$ The new generation becomes the current generation

We’re almost done. The above code is complete except for the fact that we haven’t yet written

the rules() function that computes the new state value based on the neighborhood (left, middle,

and right). We know that function needs to return an integer (0 or 1) as well as receive three

arguments (for the three neighbors).

 int rules (int a, int b, int c) {! $$ Function receives 3 ints and returns 1

Now, there are many ways we could write this function, but I’d like to start with a long-winded

one that will hopefully provide a clear illustration of what we are doing.

Let’s first establish how we are storing the ruleset. The ruleset, if you remember from the

previous section, is a series of eight bits (0 or 1) that defines that outcome for every possible

neighborhood configuration.

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 10

 [Same thing, redraw]

We can store this ruleset in Processing as an array.

int[] ruleset = {0,1,0,1,1,0,1,0};

And then say:

if (a == 1 && b == 1 && c == 1) return ruleset[0];

If left, middle, and right all have the state 1, then that matches the configuration 111 and the new

state should be equal to the first element in the ruleset. We can now duplicate this strategy for

all eight possibilities.

 int rules (int a, int b, int c) {

 if (a == 1 && b == 1 && c == 1) return ruleset[0];

 else if (a == 1 && b == 1 && c == 0) return ruleset[1];

 else if (a == 1 && b == 0 && c == 1) return ruleset[2];

 else if (a == 1 && b == 0 && c == 0) return ruleset[3];

 else if (a == 0 && b == 1 && c == 1) return ruleset[4];

 else if (a == 0 && b == 0 && c == 1) return ruleset[6];

 else if (a == 0 && b == 0 && c == 0) return rules[7];

 return 0;! ! $$ For this function to be valid, we have to make sure something is

 }! ! ! ! returned in the case where the states do not match one of the 8

 ! ! ! ! possibilities. We know this is impossible given the rest of our code, but

 ! ! ! ! Processing does not.

I like having the example written as above because it describes line by line exactly what is

happening for each neighborhood configuration. However, it’s not a great solution. After all,

what if we design a CA that has 4 possible states (0-3) and suddenly we have 64 possible

neighborhood configurations? With 10 possible states, we have 1,000 configurations. Certainly

we don’t want to type in 1,000 lines of code!

Another solution, though perhaps a bit more difficult to follow, is to convert the neighborhood

configuration (a 3-bit number) into a regular integer and use that value as the index into the

ruleset array. This can be done in Java like so.

 int rules (int a, int b, int c) {

 String s = "" + a + b + c;! ! $$ A quick way to join three bits into a String

 int index = Integer.parseInt(s,2);! $$ The second argument ‘2’ indicates that we intend to

 ! ! ! ! ! ! ! parse a binary number (base 2)

 return ruleset[index];

 }

There’s one tiny problem with this solution, however. Let’s say we are implementing rule 222:

int[] ruleset = {1,1,0,1,1,1,1,0};!$$ Rule 222

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 11

And we have the neighborhood “111”. The resulting state is equal to ruleset index 0, as we see

in the first way we wrote the function.

 if (a == 1 && b == 1 && c == 1) return ruleset[0];

If we convert “111” to a decimal number, we get 7. But we don’t want ruleset[7], we want

ruleset[0]. For this to work, we need to write the ruleset with the bits in reverse order, i.e.

int[] ruleset = {0,1,1,1,1,0,1,1};!$$ Rule 222 in “reverse” order

So far in this section, we’ve written everything we need to compute the generations for a

Wolfram elementary CA. Let’s take a moment to organize the above code into a class, which

will ultimately help in the design of our overall sketch.

class CA {

 int[] cells; !! ! $$ We need an array for the cells and one for the rules

 int[] ruleset;

 CA() {

 cells = new int[width];

 ruleset = {0,1,0,1,1,0,1,0};! ! ! $$ Arbitrarily starting with rule 90

 for (int i = 0; i < cells.length; i++) {

 cells[i] = 0;

 }

 cells[cells.length/2] = 1; ! ! ! $$ All cells start with state 0 except center

 }! ! ! ! ! ! ! ! cell has state 1

 void generate() {

 int[] nextgen = new int[cells.length];! ! $$ Compute the next generation

 for (int i = 1; i < cells.length-1; i++) {

 int left = cells[i-1];

 int me = cells[i];

 int right = cells[i+1];

 nextgen[i] = rules(left, me, right);

 }

 cells = nextgen;

 }

 int rules (int a, int b, int c) {! ! ! $$ Lookup a new state from ruleset

 String s = "" + a + b + c;

 int index = Integer.parseInt(s,2);

 return ruleset[index];

 }

}

7.6 Drawing an Elementary CA

What’s missing? Presumably, it’s our intention to display cells and

their states in visual form. As we saw earlier, the standard

technique for doing this is to stack the generations one on top of

each other and draw a rectangle that is black (for state 1) or white

(for state 0).

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 12

Before we implement this particular visualization, I’d like to point out two things.

One, this visual interpretation of the data is completely literal. It’s useful for demonstrating the

algorithms and results of Wolfram’s elementary CA, but it shouldn’t necessarily drive your own

personal work. It’s rather unlikely that you are building a project that needs precisely this

algorithm with this visual style. So while learning to draw the CA in this way will help you

understand and implement CA systems, this skill should exist only as a foundation.

Second, the fact that we are visualizing a one-dimensional CA with a two-dimensional image can

be confusing. It’s very important to remember that this is not a 2D CA. We are simply choosing

to show a history of all the generations stacked vertically. This technique creates a two-

dimensional image out of a many instances of one-dimensional data. But the system itself is

one-dimensional. Later, we are going to look at an actual 2D CA (the game of life) and discuss

how we might choose to display such a system.

The good news is that drawing the CA is not particularly difficult. Let’s begin by looking at how

we would render a single generation. Let’s assume we have a Processing window 600 pixels

wide and we want each cell to be a 10x10 square. We therefore have a CA with 60 cells. Of

course, we can calculate this value dynamically.

int w = 10;

int[] cells = new int[width/w];

Assuming we’ve gone through the process of generating the cell states (which we did in the

previous section), we can now loop through the entire array of cells, drawing a black cell when

the state is one and a white one when the state is zero.

for (int i = 0; i < cells.length; i++) {

 if (cells[i] == 1) fill(0);!! ! $$ Black or white fill?

 else fill(255);

 rect(i*w, 0, w, w);! ! ! ! $$ Notice how the x location is the cell index times the

} ! ! ! ! ! ! ! cell width. In the above scenario, this would give us

! ! ! ! ! ! ! cells located at x equals 0, 10, 20, 30, all the way up

 ! ! ! ! ! ! ! to 600.

In truth, we could optimize the above by having a white background and only drawing when

there is a black cell (saving us the work of drawing many white squares), but in most cases this

solution is good enough (and necessary for other more sophisticated designs with varying colors,

etc). Also, if we wanted each cell to be represented as a single pixel, we would not want to use

Processing’s rect() function, but rather access the pixel array directly.

In the above code, you’ll notice the y location for each rectangle is zero. If we want the

generations to be drawn next to each other, with each row of cells marking a new generation,

we’ll also need to compute a y location based on how many iterations of the CA we’ve executed.

We could accomplish this by adding a “generation” variable (an integer) to our CA class and

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 13

incrementing it each time through generate(). With these additions, we can now look at the CA

class with all the features for both computing and drawing the CA.

Example 7.x: Wolfram Elementary Cellular Automata

class CA {

 int[] cells; !! !

 int[] ruleset;

 int w = 10;

 int generation = 0;! ! $$ The CA should keep track of how

! ! ! ! ! many generations

 CA() {

 cells = new int[width/w];

 ruleset = {0,1,0,1,1,0,1,0};! !

 cells[cells.length/2] = 1; ! ! !

 }! ! ! ! ! ! ! !

 void generate() {

 int[] nextgen = new int[cells.length];! !

 for (int i = 1; i < cells.length-1; i++) {

 int left = cells[i-1];

 int me = cells[i];

 int right = cells[i+1];

 nextgen[i] = rules(left, me, right);

 }

 cells = nextgen;

 generation++;!! ! ! ! $$ Increment the generation counter

 }

 int rules(int a, int b, int c) {!! !

 String s = "" + a + b + c;

 int index = Integer.parseInt(s,2);

 return ruleset[index];

 }

 for (int i = 0; i < cells.length; i++) {

 if (cells[i] == 1) fill(0);! ! !

 else fill(255);

 rect(i*w, generation*w, w, w);!! $$ Set the y location according to the generation!

 } !

}

Exercise: Expand example 7.x to have the following feature: when the CA reaches the bottom of

the Processing window, the CA starts over with a new, random ruleset.

Exercise: Examine what patterns occur if you initialize the first generation with each cell having

a random state.

Exercise: Visualize the CA in a non-traditional way. Break all the rules you can; don’t feel tied

to using squares on a perfect grid with black and white colors.

Exercise: Create a visualization of the CA that scrolls upwards as the generations increase so

that you can view the generations to “infinity.” Hint: instead of keeping track of only one

generation at a time, you’ll need to store a history of generations, always adding a new one and

deleting the oldest one in each frame.

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 14

7.7 Wolfram Classification

Before we move on to looking at CA in two dimensions, it’s worth taking a brief look at

Wolfram’s classification for cellular automata. As we noted earlier, the vast majority of

elementary CA rulesets produce uninspiring results, while some result in wondrously complex

patterns like those found in nature. Wolfram has divided up the range of outcomes into four

classes:

Class 1: Uniformity. Class 1 CAs end up, after some

number of generations, with every cell constant. This is not

terribly exciting to watch. Rule 222 (see image to the left) is

a Class 1 CA; if you run it for enough generations, every cell

will eventually become and remain black.

Class 2: Repetition. Like class 1 CAs, class 2 CAs remain

stable, but the cell states are not constant. Rather, they

oscillate in some regular pattern back and forth from 0 to 1

to 0 to 1 and so on. In rule 190 to the left, each cell follows

the sequence 11101110111011101110. Rule 90 (The

Sierpi"ski Triangle) is also an example of a class 2 CA, with

a more sophisticated oscillating pattern. [It is, right? I mean

it’s not 1,3, or 4?]

Class 3: Random. Class 3 CAs appear random and have no

easily discernible pattern. In fact, rule 30 (see left) is used

as a random number generator in Wolfram’s Mathematica

software. Again, this is a moment where we can feel amazed

that such a simple system with simple rules can descend into

a chaotic and random pattern.

Class 4: Complexity. Class 4 CAs can be thought of as a

mix between Class 2 and Class 3. One can find repetitive,

oscillating patterns inside the CA, but where and when these

patterns appear is unpredictable and seemingly random.

Class 4 CA exhibit the properties of complex systems that

we described earlier in this chapter and in Chapter 6. If a

Class 3 CA wowed you, then Class 4 should really blow your

mind.

[Unsure about the placement or necessity of this section. Maybe tie in an exercise to the above

classes?]

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 15

7.8 The Game of Life

The next step we are going to take is to move from a one-dimensional CA to a two-dimensional

one. This will introduce some additional complexity; each cell will have a bigger neighborhood,

but that will open up the door to a range of possible applications. After all, most of what we do

in computer graphics lives in two dimensions and this chapter will demonstrate how to apply CA

thinking to what we draw in our Processing sketches.

In 1970 Martin Gardner wrote an article in Scientific American that documented mathematician

John Conway’s new “game of life,” describing it as “recreational” mathematics and suggesting

that the reader get out a chessboard and some checkers and “play.” While the game of life has

become something of a computational cliché (make note of the myriad of projects that display

the game of life on LEDs, screens, projection surfaces, etc.), it is still important for us to build it

from scratch. For one, it provides a good opportunity to practice our skills with two-dimensional

arrays, object orientation, etc. But perhaps more importantly, its core principles are tied directly

to our core goals—simulating the natural world with code. Though we may want to avoid

simply duplicating it without a great deal of thought or care, the algorithm and its technical

implementation will provide us with the inspiration and foundation to build simulations that

exhibit the characteristics and behaviors of biological systems of reproduction.

Unlike von Neumann, who created an extraordinarily complex system of states and rules,

Conway wanted to achieve a similar “lifelike” result with the simplest set of rules possible.

Martin Gardner outlined Conway’s goals as follows:

1. There should be no initial pattern for which there is a simple proof that the

population can grow without limit.

2. There should be initial patterns that apparently do grow without limit.

3. There should be simple initial patterns that grow and change for a considerable

period of time before coming to an end in three possible ways: fading away

completely (from overcrowding or becoming too sparse), settling into a stable

configuration that remains unchanged thereafter, or entering an oscillating phase

in which they repeat an endless cycle of two or more periods.

! ! ! ! —Martin Gardner, Scientific American 223 (October 1970): 120-123.

! ! ! ! http://www.ibiblio.org/lifepatterns/october1970.html

The above might sound a bit cryptic, but it essentially describes a Wolfram Class 4 CA. The CA

should be patterned but unpredictable over time, eventually settling into a uniform or oscillating

state. In other words, though Conway didn’t use this terminology, it should have all those

properties of a complex system that we keep mentioning.

Let’s look at how the game of life works. It won’t take up too much time or space, since we’ve

covered the basics of CA already.

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 16

http://www.ibiblio.org/lifepatterns/october1970.html
http://www.ibiblio.org/lifepatterns/october1970.html

First, instead of a line of cells, we now have a two-dimensional matrix of cells. As with the

elementary CA, the possible states are 0 or 1. Only in this case, since we’re talking about “life”,

0 means dead and 1 means alive.

The cell’s neighborhood has also expanded. If a neighbor is an adjacent cell, a neighborhood is

now nine cells instead of three.

With three cells, we had a 3-bit number or eight possible configurations. With nine cells, we

have 9 bits, or 512 possible neighborhoods. In most cases, it would be impractical to define an

outcome for every single possibility. The game of life gets around this problem by defining a set

of rules according to general characteristics of the neighborhood. In other words, is the

neighborhood overpopulated with life? Surrounded by death? Or just right? Here are the rules

of life.

1. Death. If a cell is alive (state = 1) it will die (state becomes 0) under the following

circumstances.

• Overpopulation: If the cell has four or more alive neighbors, it dies.

• Loneliness: If the cell has one or fewer alive neighbors, it dies.

2. Birth. If a cell is dead (state = 0) it will come to life (state becomes 1) if it has exactly

three alive neighbors (no more, no less.)

3. Stasis. In all other cases, the cell state does not change. To be thorough, let’s describe

those scenarios.

• Staying Alive: If a cell is alive and has exactly 2 or 3 live neighbors, it stays alive.

• Staying Dead: If a cell is dead and has anything other than 3 live neighbors, it stays

dead.

Let’s look at a few examples.

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 17

[FIGURE -- make these nice and more of them!]

With the elementary CA, we were able to look at all the generations next to each other, stacked

as rows in a 2D grid. With the game of life, however, the CA itself is in two dimensions. We

could try creating an elaborate 3D visualization of the results and stack all the generations in a

cube-structure (and in fact, you might want to try this as an exercise). Nevertheless, the typical

way the game of life is displayed is to treat each generation as a single frame in an animation.

So instead of viewing all the generations at once, we see them one at a time, and the result

resembles rapidly growing bacteria in a petri dish.

One of the exciting aspects about the game of life is there are initial patterns that yield intriguing

results. For example, some might remain static and never change.

 block beehive loaf boat

[images from wikipedia, redraw]

There are patterns that oscillate back and forth between two states.

blinker toad beacon

[images from wikipedia, redraw]

And there are also patterns that from generation to generation move about the grid. (It’s

important to note that the pattern itself isn’t actually moving, although we see the appearance of

motion in the result as the cells turn on and off.)

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 18

glider (also, glider fun, breeder, fish?) include or mention Methuselahs?

If you are interested in these patterns, there are several good “out of the box” game of life

demonstrations online that allow you to configure the CA’s initial state and watch it run at

varying speeds. Two good examples you might want examine are:

• Exploring Emergence by Mitchel Resnick and Brian Silverman, Lifelong Kindergarten Group,

MIT Media Laboratory http://llk.media.mit.edu/projects/emergence/

• Conway’s Game of Life by Steven Klise, http://conway.stevenklise.com/ (uses Processing.js!)

For the example we’ll build from scratch in the next section, it will be easier to simply randomly

set the states for each cell.

7.9 Programming the Game of Life

Now we just need to extend our code from the Wolfram CA to two dimensions. We used a one-

dimensional array to store the list of cell states before, and for the game of life, we can use a two-

dimensional array. (Reminder, for more about 2D arrays: http://www.processing.org/learning/

2darray/).

int[][] board = new int[columns][rows];

We’ll begin by initializing each cell of the board with a random state: 0 or 1.

for (int x = 0; x < columns; x++) {

 for (int y = 0; y < rows; y++) {

 current[x][y] = int(random(2));

 }

}

And to compute the next generation, just as before, we need a fresh 2D array to write to as we

analyze each cell’s neighborhood and calculate a new state.

int[][] next = new int[columns][rows];

for (int x = 0; x < columns; x++) {

 for (int y = 0; y < rows; y++) {

 next[x][y] = _______________?; $$ We need a new state for each cell

 }

}

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 19

http://llk.media.mit.edu/projects/emergence/
http://llk.media.mit.edu/projects/emergence/
http://conway.stevenklise.com
http://conway.stevenklise.com
http://www.processing.org/learning/2darray/
http://www.processing.org/learning/2darray/
http://www.processing.org/learning/2darray/
http://www.processing.org/learning/2darray/

OK, before we can sort out how to actually calculate the new state, we need to know how we can

reference each cell’s neighbor. In the case of the 1D CA, this was simple: if a cell index was i,

its neighbors were i-1 and i+1. Here each cell doesn’t have a single index, but rather a column

and row index: x,y. Looking at the diagram below, we can see that its neighbors are: (x-1,y-1)

(x,y-1), (x+1,y-2), (x-1,y), (x+1,y), (x-1,y+1), (x,y+1), and (x+1,y+1).

All of the game of life rules operate by knowing how many neighbors are alive. So if we create

a neighbor counter variable and increment it each time we find a neighbor with a state of 1, we’ll

have the total of live neighbors.

 int neighbors = 0;

 if (board[x-1][y-1] == 1) neighbors++;!! $$ Top row of neighbors

 if (board[x][y-1] == 1) neighbors++;

 if (board[x+1][y-1] == 1) neighbors++;

 if (board[x-1][y] == 1) neighbors++;!! $$ Middle row of neighbors (note we don’t

 if (board[x+1][y] == 1) neighbors++;!! count self)

 if (board[x-1][y+1] == 1) neighbors++;!! $$ Bottom row of neighbors

 if (board[x][y+1] == 1) neighbors++;

 if (board[x+1][y+1] == 1) neighbors++;

And again, just as with the Wolfram CA, we find ourselves in a situation where the above is a

useful and clear way to write the code for teaching purposes, allowing us to see every step (each

time we find a neighbor with a state of one, we increase a counter). Nevertheless, it’s a bit silly

to say, “If the cell state equals one, add one to a counter” when we could just say, “Add the cell

state to a counter.” After all, if the state is only a 0 or 1, the sum of all the neighbors’ states will

yield the total number of live cells. Since the neighbors are arranged in a mini 3x3 grid, we can

add them all up with another loop.

 for (int i = -1; i <= 1; i++) {

 for (int j = -1; j <= 1; j++) {

 neighbors += board[x+i][y+j]; $$ Add up all the neighbors’ states

 }

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 20

 }

Of course, we’ve made a mistake in the code above. In the game of life, the cell itself does not

count as one of the neighbors. We could use a conditional to skip adding the state when both i

and j equal 0, but another option would be to just subtract the cell state once we’ve finished the

loop.

 neighbors -= board[x][y];! $$ Whoops! Subtract the cell’s state, which we don’t want

! ! ! ! ! ! in the total.

Finally, once we know the total number of live neighbors, we can decide what the cell’s new

state should be according to the rules: birth, death, and stasis.

 if ((board[x][y] == 1) && (neighbors < 2)) next[x][y] = 0;

! ! ! ! $$ If it is alive and has less than 2 live neighbors, it dies

! ! ! ! from loneliness.

 else if ((board[x][y] == 1) && (neighbors > 3)) next[x][y] = 0;

! ! ! ! $$ If it is alive and has more than 3 live neighbors, it dies

! ! ! ! from overpopulation.

 else if ((board[x][y] == 0) && (neighbors == 3)) next[x][y] = 1;

! ! ! ! $$ If it is dead and has exactly 3 live neighbors, it is born!

 else next[x][y] = board[x][y];! $$ In all other cases, its state remains the same.

! !

Putting this all together, we have:

 int[][] next = new int[columns][rows];! $$ The next board

 for (int x = 1; x < columns-1; x++) {!! $$ Looping but skipping the edge cells

 for (int y = 1; y < rows-1; y++) {

 int neighbors = 0;! ! ! ! $$ Add up all the neighbor states to calculate

 for (int i = -1; i <= 1; i++) {! ! number of live neighbors

 for (int j = -1; j <= 1; j++) {

 neighbors += board[x+i][y+j];

 }

 }

 neighbors -= board[x][y];! ! ! $$ Correct by subtracting cell state itself

! ! $$ The rules of life!

 if ((board[x][y] == 1) && (neighbors < 2)) next[x][y] = 0;

 else if ((board[x][y] == 1) && (neighbors > 3)) next[x][y] = 0;

 else if ((board[x][y] == 0) && (neighbors == 3)) next[x][y] = 1;

 else next[x][y] = board[x][y];

 }

 }

 board = next;! ! $$ The 2D array “next” is now the current board

Finally, once the next generation is calculated, we can employ the identical method we used to

draw the Wolfram CA—a square for each spot, white for off, black for on.

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 21

Example 7.x: Game of Life

for (int i = 0; i < columns;i++) {

 for (int j = 0; j < rows;j++) {

 if ((board[i][j] == 1)) fill(0);! $$ Black when state = 1

 else fill(255); ! ! ! ! white when state = 0

 stroke(0);

 rect(i*w, j*w, w, w);

 }

}

Exercise: Create a game of life simulation that allows you to manually configure the grid by

drawing or with specific known patterns.

Exercise: Implement “wrap-around” for the game of life so that cells on the edges have

neighbors on the opposite side of the grid.

Exercise: [something about swapping to use only two arrays]

7.10 Object-oriented Cells

In some ways, this chapter as it stands could have come at the very beginning of this book. Over

the course of six chapters, we’ve slowly built examples of systems of objects with properties

moving about the screen. And in this chapter, although we’ve been talking about a “cell” as if it

were an object, we actually haven’t been using any object-orientation in our code (other than a

class to describe the CA system as a whole.) This has worked because a cell is such an

enormously simple object (a single bit). However, in a moment, we are going to discuss some

ideas for further developing CA systems, many of which involve keeping track of multiple

properties for each cell. For example, what if a cell needed to remember its last 10 states? Or

what if we wanted to apply some of our motion and physics thinking to a CA and have the cells

move about the window, dynamically changing their neighbors from frame to frame?

To accomplish any of these ideas (and more), it would be helpful to see how we might treat a cell

as an object with multiple properties, rather than as a single 0 or 1. To show this, let’s just

recreate the game of life simulation. Only instead of:

 int[][] board;

Let’s have:

 Cell[][] board;

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 22

where Cell is a class we will write. What are the properties of a Cell object? In our game of

life example, each cell has a location and size, as well as a state.

class Cell {

 float x, y;! $$ Location and size

 float w;

 int state;! $$ What is the cell’s state

In the non-OOP version, we used a separate 2D array to keep track of the states for the current

and next generation. By making a Cell an object, however, each cell could keep track of both

states. In this case, we’ll think of the cell as remembering its previous state (for when new

states need to be computed).

 int previous;! $$ What was its previous state?

This allows us to visualize easily more information about what the state is doing. For example,

we could choose to color a cell differently if its state has changed. For example:

Example 7.x: Game of Life OOP

void display() {

 if (previous == 0 && state == 1) fill(0,0,255);

! ! ! ! ! $$ If the cell is born, color it blue!

 else if (state == 1) fill(0);

 else if (previous == 1 && state == 0) fill(255,0,0);!

! ! ! ! ! $$ If the cell dies, color it red!

 else fill(255);

 rect(x, y, w, w);

}

Not much else about the code (at least for our purposes here) has to change. The neighbors can

still be counted the same way; the difference is that we now need to refer to the object’s state

variables as we loop through the 2D array.

for (int x = 1; x < columns-1; x++) {

 for (int y = 1; y < rows-1; y++) {

 int neighbors = 0;

 for (int i = -1; i <= 1; i++) {

 for (int j = -1; j <= 1; j++) {

 neighbors += board[x+i][y+j].previous;! $$ Use previous state when tracking neighbors

 }

 }

 neighbors -= board[x][y].previous;

 if ((board[x][y].state == 1) && (neighbors < 2)) board[x][y].newState(0);

 else if ((board[x][y].state == 1) && (neighbors > 3)) board[x][y].newState(0);

 else if ((board[x][y].state == 0) && (neighbors == 3)) board[x][y].newState(1);

 // else do nothing!!! ! ! ! ! $$ We are calling a function newState()

 }! ! ! ! ! ! ! ! ! to assign a new state to each cell

}

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 23

7.11 Variations of Traditional CA

Now that we have covered the basic concepts, algorithms, and programming strategies behind

the most famous 1D and 2D cellular automata, it’s time to think about how you might take this

foundation of code and build on it, find ways to be creative with CAs and incorporate them into

your own work. In this section, we’ll talk through some ideas for expanding the features of the

CA examples as exercises. Example answers to each of these topics can be found on the book

web site.

1. Non-rectangular Grids. There’s no particular reason why you should limit yourself to having

your cells on a rectangular grid. What happens if you design a CA with another type of shape?

Exercise: Create a CA using a grid of hexagons (as below), each with six neighbors.

2. Probabilistic. The rules of a CA don’t necessarily have to define an exact outcome.

Exercise: Rewrite the game of life rules as follows:

• Overpopulation: If the cell has four or more alive neighbors, it has a 80% chance of

dying.

• Loneliness: If the cell has one or fewer alive neighbors, it has a 60% chance of dying.

• etc.

3. Continuous. We’ve looked at examples where the cell’s state can only be a 1 or a 0. But what

if the cell’s state was a floating point number between 0 and 1?

Exercise: Adapt Wolfram elementary CA to have the state be a float. You could define rules such

as, “If the state is greater than 0.5” or “...less than 0.2”, etc.

4. Image Processing. We briefly touched on this earlier, but many image-processing algorithms

operate on CA-like rules. Blurring an image is creating a new pixel out of the average of a

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 24

neighborhood of pixels. Simulations of ink dispersing on paper or water rippling over an

image can be achieved with CA rules.

Exercise: Create a CA where a pixel is a cell and a color is its state.

5. Historical. In the game of life object-oriented example, we used two variables to keep track

of its state: current and previous. What if you use an array to keep track of a cell’s state

history? This relates to the idea of a “Complex Adaptive System,” one that has the ability to

adapt and change its rules over time by learning from its history. We’ll see an example of this

in Chapter 10: neural networks.

Exercise: Visualize the game of life by coloring each cell according to how long it’s been alive or

dead. Can you also use the cell’s history to inform the rules?

6. Moving cells. In these basic examples, cells have a fixed position on a grid, but you could

build a CA with cells that have no fixed position and instead move about the screen.

Exercise: Use CA rules in a flocking system. What if each boid had a state (that perhaps informs

its steering behaviors) and its neighborhood changed from frame to frame as it moved closer to

or further from other boids?

7. Nesting. Another feature of complex systems is that they can be nested. Our world tends to

work this way: a city is a complex system of people, a person is a complex system of organs,

an organ is a complex system of cells, and so on and so forth.

Exercise: Design a CA in which each cell itself is a smaller CA or a system of boids.

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 25

[THIS IS SOME STRAY TEXT ABOUT COMPLEX SYSTEMS THAT I MAY INTEGRATE

BACK INTO CHAPTER 6 OR SOMEWHERE IN THIS CHAPTER]

Let’s talk through some of the other properties of complex systems that help to frame the

discussion as well as provide guidelines for features we will want to include in our software

simulations.

• Non-linearity. This aspect of complex systems is often casually referred to as “The

Butterfly Effect,” coined by mathematician and meteorologist Edward Norton Lorenz, a

pioneer in the study of chaos theory. In 1961, Lorenz was running a computer weather

simulation for the second time and, perhaps to save a little time, typed in a starting value of

0.506 instead of 0.506127. The end result was completely different from the first result of

the simulation. In other words, the theory is that a single butterfly flapping its wings on

the other side of the world could cause a massive weather shift and ruin our weekend at the

beach. We call it “non-linear” because there isn’t a linear relationship between a change in

initial conditions and a change in outcome. A small change in initial conditions can have a

massive effect on the outcome. In this chapter, we’ll see how even in a system of many

zeros and ones, if we change just one bit, the result will be completely different.

• Competition and cooperation. One of the things that often makes a complex system tick is

the presence of both competition and cooperation between the elements. In our flocking

system, we had three rules—alignment, cohesion, and separation. We can think of

alignment and cohesion as “cooperation”, i.e. let’s work together to stay together and move

together. Separation, however, is a form of “competition” in that the boids are competing

for space. Take out the cooperation or take out the competition and we’re not left with any

complexity. [TIE THIS INTO THIS CHAPTER OR CHAPTER 6 SOMEHOW?]

Daniel Shiffman, Chapter 7 Cellular Automata, Nature of Code Draft, June 21, 2011 2:37 PM Page 26

Chapter 8. Fractals

“Pathological monsters! cried the terrified mathematician
Every one of them a splinter in my eye
I hate the Peano Space and the Koch Curve
I fear the Cantor Ternary Set
The Sierpinski Gasket makes me wanna cry
And a million miles away a butterfly flapped its wings
On a cold November day a man named Benoit Mandelbrot was born”
! —Jonathan Coulton, lyrics from “Mandelbrot Set”

8.1 The Nature of Geometry

Once upon a time, I took a course in high school called “Geometry.” Perhaps you did too. You
learned about shapes in one dimension, two dimensions, and maybe even three. What is the
circumference of a circle? The area of a rectangle? The distance between a point and a line?
Come to think of it, we’ve been studying geometry all along in this book, using vectors to
describe the motion of bodies in Cartesian space. This sort of geometry is generally referred to
as Euclidean Geometry, after the Greek mathematician Euclid.

[Some sort of illustration showing idealized geometrical forms vs. fractals?]

For us nature coders, we have to ask the question: Can we describe our world with Euclidean
geometry? The LCD screen I’m staring at right now sure looks like a rectangle. And the plum
I ate this morning is circular. But what if I were to look further, and consider the trees that line
the street, the leaves that hang off those trees, the lightning from last night’s thunderstorm, the
cauliflower I ate for dinner, the blood vessels in my body, and the mountains and coastlines that
cover land beyond New York City? Most of the stuff you find in nature cannot be described by
the idealized geometrical forms of Euclidean geometry. So if we want to start building
computational designs with patterns beyond the simple shapes ellipse(), rect(), and line(), it’s
time for us to learn about the concepts behind and techniques for simulating the geometry of
nature: fractals.

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 1

8.2 What is a fractal?

The term fractal (from the Latin fractus,
meaning “broken”) was coined by the
mathematician Benoit Mandelbrot in 1975. In
his seminal work “The Fractal Geometry of
Nature,” he defines a fractal as “a rough or
fragmented geometric shape that can be split
into parts, each of which is (at least
approximately) a reduced-size copy of the
whole.” Let’s illustrate this definition with two
simple examples. First, let’s think about a tree
branching structure (which we’ll write the code
for later):

Notice how the above tree has a single root with two branches connected at its end. Each one of
those branches has two branches at its end and those branches have two branches and so on and
so forth. What if we were to pluck one branch from the tree and examine it on its own?

One of the most well-known and recognizable fractal
patterns is named for Benoit Mandelbrot himself.
Generating the Mandelbrot set involves testing the
properties of complex numbers after being passed
through an iterative function. Do they tend to infinity?
Do they stay bounded? While a fascinating
mathematical discussion, this “escape-time” algorithm
is a less practical method for generating fractals than
the recursive techniques we’ll examine in this chapter.
However, an example for generating the Mandelbrot set
is included in the code examples.

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 2

Looking closely at a given section of the tree, we find that the shape of this branch resembles the
tree itself. This is known as “self-similarity”; as Mandelbrot stated, each part is a “reduced-size
copy of the whole.”

The above tree is perfectly symmetrical and the parts are, in fact, exact replicas of the whole.
However, fractals do not have to be perfectly self-similar. Let’s take a look at a graph of the
stock market (these are adapted from actual Apple stock data [But who knows what i’ll use in
the end])

A

And one more.

B

In these graphs, the x-axis is time and the y-axis is the stock’s value. It’s not an accident that I
omitted the labels, however. Graphs of stock market data are examples of fractals because they
look at the same at any scale. Are these graphs of the stock over one year? One day? One hour?
The answer is that graph A shows six months’ worth of data and graph B zooms into a tiny part
of graph A, showing six hours.

This is an example of a stochastic fractal, meaning that it is built out of probabilities and
randomness. Unlike the deterministic tree-branching structure, it is not statistically self-similar.
As we go through the examples in this chapter, we will look at both deterministic and stochastic
techniques for generating fractal patterns.

While self-similarity is a key trait of fractals, it’s important to realize that self-similarity alone
does not make a fractal. After all, a line is self-similar. A line looks the same at any scale, and
can be thought of as comprising lots of little lines. But it’s not a fractal. Fractals are

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 3

characterized by having a fine structure at small scales (keep zooming into the stock market
graph and you’ll continue to find fluctuations) and cannot be described with Euclidean geometry.
If you can say “It’s a line!” then it’s not a fractal.

Another fundamental component of fractal geometry is recursion. Fractals all have a recursive
definition and this will be our starting place as we develop techniques and code examples for
building fractal patterns in Processing.

8.3 What is recursion?

Let’s begin our discussion of recursion by examining the first appearance of fractals in modern
mathematics. In 1883, German mathematician George Cantor developed simple rules to
generate an infinite set:

1. Start with a line.

2. Erase the middle third of that line.

3. Repeat step 2 for the remaining lines again and again and again.

There is a feedback loop at work here. Take a single line and break it into two. Then return to
those two lines and apply the same rule, breaking each line into two, and now we’re left with
four. Then return to those four lines and apply the rule. Now you’ve got eight. This process is
known as recursion: the repeated application of a rule to successive results. Cantor was
interested in what happens when you apply these rules an infinite number of times. Since we
are working in a finite pixel space, we can mostly ignore the questions and paradoxes that arise
from infinite recursion. We will instead construct our code in such a way that we do not apply
the rules forever (which would cause our program to freeze).

What does it mean to have recursion in code? Before we implement the Cantor set, let’s take a
look at some simple Processing examples of recursive functions.

[ADAPTING SOME MATERIAL FROM LEARNING PROCESSING NOW]

Here’s something we’re used to doing all the time—calling a function. We do this, for example,
whenever we call any function inside of the draw() function.

void someFunction() {
 background(0);! $$ Calling the function background() in the definition of someFunction()

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 4

}

What would happen if we called the function we are defining within the function itself? Can
someFunction() call someFunction()?

void someFunction() {
 someFunction();
}

In fact, this is not only allowed, but it’s quite common (and essential to how we will implement
the Cantor set). Functions that call themselves are called recursive and are appropriate for
solving certain problems. This occurs in mathematical calculations; the most common example
is factorial.

The factorial of any number n, usually written as n!, is defined as:

n! = n * n – 1 * * 3 * 2 * 1
0! = 1

We could write a function to calculate factorial using a for loop in Processing:

int factorial(int n) {
 int f = 1;
 for (int i = 0; i < n; i++) {! $$ Using a regular loop to compute factorial
 f = f * (i+1);
 }
 return f;
}

If you look closely at how factorial works, however, you’ll notice something interesting. Let’s
examine 4! and 3!

4! = 4 * 3 * 2 * 1
3! = 3 * 2 * 1

therefore. . . 4! = 4 * 3!

We can describe this in more general terms. For any positive integer n:

n! = n * (n-1)!
1! = 1

Written in English:

The factorial of n is defined as n times the factorial of n-1.

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 5

The definition of factorial includes factorial?! It’s kind of like saying that “tired is defined as
“the feeling you get when you are tired.” This concept of self-reference in functions is an
example of recursion. And we can use it to write a factorial function that calls itself.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

Crazy, I know. But it works. Here are the steps that happen when factorial(4) is called.

[This diagram really needs to be better]

The same principle, as we will see in many examples throughout this chapter, can be applied to
graphics with interesting results. Take a look at the following recursive
function.

void drawCircle(int x, int y, float radius) {
 ellipse(x, y, radius, radius);
 if(radius > 2) {
 radius *= 0.75f;
 drawCircle(x, y, radius);!$$ The drawCircle() function is
 }! ! ! ! calling itself recursively
}

What does drawCircle() do? It draws an ellipse based on a set of parameters received as
arguments, and then it calls itself with the same parameters (adjusting them slightly). The result
is a series of circles each drawn inside the previous circle.

Notice that the above function only recursively calls itself if the radius is greater than 2. This is a
crucial point. As with iteration, all recursive functions must have an exit condition! You
likely are already aware that all for and while loops must include a boolean test that eventually
evaluates to false, thus exiting the loop. Without one, the program would crash, caught inside of
an infinite loop. The same can be said about recursion. If a recursive function calls itself forever
and ever, you’ll be most likely be treated to a nice frozen screen.

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 6

The above circles example is rather trivial; it could easily be achieved through simple iteration.
However, in more complex scenarios where a function calls itself more than once, recursion
becomes wonderfully elegant.

Let’s revise drawCircle() to be a bit more complex. For every circle displayed, draw a circle
half its size to the left and right of that circle.

Example: Recursion twice
void setup() {
 size(400,400);
 smooth();
}

void draw() {
 background(255);
 drawCircle(width/2,height/2,200);
}

void drawCircle(float x, float y, float radius) {
 stroke(0);
 noFill();
 ellipse(x, y, radius, radius);
 if(radius > 2) {
 drawCircle(x + radius/2, y, radius/2); !$$ drawCircle() calls itself twice, creating a
 drawCircle(x - radius/2, y, radius/2); !branching effect. For every circle, a smaller
 }! ! ! ! ! ! circle is drawn to the left and right.
}

With a teeny bit more code, we could add a circle above and below.

Example: Recursion four times
void drawCircle(float x, float y, float radius) {
 ellipse(x, y, radius, radius);
 if(radius > 8) {
 drawCircle(x + radius/2, y, radius/2);
 drawCircle(x - radius/2, y, radius/2);
 drawCircle(x, y + radius/2, radius/2);
 drawCircle(x, y - radius/2, radius/2);
 }
}

Just try recreating this sketch with iteration instead of recursion—I dare you!

8.3 The Cantor Set with a recursive function

Now we’re ready to visualize the Cantor set in Processing using a recursive function. Where do
we begin? Well, we know that the Cantor set begins with a line. So let’s start there and write a
function that draws a line.

void cantor(float x, float y, float len) {
 line(x,y,x+len,y);
}

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 7

The above cantor() function draws a line that starts at pixel coordinate (x,y) with a length of len.
(The line is drawn horizontally, but this is an arbitrary decision.) So if we called that function,
saying:

cantor(10, 20, width-20);

we’d get the following:

Now, the Cantor rule tells us to erase the middle third of that line, which leaves us with two lines,
one from the beginning of the line to the one-third mark, and one from the two-thirds mark to the
end of the line.

We can now add two more lines of code to draw the second pair of lines, moving the y location
down a bunch of pixels so that we can see the result below the original line.

void cantor(float x, float y, float len) {
 line(x,y,x+len,y);

 y += 20;
 line(x,y,x+len/3,y);!! $$ From start to 1/3rd.
 line(x+len*2/3,y,x+len,y); $$ From 2/3rd to end.
}

While this is a fine start, such a manual approach of calling line() for each line is not what we
want. It will get unwieldy very quickly, as we’d need four, then eight, then sixteen calls to line
(). Yes, a for loop is our usual way around such a problem, but give that a try and you’ll see that
working out the math for each iteration quickly proves inordinately complicated. Here is where
recursion comes and rescues us.

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 8

Take a look at where we draw that first line from start to the one-third mark.

 line(x,y,x+len/3,y);

Instead of calling the line() function directly, we can simply call the cantor() function itself.
After all, what does the cantor() function do? It draws a line at an (x,y) location with a given
length! And so:

 line(x,y,x+len/3,y);!! ! becomes ------->! cantor(x,y,len/3);

And for the second line:

 line(x+len*2/3,y,x+len,y);!! becomes ------->! cantor(x+len*2/3,y,len/3);

Leaving us with:

void cantor(float x, float y, float len) {
 line(x,y,x+len,y);

 y += 20;

 cantor(x,y,len/3);
 cantor(x+len*2/3,y,len/3);
}

And since the cantor() function is called recursively, the same rule will be applied to the next
lines and to the next and to the next as cantor() calls itself again and again! Now, don’t go and
run this code yet. We’re missing that crucial element: an exit condition. We’ll want to make
sure we stop at some point—for example, if the length of the line ever is less than one pixel.

void cantor(float x, float y, float len) {
 if (len >= 1) {
 line(x,y,x+len,y);
 y += 20;
 cantor(x,y,len/3);
 cantor(x+len*2/3,y,len/3);
 }
}

8.4 The Koch Curve and the ArrayList technique

Writing a function that recursively calls itself is one technique for generating a fractal pattern on
screen. However, what if you wanted the lines in the above Cantor set to exist as individual
objects that could be moved independently? The recursive function is simple and elegant, but it
does not allow you to do much besides simply generating the pattern itself. However, there is
another way we can apply recursion in combination with an ArrayList that will allow us to not
only generate a fractal pattern, but keep track of all its individual parts as objects.

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 9

To demonstrate this technique, let’s look at another famous fractal pattern, discovered in 1904 by
Swedish mathematician Helge von Koch. Here are the rules. (Note it starts the same way as the
Cantor set, with a single line.)

1. Start with a line.

2. Divide the line into three equal parts.

3. Draw an equilateral triangle (a triangle where all three sides are of equal length) using the
middle segment as its base.

4. Erase the base of the equilateral triangle (the middle line segment from step #2.)

5. Repeat step 2-4 for the remaining lines again and again and again.

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 10

The result looks like:

We could proceed in the same manner as we did with the Cantor set, and write a recursive
function that iteratively applies the Koch rules over and over. Nevertheless, we are going to
tackle this problem in a different manner by treating each segment of the Koch curve as an
individual object. This will open up some design possibilities. For example, if each segment is
an object, we could allow each segment to move independently from its original location and
participate in a physics simulation. In addition, we use a random color, line thickness, etc. to
display each segment differently.

In order to accomplish our goal of treating each segment as an individual object, we must first
decide what this object should be in the first place. What data should it store? What functions
should it have?

The Koch curve is a series of connected lines, and so we will think of each segment as a
“KochLine.” The KochLine will have a start point (“a”) and an end point (“b”). These points
will be PVector objects, and the KochLine can be drawn with Processing’s line() function.

class KochLine {

 PVector start;! ! $$ A line between two points: start and end
 PVector end;

 KochLine(PVector a, PVector b) {
 start = a.get();
 end = b.get();
 }

 void display() {
 stroke(0);
 line(start.x, start.y, end.x, end.y);! $$ Draw the line from PVector start to end

The “Monster” Curve

The Koch curve and other fractal patterns
are often called“mathematical monsters.”
This is due to an odd paradox that emerges
when you apply the recursive definition an
infinite number of times. If the length of
the original starting line is 1, the first
iteration of the Koch curve will yield a line
of length 4/3rds (each segment is 1/3rd the
length of the starting line). Do it again
and you get a length of 16/9ths. As you
iterate towards infinity, the length of the
Koch curve approaches infinity. Yet it fits
in the tiny finite space provided right here
on this paper (or screen)!

Since we are working in the Processing
land of finite pixels, this theoretical
paradox won’t be a factor for us. We’ll
have to limit the number of times we
recursively apply the Koch rules so that
our program won’t run out of memory or
crash.

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 11

 }
}

Now that we have our KochLine class, we can get started on the main program. We’ll need a
data structure to keep track of what will eventually become many KochLine objects, and an
ArrayList (see Chapter 4 for a review of ArrayLists) will do just fine.

ArrayList<KochLine> lines;

In setup(), we’ll want to create the ArrayList and add the first line segment to it, a line that
stretches from zero to the width of the sketch.

void setup() {
 size(600, 300);
 lines = new ArrayList<KochLine>();! ! $$ Create the ArrayList

 PVector start = new PVector(0, 200);! ! $$ Left side of window
 PVector end = new PVector(width, 200);! $$ Right side of window

 lines.add(new KochLine(start, end));! ! $$ The first KochLine object
}

Then in draw(), all KochLine objects (just one right now) can be displayed in a loop.

void draw() {
 background(255);
 for (KochLine l : lines) {
 l.display();
 }
}

This is our foundation. Let’s review what we have so far:

• KochLine class: A class to keep track of a line from point A to B.
• ArrayList: A list of all KochLine objects.

With the above elements, how and where do we apply Koch rules and principles of recursion?

Remember the Game of Life cellular automata? In that simulation, we always kept track of two
generations: current and next. When we were finished computing the next generation, next
became current and we moved on to computing the new next generation.

We are going to apply a similar technique here. We have an ArrayList that keeps track of the
current set of KochLine objects (at the start of the program, there is only one). We will need a
second ArrayList (let’s call it “next”) where we will place all the new KochLine objects that are
generated from applying the Koch rules. For every KochLine in the current ArrayList, four new
KochLine objects are added to the next ArrayList. When we’re done, the next ArrayList
becomes the current one.

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 12

Here’s how the code will look:

void generate() {
 ArrayList next = new ArrayList<KochLine>(); !$$ Create the next ArrayList

 for (KochLine l : lines) {!! ! ! $$ For every current line

 next.add(new KochLine(???,???));! ! $$ Add four new lines (we need to figure out how
 next.add(new KochLine(???,???));! ! to compute the locations of these lines!)
 next.add(new KochLine(???,???));
 next.add(new KochLine(???,???));
 }
 lines = next;! ! ! ! ! ! $$ The new ArrayList is now the one we care about!
}

By calling generate() over and over again (for example, each time the mouse is pressed) we
recursively apply the Koch curve rules to the existing set of KochLine objects.

Of course, the above omits the real “work” here, which is figuring out those rules. How do we
break one line segment into four as described by the rules? While this can be accomplished with
some simple arithmetic and trigonometry, since our KochLine object uses PVector, this is a nice
opportunity for us to practice our vector math. Let’s establish how many points we need to
compute for each KochLine object.

As you can see from the above figure, we need five points (A, B, C, D and E) to generate the
new KochLine objects and make the new line segments (AB, BC, CD, and DE).

 next.add(new KochLine(a,b));! !
 next.add(new KochLine(b,c));! !

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 13

 next.add(new KochLine(c,d));
 next.add(new KochLine(d,e));

Where do we get these points? Since we have a KochLine object, why not ask the KochLine
object to compute all these points for us?

void generate() {
 ArrayList next = new ArrayList<KochLine>();
 for (KochLine l : lines) {

 PVector a = l.kochA();! ! ! $$ The KochLine object has five functions, each return
 PVector b = l.kochB();! ! ! a PVector according to the Koch rules
 PVector c = l.kochC();
 PVector d = l.kochD();
 PVector e = l.kochE();

 next.add(new KochLine(a, b));
 next.add(new KochLine(b, c));
 next.add(new KochLine(c, d));
 next.add(new KochLine(d, e));
 }

 lines = next;
}

Now we just need to write five new functions in the KochLine class, each one returning a
PVector according to Figure X above. Let’s knock off kochA() and kochE() first, which are
simply the start and end points of the original KochLine.

 PVector kochA() {
 return start.get();!! $$ Note the use of get(), which returns a copy of the PVector.
 }! ! ! ! ! As was noted in Chapter X, pg X, we want to avoid making copies
! ! ! ! ! whenever possible, but here we will need a new PVector in case we
 PVector kochE() {! ! want the segments to move independently of each other.
 return end.get();
 }

Now let’s move on to points B and D. B is one-third of the way along the line segment and D is
two-thirds. Here we can make a PVector that points from start to end and shrink it to one-third
the length for B and two-thirds the length for D to find these points.

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 14

 PVector kochB() {
 PVector v = PVector.sub(end, start);!! $$ PVector from start to end
 v.div(3);! ! ! ! ! $$ One third the length
 v.add(start);!! ! ! ! $$ Add that PVector to the beginning of the line
 return v;! ! ! ! ! to find the new point.
 }

 PVector kochD() {
 PVector v = PVector.sub(end, start);
 v.mult(2/3.0);! ! ! ! ! $$ Same thing here, only we need to move 2/3rds
 v.add(start);!! ! ! ! ! along the line instead of 1/3rd.
 return v;
 }

The last point, C, is the most difficult one to find. However, if you recall that the angles of an
equilateral triangle are all sixty degrees, this makes it a little bit easier. If we know how to find
point B with a PVector one-third the length of the line, what if we were to rotate that same
PVector sixty degrees and move along that vector from point B? We’d be at point C!

 PVector kochC() {
 PVector a = start.get(); !! ! ! $$ Start at the beginning

 PVector v = PVector.sub(end, start);
 v.div(3);
 a.add(v); ! ! ! ! ! ! $$ Move 1/3rd of the way to point B

 v.rotate(-radians(60));! ! ! ! $$ Rotate “above” the line 60 degrees
 a.add(v); ! ! ! ! ! ! $$ Move along that vector to point C

 return a;
 }

Putting it all together, if we call generate() five times in setup(), we’ll see the following result.

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 15

Example 8.x: Koch Curve
ArrayList<KochLine> lines;

void setup() {
 size(600, 300);
 background(255);
 lines = new ArrayList<KochLine>();
 PVector start = new PVector(0, 200);
 PVector end = new PVector(width, 200);
 lines.add(new KochLine(start, end));

 for (int i = 0; i < 5; i++) {! ! $$ Arbitrarily apply the Koch rules five times
 generate();
 }
}

Exercise: Draw the Koch snowflake as seen on the left (or some other
variation of the Koch curve).

Exercise: Try animating the Koch curve. For example, can you draw it
from left to right? Can you vary the visual design of the line segments? Can you move the line
segments using techniques from earlier chapters?

Exercise: Rewrite the Cantor set example using objects and an ArrayList.

Exercise: Draw the Sierpinski triangle (as seen in Wolfram
elementary CA) using recursion.
[ILLUSTRATION]

8.5 Trees

The fractals we have examined in this chapter so far are deterministic, meaning they have no
randomness and will always produce the identical outcome each time they are run. They are
excellent demonstrations of classic fractals and the programming techniques behind drawing
them, but are too precise to appear like some of the fractals found in nature. In this next part of
the chapter, I want to examine some techniques behind generating a stochastic (or non-
deterministic) fractal. The example we’ll use is a branching tree. Let’s first walk through the
steps to create a deterministic version. Here are our production rules:

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 16

1. Draw a line
2. At the end of the line: (a) rotate to the left and draw a shorter line and (b) rotate to the right

and draw a shorter line.
3. Repeat step 2 for the new lines again and again.

Again, we have a nice fractal with a recursive definition: A branch is a line with two branches
connected to it.

The part that is a bit more difficult than our previous
fractals lies in the use of the word rotate in the fractal’s
rules. Each new branch must rotate relative to the
previous branch, which is rotated relative to all its
previous branches. Luckily for us, Processing has a
mechanism to keep track of rotations for us—the
transformation matrix. If you aren’t familiar with the
functions pushMatrix() and popMatrix(), I suggest you
read the online Processing tutorial 2D Transformations

(http://processing.org/learning/transform2d/), which will cover the concepts you’ll need for this
particular example.

Let’s begin by drawing a single branch, the trunk of the tree. Since we are going to involve the
rotate() function, we’ll need to make sure we are continuously translating along the branches
while we draw the tree. And since the root starts at the bottom of the window (see above), the
first step requires translating to that spot:

translate(width/2,height);

followed by drawing a line upwards:

line(0,0,0,-100);

Once we’ve finished the root, we just need to translate to the end and
rotate in order to draw the next branch. (Eventually, we’re going to need to package up what
we’re doing right now into a recursive function, but let’s sort out the steps first.)

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 17

http://processing.org/learning/transform2d/
http://processing.org/learning/transform2d/

Remember, when we rotate in Processing, we are always rotating around the point of origin, so
here the point of origin must always be translated to the end of our current branch.

translate(0,-100);
rotate(PI/6);
line(0,0,0,-100);

Now that we have a branch going to the right, we need one going to the
left. We can use pushMatrix() to save the transformation state before
we rotate, letting us call popMatrix() to restore that state and draw the
branch to the left. Let’s look at all the code together.

translate(width/2,height);
line(0,0,0,-100);!! ! $$ The root
translate(0,-100);

pushMatrix();
rotate(PI/6);! ! !
line(0,0,0,-100);!! ! $$ Branch to the right
popMatrix();

rotate(-PI/6);
line(0,0,0,-100);!! ! $$ Branch to the left

If you think of each call to the function line() as a “branch”, you can see from the above that we
have implemented our definition of branching as a line that has two lines connected to its end.
We could keep adding more and more calls to line() for more and more branches, but just as with
the Cantor set and Koch curve, our code would become incredibly complicated and unwieldy.
Instead, we can use the above logic as our foundation for writing a recursive function, replacing
the direct calls to line() with our own function called branch(). Let’s take a look.

void branch() {
 line(0, 0, 0, -100);!! $$ Draw the branch itself
 translate(0, -100);! ! $$ Translate to the end

 pushMatrix();
 rotate(PI/6);! ! ! $$ Rotate to the right and branch again
 branch();
 popMatrix();

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 18

 pushMatrix();
 rotate(-PI/6);! ! ! $$ Rotate to the left and branch again
 branch();
 popMatrix();
}

Notice how in the above code we use pushMatrix() and popMatrix() around each subsequent
call to branch(). This is one of those elegant code solutions that feels almost like magic. Each
call to branch() takes a moment to remember the location of that particular branch. If you turn
yourself into Processing for a moment and try to follow the recursive function with pencil and
paper, you’ll notice that it draws all of the branches to the right first. When it gets to the end,
popMatrix() will pop us back along all of the branches we’ve drawn and start sending branches
out to the left.

Exercise: Emulate the Processing code above and trace the tree diagram below in the order that
Processing would actually draw each branch.

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 19

You may have noticed that the recursive function we just wrote would not actually draw the
above tree. After all, it has no exit condition and would get stuck in infinite recursive calls to
itself. You’ll also probably notice that the branches of the tree get shorter at each level. Let’s
look at how we can shrink the length of the lines as the tree is drawn, and stop branching once
the lines have become too short.

void branch(float len) {! $$ Each branch now receives its length as an argument

 line(0, 0, 0, -len);
 translate(0, -len);

 len *= 0.66;! ! ! $$ The length shrinks by 2/3rds before the next branches are drawn

 if (len > 2) {
 pushMatrix();
 rotate(theta);
 branch(len); !! $$ Subsequent calls to branch() include the length argument
 popMatrix();

 pushMatrix();
 rotate(-theta);
 branch(len);
 popMatrix();
 }
}

We’ve also included a variable for theta that allows us, when writing the rest of the code in setup
() and draw(), to vary the branching angle according to, say, the mouseX location.

Example 8.x: Recursive Tree
float theta;

void setup() {
 size(300, 200);
}

void draw() {
 background(255);
 theta = map(mouseX,0,width,0,PI/2);! $$ Pick an angle according to the mouse location

 translate(width/2, height);!! ! $$ The first branch starts at the bottom of the window.
 stroke(0);
 branch(60);
}

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 20

Exercise: Vary the strokeWeight() for each branch. Make the root thick
and each subsequent branch thinner.

Exercise: The tree structure can also be generated using the ArrayList technique demonstrated
with the Koch curve. Recreate the tree using a Branch object and an ArrayList to keep track of
the branches. Hint: you’ll want to keep track of the branch directions and lengths using vector
math instead of Processing transformations.

Exercise: Once you have the tree built with an ArrayList of Branch objects, animate the tree’s
growth.

8.6 Stochastic Trees

The recursive tree fractal is a nice example of a scenario in which adding a little bit of
randomness can make the tree look more natural. Take a look outside and you’ll notice that
branch lengths and angles vary from branch to branch, not to mention the fact that branches don’t
all have exactly the same number of smaller branches. First, let’s see what happens when we
simply vary the angle and length. This is a pretty easy one, given that we can just ask Processing
for a random number each time we draw the tree.

void branch(float len) {!
 float theta = random(0,PI/3);! ! $$ Start by picking a random angle for each branch

 line(0, 0, 0, -len);
 translate(0, -len);
 len *= 0.66;
 if (len > 2) {
 pushMatrix();
 rotate(theta);
 branch(len);
 popMatrix();
 pushMatrix();
 rotate(-theta);
 branch(len);
 popMatrix();
 }
}

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 21

In the above function, we always call branch() twice. But why not pick a random number of
branches and call branch() that number of times?

Example 8.x: Stochastic Tree
void branch(float len) {!

 line(0, 0, 0, -len);
 translate(0, -len);

 if (len > 2) {

 int n = int(random(1,4));!! $$ Call branch() a random
 for (int i = 0; i < n; i++) {! number of times

 float theta = random(-PI/2, PI/2);!! $$ Each branch gets its own random angle
 pushMatrix();
 rotate(theta);
 branch(h);
 popMatrix();
 }
 }

Exercise: Set the angles of the branches of the tree according to Perlin noise values. Adjust the
noise values over time to animate the tree. See if you can get it to appear as if it is blowing in
the wind.

Exercise: Use toxiclibs to simulate tree physics. Each branch of the tree should be two particles
connected with a spring. How can you get the tree to stand up and not fall down?

8.7 L-Systems

In 1968, Hungarian botanist Aristid Lindenmayer developed a grammar-based system to model
the growth patterns of plants. L-Systems (short for Lindenmayer systems) can be used to
generate all of the recursive fractal patterns we’ve seen so far in this chapter. We don’t need L-
Systems to do the kind of work we’re doing here; however, they are incredibly useful because
they provide a mechanism for keeping track of fractal structures that require complex and multi-
faceted production rules.

In order to create an example that implements L-Systems in Processing, we are going to have to
be comfortable with working with (a) recursion, (b) transformation matrices, and (c) Strings.
So far we’ve worked with recursion and transformations, but Strings are new here. We will
assume the basics, but if that is not comfortable for you, I would suggest taking a look at the
Processing tutorial “Strings and Drawing text” available here: http://www.processing.org/
learning/text/

An L-System involves three main components:

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 22

http://www.processing.org/learning/text/
http://www.processing.org/learning/text/
http://www.processing.org/learning/text/
http://www.processing.org/learning/text/

• Alphabet. An L-System’s alphabet is comprised of the valid characters that can be
included. For example, we could say the alphabet is “ABC”, meaning that any valid
“sentence” (a string of characters) in an L-System can only include these three characters.

• Axiom. The axiom is a sentence (made up with characters from the alphabet) that describes
the initial state of the system. For example, with the alphabet “ABC”, some example
Axioms are “AAA” or “B” or “ACBAB”.

• Rules. The rules of an L-System are applied to the axiom and then applied recursively,
generating new sentences over and over again. An L-System rule includes two sentences—
a “predecessor” and a “successor.” For example, with the Rule “A --> AB”, whenever an
“A” is found in a string, it is replaced with “AB.”

Let’s begin with a very simple L-System. (This is, in fact, Lindenmayer’s original L-System for
modeling the growth of algae.)

Alphabet: A B
Axiom: A
Rules: (A --> AB) (B --> A)

As with our recursive fractal shapes, we can consider each successive application of the L-
System rules to be a generation. Generation 0 is, by definition, the axiom.

and so on and so forth. . .

Let’s look at how we might create these generations with code. We’ll start by using a String
object to store the Axiom.

String current = "A";

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 23

And once again, just as we did with the Game of Life and the Koch curve ArrayList examples,
we will need an entirely separate String to keep track of the “next” generation.

String next = "";

Now it’s time to apply the rules to the current generation and place the results in the next.

for (int i = 0; i < current.length(); i++) {
 char c = current.charAt(i);
 if (c == 'A') {!! ! ! $$ Production rule A --> AB
 next += "AB";
 } else if (c == 'B') {! ! $$ Production rule B --> A
 next += "A";
 }
}

And when we’re done, current can become next.

current = next;

To be sure this is working, let’s package it into a function and and call it every time the mouse is
pressed.

Example 8.x: Simple LSystem Sentence Generation

String current = "A";! ! $$ Start with an axiom
int count = 0;! ! ! $$ Let’s keep track of how many generations

void setup() {
 println("Generation " + count + ": " + current);
}

void draw() {
}

void mousePressed() {
 String next = "";
 for (int i = 0; i < current.length(); i++) {!! $$ Traverse the current String and make the
 char c = current.charAt(i);! ! ! ! new one.
 if (c == 'A') {
 next += "AB";
 } else if (c == 'B') {
 next += "A";
 }
 }
 current = next;
 count++;
 println("Generation " + count + ": " + current);
}

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 24

Since the rules are applied recursively to each generation, the length of the String grows
exponentially. By generation #11, the sentence is 233 characters long; by generation #22, it is
over 46,000 characters long. The Java String class, while convenient to use, is a grossly
inefficient data structure for concatenating large Strings. A String object is “immutable,” which
means once the object is created it can never be changed. Whenever you add on to the end of a
String object, Java has to make a brand new String object (even if you are using the same
variable name.)

String s = “blah”;
s += “add some more stuff”;

In most cases, this is fine, but why duplicate a 46,000 character String if you don’t have to? For
better efficiency in our L-System examples, we’ll use the StringBuffer, which is optimized for
this type of task and can easily be converted into a String after concatenation is complete.

 StringBuffer next = new StringBuffer();! ! $$ A StringBuffer for the “next” sentence
 for (int i = 0; i < current.length(); i++) {
 char c = current.charAt(i);
 if (c == 'A') {
 next.append("AB");! ! ! $$ append() instead of +=
 } else if (c == 'B') {
 next.append("A");
 }
 }
 current = next.toString();!! ! $$ StringBuffer can easily be converted back to a String

You may find yourself wondering right about now: what exactly is the point of all this? After all,
isn’t this a chapter about drawing fractal patterns? Yes, the recursive nature of the L-System
sentence structure seems relevant to the discussion, but how exactly does this model plant
growth in a visual way?

What we’ve left unsaid until now is that embedded into these L-System sentences are
instructions for drawing. Let’s see how this works with another example.

Alphabet: A
Axiom: A

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 25

Rules: (A --> ABA) (B --> BBB)

To read a sentence, we’ll translate it in the following way:

A: Draw a line forward.
B: Move forward without drawing.

Let’s look at the sentence of each generation and its visual
output.

Generation 0: A
Generation 1: ABA
Generation 2: ABABBBABA
Generation 3: ABABBBABABBBBBBBBBABABBBABA

Look familiar? This is the Cantor Set generated with an L-System.

The following alphabet is often used with L-Systems: “FG+-[]”, meaning:

F: Draw a line and move forward
G: Move forward (without drawing a line)
+: Turn right
-: Turn left
[: Save current location
]: Restore previous location

This type of drawing framework is often referred to as “Turtle graphics” (from the old days of
LOGO programming). Imagine a turtle sitting on your computer screen to which you could
issue a small set of commands: turn left, turn right, draw a line, etc. Processing isn’t set up to
operate this way by default, but by using translate(), rotate(), and line(), we can emulate a Turtle
graphics engine fairly easily.

Here’s how we would translate the above L-System alphabet into Processing code.

F: line(0,0,0,len); translate(0,len);
G: translate(0,len);
+: rotate(angle);
-: rotate(-angle);
[: pushMatrix();
]: popMatrix();

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 26

Assuming we have a sentence generated from the L-System, we can walk through the sentence
character by character and call the appropriate function as outlined above.

for (int i = 0; i < sentence.length(); i++) {

 char c = sentence.charAt(i);! $$ Looking at each character one at a time.

 if (c == 'F') {!! ! ! $$ Performing the correct task for each character. This
 line(0,0,len,0);! ! ! could also be written with a ‘case’ statement, which might
 translate(len,0);! ! ! be nicer to look at, but leaving it as an if/else if structure
 } else if (c == 'F') {! ! helps readers not familiar with case statements.
 translate(len,0);
 } else if (c == '+') {
 rotate(theta);
 } else if (c == '-') {
 rotate(-theta);
 } else if (c == '[') {
 pushMatrix();
 } else if (c == ']') {
 popMatrix();
 }
}

Here is an example that draws a more elaborate
structure with the following L-System.

Alphabet: FG+-[]
Axiom: F
Rules: F --> FF+[+F-F-F]-[-F+F+F]

The example available for download on the
book’s web site takes all of the L-System code
provided in this section and organizes it into
three classes:

• class Rule: A class that stores the predecessor
and successor Strings for an L-System rule.

• class L-System: A class to iterate a new L-
System generation (as demonstrated with the
StringBuffer technique).

• class Turtle: A class to manage reading the L-System sentence and following its instructions to
draw on the screen.

We won’t write out these classes here since they simply duplicate the code we’ve already worked
out in this chapter. However, let’s see how they are put together in the main tab.

LSystem lsys;
Turtle turtle;

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 27

void setup() {
 size(600,600);

 Rule[] ruleset = new Rule[1];! ! ! ! $$ A ruleset is an array of Rule objects
 ruleset[0] = new Rule('F',"FF+[+F-F-F]-[-F+F+F]");

 lsys = new LSystem("F",ruleset);!! ! ! $$ The L-System is created with an axiom
! ! ! ! ! ! ! ! ! and a ruleset

 turtle = new Turtle(lsys.getSentence(),width/4,radians(25));
! ! ! ! ! ! $$ The Turtle graphics renderer is given a sentence,
}! ! ! ! ! ! a starting length, and an angle for rotations

void draw() {
 background(255);
 translate(width/2,height);!! $$ Start at the bottom of the window
 turtle.render();! ! ! and draw
}

void mousePressed() {
 lsys.generate();! ! ! $$ Generate a new sentence when the mouse is pressed
 turtle.setToDo(lsys.getSentence());

 turtle.changeLen(0.5);! ! $$ The length shrinks each generation
}

Exercise: Use an L-System as a set of instructions for creating objects stored in an ArrayList.
Use trigonometry and vector math to perform the rotations instead of matrix transformations
(much like we did in the KochCurve example).

Exercise: The seminal work in L-Systems and plant structures, The Algorithmic Beauty of Plants
by Przemyslaw Prusinkiewicz and Aristid Lindenmayer, was published in 1990. It is available
for free in its entirety online at: http://algorithmicbotany.org/papers/#abop. Chapter 1 describes
many sophisticated L-Systems with additional drawing rules and available alphabet characters.
In addition, it describes several methods for generating Stochastic L-Systems. Expand the L-
System example to include one or more additional features described by Prusinkiewicz and
Lindenmayer.

Exercise: In this chapter, we emphasized using fractal algorithms for generating visual patterns.
However, fractals can be found in other creative mediums. For example, fractal patterns are
evident in Johann Sebastian Bach’s Bach's Cello Suite No. 3. The structure of David Foster
Wallance’s novel Infinite Jest was inspired by fractals. Consider using the examples in this
chapter to generate audio or text.

Daniel Shiffman, Chapter 8 Fractals, Nature of Code Draft, July 18, 2011 3:46 PM Page 28

http://algorithmicbotany.org/papers/#abop
http://algorithmicbotany.org/papers/#abop

Chapter 9. The Evolution of Code

“The fact that life evolved out of nearly nothing, some 10 billion years after the universe evolved out of literally nothing, is a fact
so staggering that I would be mad to attempt words to do it justice.”
! —Richard Dawkins

Let’s take a moment to think back to a simpler time, when you wrote your first Processing
sketches and life was free and easy. What is one of programming’s fundamental concepts that
you likely used in those first sketches and continue to use over and over again? Variables.
Variables allow you to save data and reuse that data while a program runs. This, of course, is
nothing new to us. In fact, we have moved far beyond a sketch with just one or two variables
and onto more complex data structures—variables made from custom data types (objects) that
include both data and functionality. We’ve made our own little worlds of movers and particles
and vehicles and cells and trees.

In each and every example in this book, the variables of these objects have to be initialized.
Perhaps you made a whole bunch of particles with random colors and sizes or a list of vehicles
all starting at the same XY location on screen. But instead of acting as “intelligent designers”
and assigning the properties of our objects through randomness or thoughtful consideration, we
can let a process found in nature—evolution—decide for us.

Can we think of the variables of an object as its DNA? Can objects make other objects and pass
down their DNA to a new generation? Can our simulation evolve?

The answer to all these questions is yes. After all, we wouldn’t be able to face ourselves in the
mirror as nature-of-coders without tackling a simulation of one of the most powerful algorithmic
processes found in nature itself. This chapter is dedicated to examining the principles behind
biological evolution and finding ways to apply those principles in code.

9.1 Genetic Algorithms: Inspired by Actual Events

It’s important for us to clarify the goals of this chapter. We will not go into depth about the
science of genetics and evolution as it happens in the real world. We won’t be making Punnett
squares (sorry to disappoint) and there will be no discussion of nucleotides, protein synthesis,
RNA, and other topics related to the actual biological processes of evolution. Instead, we are
going to look at the big picture and core principles behind Darwinian evolutionary theory and
develop a set of algorithms inspired by these principles. We don’t care so much about an
accurate simulation of evolution; rather, we care about methods for applying evolutionary
strategies in software.

This is not to say that a project with more scientific depth wouldn’t have value, and I encourage
all readers with a particular interest in this topic to explore possibilities for expanding the

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 1

examples provided with additional evolutionary features. Nevertheless, for the sake of keeping
things manageable, we’re going to stick to the basics, which will be plenty complex and exciting.

9.2 Evolutionary Code

The term “Genetic Algorithm” refers to a specific algorithm implemented in a specific way to
solve specific sorts of problems. While the formal Genetic Algorithm itself will serve as the
foundation for all of the examples we create in this chapter, we needn’t worry about
implementing the algorithm with perfect accuracy, given that we are looking for creative uses of
evolutionary theories in our code. To that end, I’m going to use the more general term
“Evolutionary Code” to describe what we are doing in this chapter, which will be broken down
into three parts.

1. Traditional Genetic Algorithm. We’ll begin with the traditional computer science
genetic algorithm. This algorithm was developed to solve problems in which the solution
space is so fast that a “brute force” algorithm would simply take too long. Here’s an
example: I’m thinking of a number. A number between one and one billion. How long
will it take for you to guess it? Solving a problem with “brute force” refers to the process
of checking every possible solution. Is it one? Is it two? Is it three? Is it four? And so
and and so forth. Though luck does play a factor here, with brute force we would often
find ourselves here for years while you count to one billion. However, what if I could
tell you if an answer you gave was good or bad? Warm or cold? Very warm? Hot?
Super, super cold? If you could evaluate how “fit” a guess is, you could pick other
numbers closer to that guess and arrive at the answer more quickly. Your answer could
evolve.

2. Interactive Selection. Once we establish the traditional computer science algorithm,
we’ll look at other applications of genetic algorithms in the visual arts. Interactive
selection refers to the process of evolving something (often an computer-generated
image) through user interaction. Let’s say you walk into a museum gallery and see ten
paintings. With interactive selection, you would pick your favorites and allow an
algorithmic process to generate (or “evolve”) new paintings based on your preferences.

3. Ecosystem Simulation. The traditional computer science genetic algorithm and
interactive selection technique are what you will likely find if you search online or read a
textbook about artificial intelligence. But as we’ll soon see, they don’t really simulate the
process of evolution as it happens in the real world. In this chapter, I want to also
explore techniques for simulating the process of evolution in an ecosystem of pseudo-
living beings. How can our objects that move about the screen meet each other, mate,
and pass their genes onto a new generation? [I’m going to add something to the end of
each chapter which is an assignment about building up an ecosystem step by step with
all the elements we are learning, will want to refer to that here]

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 2

9.3 Why the Genetic Algorithm

While computer simulations of evolutionary processes date back to the 1950s, much of what we
think of as genetic algorithms (also known as “GAs”) today was developed by John Holland, a
professor at University of Michigan whose book Adaptation in Natural and Artificial Systems
pioneered GA research.

To help illustrate the traditional genetic algorithm, we are going to start with monkeys. No, not
tour evolutionary ancestors. We’re going to start with some present-day monkeys that are
banging away on keyboards with the goal of typing out the complete works of Shakespeare.

[ILLUSTRATION OF A LOT OF MONKEYS AND TYPEWRITERS??]

The “infinite monkey theorem” is stated as follows: A monkey hitting keys randomly on a
typewriter for will eventually type the complete works of Shakespeare (given an infinite amount
of time). The problem with this theory is that the probability of said monkey actually typing
Shakespeare is so low that even if that monkey started at the Big Bang, it’s unbelievably unlikely
we’d even have Hamlet at this point. Let’s consider a monkey named George.

George types on a reduced typewriter containing only twenty-seven characters: twenty-six letters
and one space bar. So the probability of George hitting any given key is one in twenty-seven.

Let’s consider the phrase “to be or not to be that is the question” (we’re simplifying it from the
original “To be, or not to be: that is the question”). The phrase is 39 characters long. If George
starts typing, the chance he’ll get the first character right is 1 in 27. Since the probability he’ll get
the second character right is also 1 in 27, he has a 1 in 27*27 chance of landing the first two
characters in correct order. It follows that the probability that George will type the full phrase is:

(1/27) multiplied by itself 33 times, i.e. (1 / 27) 39

which equals a 1 in
66,555,937,033,867,822,607,895,549,241,096,482,953,017,615,834,735,226,163 chance of
getting it right!

Needless to say, even hitting just this one phrase, not to mention an entire play, is highly unlikely.
Even if George is a computer simulation and can type one million random phrases per second,
for George to have a 99% probability of eventually getting it right, he would have to type for
9,719,096,182,010,563,073,125,591,133,903,305,625,605,017 years. (Note that the age of the
universe is estimated at a mere 13,750,000,000 years.)

The point of all these unfathomably large numbers is not to give you a headache, but to
demonstrate that a brute force algorithm (typing every possible random phrase) is not a
reasonable strategy for arriving randomly at “to be or not to be that is the question”. Enter

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 3

genetic algorithms, which will show that we can still start with random phrases and find the
solution through simulated evolution.

Now, it’s worth noting that this problem (arrive at the phrase “to be or not to be”) is a ridiculous
one. Since we know the answer, all we need to do is type it. Here’s a Processing sketch that
solves the problem.

String s = “To be, or not to be: that is the question”
println(s);

Nevertheless, the point here is that solving a problem with a known answer allows us to easily
test our code. Once we’ve successfully solved the problem, we can feel more confident in using
genetic algorithms to do some actual useful work: solving problems with unknown answers. So
this first example serves no real purpose other than to demonstrate how genetic algorithms work.
If we test the GA results against the known answer and get “to be or not to be”, then we’ve
succeeded in writing our genetic algorithm.

9.4 Darwinian Natural Selection

Before we begin walking through the genetic algorithm, let’s take a moment to describe three
core principles of Darwinian evolution that will be required as we implement our simulation. In
order for natural selection to occur as it does in nature, all three of these elements must be
present.

• Heredity. There must be a process in place by which children receive the properties of
their parents. If creatures live long enough to reproduce, then their traits are passed down to
their children in the next generation of creatures.

• Variation. There must be a variety of traits present in the population or a means with
which to introduce variation. For example, let’s say there is a population of beetles in
which all the beetles are exactly the same: same color, same size, same wingspan, same
everything. Without any variety in the population, the children will always be identical to
the parents and to each other. New combinations of traits can never occur and nothing can
evolve.

• Selection. There must be a mechanism by which some members of a population have the
opportunity to be parents and pass down their genetic information and some do not. This is
typically referred to as “survival of the fittest.” For example, let’s say a population of
gazelles is chased by lions every day. The faster gazelles are more likely to escape the
lions and are therefore more likely to live longer and have a chance to reproduce and pass
their genes down to their children. The term fittest, however, can be a bit misleading.
Generally, we think of it as meaning bigger, faster, or stronger. This may be the case in
some instances, but natural selection operates on the principle that some traits are better

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 4

adapted for the creature’s environment and therefore produce a greater likelihood of
surviving and reproducing. It has nothing to do with a given creature being “better” (after
all, this is a subjective term) or more “physically fit.” In the case of our typing monkeys,
for example, a more “fit” monkey is one that has typed a phrase closer to “to be or not to
be.”

9.5 The Genetic Algorithm Itself

Before we move on to the code implementation and all of the details, I’d like to take a macro
view of the narrative of the genetic algorithm. We’ll do this in the context of the typing monkey.
The algorithm itself will be divided into two parts: a set of conditions for initialization (i.e.
Processing’s setup()) and the steps that are repeated over and over again (i.e. Processing’s draw
()) until we arrive at the correct answer.

Part 1. Initialization

• Create a population. In the context of the typing monkey example, we will create a
population of phrases. (Note we are using the term “phrase” rather loosely, meaning a
String of characters.) This begs the question: How do we create this population? Here is
where the Darwinian principle of variation applies. Let’s say, for simplicity, that we are
trying to evolve the phrase “cat”. And we have a population of three phrases.

 hug
	 	 	 rid
	 	 	 won

Sure, there is variety in the three phrases above, but try to mix and match the characters
every which way and you will never get “cat”. There is not enough variety here to evolve
the optimal solution. However, if we had a population of thousands of phrases, all
generated randomly, chances are that at least one member of the population will have a ‘c’
as the first character, one will have an ‘a’ as the second, and one a ‘t’ as the third. A large
population will most likely give us enough variety to generate the desired phrase (and in
Part 2 of the algorithm, we’ll have another opportunity to introduce even more variation in
case there isn’t enough in the first place.) So we can be more specific in describing step 1
and say:

Create a population of randomly generated elements.

This brings up another important question. What is the element itself? As we move
through the examples in this chapter, we’ll see several different scenarios; we might have a
population of images or a population of vehicles (à la Chapter 6). The key, and the part
that is new for us in this chapter, is that each member of the population has a virtual
“DNA”, a set of properties (we can call them “genes”) that describe how a given element

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 5

looks or behaves. In the case of the typing monkey, for example, the DNA is simply a
String of characters.

In the field of genetics, there is an important distinction between the concepts genotype and
phenotype. The actual genetic code—in our case, the digital information itself—is an
element’s genotype. This is what gets passed down from generation to generation. The
phenotype, however, is the expression of that data. This is one of the primary keys to your
use of genetic algorithms in your work. What are the objects in your world? How will
you design the genotype for your objects (the data structure to store each object’s
properties) as well as the phenotype (what are you using these variables to express?). We
do this all the time in graphics programming. The simplest example is probably color.

Genotype Phenotype

int c = 255;

int c = 127;

int c = 0;

 As we can see, the genotype is the digital information. Each color is a variable that stores
an integer and we choose to express that integer as a color. But how we choose to express
the data is arbitrary. In a different approach, we could have used the integer to describe the
length of a line, the weight of a force, etc.

Same Genotype Different Phenotype (line length)

int c = 255;

int c = 127;

int c = 0;

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 6

The nice thing about our monkey-typing example is that its simplicity means there is no
difference between genotype and phenotype. The DNA data itself is a String of characters
and the expression of that data is that very String.

So, we can finally end the discussion of this first step and be more specific with its
description, saying:

Create a population of N elements, each with randomly generated DNA.

Part 2. Loop

• Selection. Here is where we apply the Darwinian principle of selection. We need to
evaluate the population and determine which members are fit to be selected as parents for
the next generation. The process of selection can be divided into two steps.

• Evaluate fitness. For our genetic algorithm to function properly, we will need to
design what is referred to as a fitness function, which will produce a numeric score to
describe the fitness of a given member of the population. This, of course, is not how
the real world works at all. Creatures are not given a score; they simply survive or not.
But in the case of the traditional genetic algorithm, where we are trying to evolve an
optimal solution to a problem, we need to be able to numerically evaluate any given
possible solution.

Let’s examine our current example, the typing monkey. Again, let’s simplify the
scenario and say we are attempting to evolve the word “cat”. We have three members
of the population: “hut”, “car”, and “box”. Car is obviously the most fit, given that it
has two correct characters; hut has only one; and box has zero. And there it is, our
fitness function:

fitness = the number of correct characters

DNA Fitness

hut 1

car 2

box 0

We will eventually want to look at examples with more sophisticated fitness functions,
but this is a good place to start.

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 7

• Create a Mating Pool. Once the fitness has been calculated for all members of the
population, we can then select which members are fit to become parents and place them
in a mating pool. There are several different approaches we could take here. For
example, we could employ what is know as the elitist method and say “Which two
members of the population scored the highest? You two will make all the children for
the next generation.” This is probably one of the easier methods to program; however,
it flies in the face of the principle of variation. If two members of the population (out
of perhaps thousands) are the only ones available to reproduce, the next generation will
have little variety and this may stunt the evolutionary process. We could instead make
a mating pool out of a larger number—for example, the top 50% of the population, 500
out of 1,000. This is also just as easy to program, but it will not produce optimal
results. In this case, the high-scoring top elements would have the same chance of
being selected as a parent as the ones toward the middle. And why should element
number 500 have a solid shot of reproducing, while element number 501 has no shot?

A better solution for the mating pool is to use a probabilistic method, which we’ll call
the “wheel of fortune” (also known as the “roulette wheel”). To illustrate this method,
let’s consider a simple example where we have a population of five elements, each with
a fitness score.

Element Fitness
A 3
B 4
C 0.5
D 1.5
E 1

The first thing we’ll want to do is normalize all the scores. Remember normalizing a
vector? That involved taking an vector and standardizing its length, setting it to one.
When we normalize a set of fitness scores, we are standardizing their range to between
0 and 1, as a percentage of total fitness. Let’s add up all the fitness scores.

total fitness = 2 + 4 + 1 + 2 +1 = 10

Then let’s divide each score by the total fitness, giving us the normalized fitness.

Element Fitness Normalized Fitness Expressed as a Percentage
A 3 0.3 30%
B 4 0.4 40%
C 0.5 0.05 5%
D 1.5 0.15 15%
E 1 0.1 10%

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 8

Now it’s time for the wheel of fortune.

Spin the wheel and you’ll notice that Element B has the highest chance of being
selected, followed by A, then D, then E, and finally C. This probability-based selection
according to fitness is an excellent approach. One, it guarantees that the highest-
scoring elements will be most likely to reproduce. Two, it does not entirely eliminate
any variation from the population. Unlike with the elitist method, even the lowest-
scoring element (in this case C) has a chance to pass its information down to the next
generation. It’s quite possible (and often the case) that even low-scoring elements
have a tiny nugget of genetic code that is truly useful and should not entirely be
eliminated from the population. For example, in the case of evolving “to be or not to
be”, we might have the following elements.

 A:	 to be or not to go
	 B:	 to be or not to pi
	 C:	 xxxxxxxxxxxxxxxxbe

As you can see, elements A and B are clearly the most fit and would have the highest
score. But neither contains the correct characters for the end of the phrase. Element C,
even though it would receive a very low score, happens to have the genetic data for the
end of the phrase. And so while we would want A and B to be picked to generate the
majority of the next generation, we would still want C to have a small chance to
participate in the reproductive process.

• Reproduction. Now that we have a strategy for picking parents, we need to figure out how
make the population’s next generation, keeping in mind the Darwinian principle of heredity
—that children inherit properties from their parents. Again, there are a number of different
techniques we could employ here. For example, one reasonable (and easy to program)
strategy is asexual reproduction, meaning we pick just one parent and create a child that is

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 9

an exact copy of that parent. The standard approach with genetic algorithms, however, is
to pick two parents and create a child in two steps.

• Crossover. Crossover involves creating a child out of the genetic code of two parents.
In the case of the monkey-typing example, let’s assume we’ve picked two phrases from
the mating pool (as outlined in our selection step).

 Parent A Parent B
	 	 	 FORK	 	 	 	 PLAY

It’s now up to us to make a child phrase from these two. Perhaps the most obvious way
(let’s call this the 50/50 method) would be to take the first two characters from A and
the second two from B, leaving us with:

A variation of this technique is to pick a random midpoint. In other words, we don’t
have to pick exactly half of the code from each parent. We could sometimes end up
with FLAY, and sometimes with FORY. This is preferable to the 50/50 approach, since
we increase the variety of possibilities for the next generation.

[REVISE ILLUSTRATION TO POINT OUT RANDOM MIDPOINT]

Another possibility is to randomly select a parent for each character in the child String.
You can think of this as flipping a coin four times: heads take from parent A, tails from
parent B. Here we could end up with many different results such as: PLRY, FLRK,
FLRY, FORY, etc.

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 10

[REVISE ILLUSTRATION TO SAY HEADS OR TAILS]

This strategy will produce essentially the same results as the random midpoint method;
however, if the order of the genetic information plays some role in expressing the
phenotype, you may prefer one solution over the other.

• Mutation. Once the child DNA has been created via crossover, we apply one final
process before adding the child to the next generation—mutation. Mutation is an
optional step, as there are some cases in which it is unnecessary. However, it exists
because of the Darwinian principle of variation. We created an initial population
randomly, making sure that we start with a variety of elements. However, there can
only be so much variety when seeding the first generation, and mutation allows us to
introduce additional variety throughout the evolutionary process itself.

Mutation is described in terms of a rate. A given genetic algorithm might have a
mutation rate of 5% or 1% or 0.1%, etc. Let’s assume we just finished with crossover
and ended up with the child FORY. If we have a mutation rate of 1%, this means that
for each character in the phrase generated from crossover, there is a 1% chance that it
will mutate. What does it mean for a character to mutate? In this case, we define
mutation as picking a new random character. A 1% probability is fairly low, and most
of the time mutation will not occur at all in a four character String (96% of the time to
be more precise). However, when it does, the mutated character is replaced with a
randomly generated one. For example:

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 11

As we’ll see in some of the examples, the mutation rate can greatly affect the behavior
of the system. Certainly, a very high mutation rate (such as, say, 80%) would negate
the evolutionary process itself. If the majority of a child’s genes are generated
randomly, then we cannot guarantee that the more “fit” genes occur with greater
frequency with each successive generation.

The process of selection (picking two parents) and reproduction (crossover and mutation)
is applied over and over again N times until we have a new population of N elements. At
this point, the new population of children becomes the current population and we loop
back to evaluate fitness and perform selection and reproduction again.

Now that we have described all the steps of the genetic algorithm in detail, it’s time to translate
these steps into Processing code. Because the previous description was a bit longwinded, let’s
look at an overview of the algorithm first. We’ll then cover each of the three steps in its own
section, working out the code.

SETUP

Step 1: Initialize: Create a population of N elements, each with randomly generated DNA.

LOOP

Step 2: Selection: Evaluate the fitness of each element of the population and build a mating pool.

Step 3: Reproduction: Repeat N times:
 a. Pick two parents with probability according to relative fitness.
 b. Crossover — create a “child” by combining the DNA of these two parents.
 c. Mutation — mutate the child’s DNA based on a given probability.
 d. Add the new child to a new population.

Step 4. Replace the old population with the new population and return to Step 2.

9.6 Code for Creating the Population

Step 1: Initialize Population

If we’re going to create a population, we need a data structure to store a list of members of the
population. In most cases (such as our typing-monkey example), the number of elements in the
population can be fixed, and so we use an array. Later we’ll see examples that involve a
growing/shrinking population and we’ll use an ArrayList. But an array of what? We need an
object that stores the genetic information for a member of the population. Let’s call it DNA.

class DNA {

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 12

}

The population will then be an array of DNA objects.

DNA[] population = new DNA[100];! $$ A population of 100 DNA objects

But what stuff goes in the DNA class? For a typing monkey, its DNA is the random phrase it
types, a String of characters.

class DNA {
 String phrase;
}

While this is perfectly reasonable for this particular example, we’re not going to use an actual
String object as the genetic code. Instead, we’ll use an array of characters.

class DNA {
 char[] genes = new char[19];! $$ Each “gene” is one element of the array
! ! ! ! ! ! $$ We need 18 genes because “To be or not to be.” is 19
! ! ! ! ! ! characters long
}

By using an array, we’ll be able to extend all the code we write into other examples. For
example, the DNA of a creature in a physics system might be an array of PVectors—or for an
image, an array of integers (RGB colors). We can describe any set of properties in an array and
even though a String is convenient for this particular sketch, an array will serve as a better
foundation for future evolutionary examples.

Our genetic algorithm dictates that we create a population of N elements, each with randomly
generated DNA. Therefore, in the object’s constructor, we randomly create each character of the
array.

class DNA {
 char[] genes = new char[18];

 DNA() {
 for (int i = 0; i < genes.length; i++) {
 genes[i] = (char) random(32,128); ! $$ Picking randomly from a range of characters
 }!! ! ! ! ! ! ! with ASCII values between 32 and 128.
 }! ! ! ! ! ! ! ! For more about ASCII:
}! ! ! ! ! ! ! ! http://en.wikipedia.org/wiki/ASCII
! ! !
Now that we have the constructor, we can return to setup() and initialize each DNA object in the
population array.

DNA[] population = new DNA[100];

void setup() {
 for (int i = 0; i < population.length; i++) {
 population[i] = new DNA();! ! ! $$ Initializing each member of the population
 }

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 13

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII

}

Our DNA class is not at all complete. We’ll need to add functions to it to perform all the other
tasks in our genetic algorithm, which we’ll do as we walk through steps 2 and 3.

Step 2: Selection

Step 2 reads “evaluate the fitness of each element of the population and build a mating pool.”
Let’s first evaluate each object’s fitness. Earlier we stated that one possible fitness function for
our typed phrases is the total number of correct characters. Let’s revise this fitness function a
little bit and state it as the percentage of correct characters—i.e., the total number of correct
characters divided by the total characters.

Fitness = Total # Characters Correct / Total # Characters

Where should we calculate the fitness? Since the DNA class contains the genetic information
(the phrase we will test against the target phrase), we can write a function inside the DNA class
itself to score its own fitness. Let’s assume we have a target phrase:

String target = “To be or not to be.”;

We can now compare each “gene” against the corresponding character in the target phrase,
incrementing a counter each time we get a correct character.

class DNA {
 float fitness; !! ! $$ We are adding another variable to DNA class to track fitness

 void fitness () {! ! $$ Function to score fitness
 int score = 0;! !
 for (int i = 0; i < genes.length; i++) {
 if (genes[i] == target.charAt(i)) { ! $$ Is the character correct?
 score++;! ! ! ! ! ! $$ If so, increment the score
 }
 }
 fitness = float(score)/target.length();! $$ Fitness is percentage correct
 }

In the main tab’s draw(), the very first step we’ll take is to call the fitness function for each
member of the population.

void draw() {

 for (int i = 0; i < population.length; i++) {
 population[i].fitness();
 }

After we have all the fitness scores, we can build the “mating pool” that we’ll need for the
reproduction step. The mating pool is a data structure from which we’ll continuously pick two
parents. Recalling our description of the selection process, we want to pick parents with

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 14

probabilities calculated according to fitness. In other words, the members of the population that
have the highest fitness scores should be most likely to be picked; those with the lowest scores,
least likely.

In this book’s prologue [OK, NOW I HAVE TO WRITE THIS], we covered the basics of
probability and generating a custom distribution of random numbers. We’re going to use those
techniques to assign a probability to each member of the population. Remember the wheel of
fortune?

It might be fun to do something ridiculous and actually program a simulation of a spinning wheel
as depicted above. But this is quite unnecessary. We can pick from the five options (ABCDE)
according to their probabilities by filling an ArrayList with multiple instances of each parent. In
other words, let’s say you had a bucket of wooden letters—30 As, 40 Bs, 5 Cs, 15 Ds, and 10 Es.

If you pick a random letter out of that bucket, there’s a 30% chance you’ll get an A, a 5% chance
you’ll get a C, and so on. For us, that bucket is an ArrayList, and each wooden letter is a
potential parent. We add each parent to the ArrayList N number of times where N is equal to its
percentage score.

 ArrayList<DNA> matingPool = new ArrayList<DNA>(); $$ Start with an empty mating pool

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 15

 for (int i = 0; i < population.length; i++) {

 int n = int(population[i].fitness * 100); ! $$ n is equal to fitness times 100,
! ! ! ! ! ! ! ! ! which leaves us with an integer between 0
! ! ! ! ! ! ! ! ! and 100
 for (int j = 0; j < n; j++) {
 matingPool.add(population[i]);! ! ! $$ Add each member of the population to
 }!! ! ! ! ! ! ! ! the mating pool N times
 }

Exercise: One of the other methods we used to generate a custom distribution of random
numbers is called the “Monte Carlo method” (see p. XXX). This technique involved picking two
random numbers, with the second number acting as a qualifying number and determining if the
first random number should be kept or thrown away. Rewrite the above mating pool algorithm
to use the Monte Carlo method instead.

Step 3: Reproduction

With the mating pool ready to go, it’s time to make some babies. The first step is to pick two
parents. Again, it’s somewhat of an arbitrary decision to pick two parents. It certainly mirrors
human reproduction and is the standard means in the traditional GA, but in terms of your work,
there really aren’t any restrictions here. You could choose to perform “asexual” reproduction
with one parent, or come up with a scheme for picking three or four parents from which to
generate child DNA. For this code demonstration, we’ll stick to two parents and call them
“partnerA” and “partnerB.”

First thing we need are two random indices into the mating pool—random numbers between zero
and the size of the ArrayList.

 int a = int(random(matingPool.size()));
 int b = int(random(matingPool.size()));

We can use these indices to retrieve an actual DNA instance from the mating pool.

 DNA partnerA = matingPool.get(a);
 DNA partnerB = matingPool.get(b);

Because we have multiple instances of the same DNA objects in the mating pool (not to mention
that we could pick the same random number twice), it’s possible that partnerA and partnerB
could be the same DNA object. If we wanted to be strict, we could write some code to ensure
that we haven’t picked the same parent twice, but we would gain very little efficiency for all all
that extra code. Still, it‘s worth trying this as an exercise.

Exercise: Add code to the above to guarantee that you have picked two unique“partners.”

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 16

Once we have the two parents, we can perform crossover to generate the child DNA, followed
by mutation.

 DNA child = partnerA.crossover(partnerB);! $$ A function for crossover
 child.mutate();!! ! ! ! ! $$ A function for mutation

Of course, the functions crossover() and mutate() don’t magically exist in our DNA class; we
have to write them. The way we called crossover() above indicates that the function receives an
instance of DNA as an argument and returns a new instance of DNA, the child.

 DNA crossover(DNA partner) {! $$ Function receives one argument (DNA) and returns DNA

 DNA child = new DNA();! ! $$ The child is a new instance of DNA
! ! ! ! ! ! Note the DNA is generated randomly in the constructor
! ! ! ! ! ! but we will overwrite it below with DNA from parents

 int midpoint = int(random(genes.length));! $$ Picking a random “midpoint” in the genes array

 for (int i = 0; i < genes.length; i++) {
 if (i > midpoint) child.genes[i] = genes[i];! ! $$ Before midpoint copy genes from
 else child.genes[i] = partner.genes[i];! one parent, after midpoint!
 }!! ! ! ! ! ! ! ! ! copy genes from the other parent

 return child;!! ! ! ! ! $$ Return the new child DNA
 }

The above crossover function uses the “random midpoint” method of crossover, in which the
first section of genes is taken from parent A and the second section from parent B.

Exercise: Rewrite the crossover function to use the “coin flipping” method instead, in which
each gene has a 50% chance of coming from parent A and a 50% chance of coming from parent
B.

The mutate() function is even simpler to write than crossover(). All we need to do is loop
through the array of genes and for each randomly pick a new character according to the mutation
rate. With a mutation rate of 1%, for example, we would pick a new character one time out of a
hundred.

float mutationRate = 0.01;

if (random(1) < mutationRate) {

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 17

 // pick a new character! ! $$ Any code here would be executed 1% of the time
}

The entire function therefore reads:

 void mutate() {
 for (int i = 0; i < genes.length; i++) {! $$ Looking at each gene in the array
 if (random(1) < mutationRate) {
 genes[i] = (char) random(32,128);! $$ Mutation, a new random character
 }
 }
 }

9.7 Genetic Algorithm: Putting It All Together

You may have noticed that we’ve essentially walked through the steps of the genetic algorithm
twice, once describing it in narrative form and another time with code snippets implementing
each of the steps. What I’d like to do in this section is condense the previous two sections into
one page, with the algorithm described in just three steps and the corresponding code alongside.

Example 8.1: Genetic Algorithm, Evolving Shakespeare

! ! ! ! ! ! ! $$ Variables we need for our GA
float mutationRate; ! ! $$ Mutation rate
int totalPopulation = 150;! ! ! $$ Population Total

DNA[] population; ! ! ! $$ population array
ArrayList<DNA> matingPool;! ! ! $$ mating pool ArrayList
String target;! ! ! ! ! $$ Target phrase

void setup() {
 size(200, 200);

 target = "To be or not to be.";! ! ! $$ Initializing target phrase and mutation rate
 mutationRate = 0.01;

 population = new DNA[totalPopulation];!! $$ STEP 1: INITIALIZE POPULATION
 for (int i = 0; i < population.length; i++) {
 population[i] = new DNA();
 }
}

void draw() {
! ! ! ! ! ! ! ! ! $$ STEP 2: SELECTION

 for (int i = 0; i < population.length; i++) {! $$ Step 2a: calculate fitness
 population[i].fitness();
 }

 ArrayList<DNA> matingPool = new ArrayList<DNA>();! $$ Step 2b: build mating pool

 for (int i = 0; i < population.length; i++) {
 int n = int(population[i].fitness * 100); ! $$ Add each member n times according
 for (int j = 0; j < n; j++) { ! to fitness score
 matingPool.add(population[i]);
 }
 }

 for (int i = 0; i < population.length; i++) {! $$ STEP 3: REPRODUCTION

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 18

 int a = int(random(matingPool.size()));
 int b = int(random(matingPool.size()));
 DNA partnerA = matingPool.get(a);
 DNA partnerB = matingPool.get(b);
 DNA child = partnerA.crossover(partnerB);! ! $$ Step 3a: Crossover
 child.mutate(mutationRate);! ! ! ! $$ Step 3b: Mutation

 population[i] = child;! ! $$ Note we are overwriting the population with the new
 }! ! ! ! ! ! children. When draw() loops, we will perform all the same
 ! ! ! ! ! ! steps with the new population of children.
}

The main tab precisely mirrors the steps of the genetic algorithm. However, most of the
functionality called upon is actually present in the DNA class itself.

class DNA {

 char[] genes;! ! ! ! ! ! ! $$ Genetic data—GENOTYPE
 float fitness;

 DNA() {! ! ! ! ! ! ! ! $$ Create DNA randomly
 genes = new char[target.length()];
 for (int i = 0; i < genes.length; i++) {
 genes[i] = (char) random(32,128);
 }
 }

 void fitness() {! ! ! ! ! ! $$ Calculate fitness
 int score = 0;
 for (int i = 0; i < genes.length; i++) {
 if (genes[i] == target.charAt(i)) {
 score++;
 }
 }
 fitness = float(score)/target.length();
 }

 DNA crossover(DNA partner) {! ! ! ! $$ Crossover
 DNA child = new DNA(genes.length);
 int midpoint = int(random(genes.length));
 for (int i = 0; i < genes.length; i++) {
 if (i > midpoint) child.genes[i] = genes[i];
 else child.genes[i] = partner.genes[i];
 }
 return child;
 }

 void mutate(float mutationRate) {! ! ! $$ Mutation
 for (int i = 0; i < genes.length; i++) {
 if (random(1) < mutationRate) {
 genes[i] = (char) random(32,128);
 }
 }
 }

 String getPhrase() {!! ! ! $$ convert to String—PHENOTYPE
 return new String(genes);
 }

}

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 19

Exercise: Add features to the above example to report more information about the progress of the
genetic algorithm itself. For example, show the phrase closest to the target each generation, as
well as report on the number of generations, average fitness, etc. Stop the genetic algorithm
once it has solved the phrase. Consider writing a Population class to manage the GA (instead of
including all the code in draw()).

9.8 Genetic Algorithm: Make It Your Own

The nice thing about using genetic algorithms in a project is that example code can easily be
ported from application to application. The core mechanics of selection and reproduction don’t
need to change. There are, however, three key components to genetic algorithms that you, the
developer, will have to customize for each use. This is crucial to moving beyond trivial
demonstrations of evolutionary simulations (as in the Shakespeare example) to creative uses in
projects that you make in Processing and other creative programming environments.

Key #1: Varying the variables

There aren’t a lot of variables to the genetic algorithm itself. In fact, if you look at the previous
example’s code, you’ll see only two global variables (not including the arrays and ArrayLists to
store the population and mating pool).

float mutationRate = 0.01;
int totalPopulation = 150;

These two variables can greatly affect the behavior of the system, and it’s not such a good idea to
arbitrarily assign them values (though tweaking them through trial and error is a perfectly
reasonable way to arrive at optimal values).

The values I chose for the Shakespeare demonstration were picked to virtually guarantee that the
genetic algorithm would solve for the phrase, but not too quickly (approximately 1,000
generations on average) so as to demonstrate the process over a reasonable period of time. A
much larger population, however, would yield faster results (if the goal were algorithmic
efficiency rather than demonstration). Here is a table of some results.

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 20

Total Population Mutation Rate Number of Generations
until Phrase Solved

Total Time
(in seconds) until

Phrase Solved

150 1% 1089 18.8

300 1% 448 8.2

1,000 1% 71 1.8

50,000 1% 27 4.3

Notice how increasing the population size drastically reduces the number of generations needed
to solve for the phrase. However, it doesn’t necessarily reduce the amount of time. Once our
population balloons to fifty thousand elements, the sketch runs slowly, given the amount of time
required to process fitness and build a mating pool out of so many elements. (There are, of
course, optimizations that could be made should you require such a large population).

In addition to the population size, the mutation rate can greatly affect performance.

Total Population Mutation Rate Number of Generations
until Phrase Solved

Total Time
(in seconds) until

Phrase Solved

1,000 0% 37 or never? 1.2 or never?

1,000 1% 71 1.8

1,000 2% 60 1.6

1,000 10% never? never?

Without any mutation at all (0%), you just have to get lucky. If all the correct characters are
present somewhere in some member of the initial population, you’ll evolve the phrase very
quickly. If not, there is no way for the sketch to ever reach the exact phrase. Run it a few times
and you’ll see both instances. In addition, once the mutation rate gets high enough (10%, for
example), there is so much randomness involved (1 out of every 10 letters is random in each new
child), that the simulation is pretty much back to a random typing monkey. In theory, it will
eventually solve the phrase, but you may be waiting much, much longer than reasonable.

Key #2: The fitness function

Playing around with the mutation rate or population total is pretty easy and involves little more
than typing numbers in your sketch. The real hard work of a developing a genetic algorithm is in
writing a fitness function. After all, if you cannot define your problem’s goals and evaluate
numerically how well those goals have been achieved, then you will not have successful
evolution in your simulation.

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 21

Before we think about other scenarios with other fitness functions, let’s look at flaws in our
Shakespearean fitness function. Consider solving for a phrase that is not nineteen characters
long, but one thousand. Now, let’s say there are two members of the population, one with eight
hundred characters correct and one with eight hundred and one. Here are their fitness scores:

Phrase A: 800 characters correct	 	 fitness = 80%
Phrase B: 801 characters correct	 	 fitness = 80.1%

There are a couple of problems here. First, we are adding elements to the mating pool N
numbers of times where N equals fitness multiplied by one hundred. Objects can only be added
to an ArrayList a whole number of times, and so A and B will both be added 80 times, giving
them an equal probability of being selected. Even with an improved solution that takes floating
point probabilities into account, 80.1% is only a teeny tiny bit higher than 80%. But getting 801
characters right is a whole lot better than 800 in the evolutionary scenario. We really want to
make that additional character count. We want the fitness score for 801 characters to be
exponentially better than the score for 800.

To put it another way, let’s graph the fitness function.

This is a linear graph; as the number of characters goes up, so does the fitness score. However,
what if the fitness increased exponentially as the number of correct characters increased? Our
graph could then look something like:

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 22

The more correct characters, the even greater the fitness. We can achieve this type of result in a
number of different ways. For example, we could say:

fitness = (number of correct characters) * (number of correct characters)

Let’s say we have two members of the population, one with 5 correct characters and one with 6.
The number 6 is a 20% increase over the number 5. Let’s look at the fitness scores squared.

Characters correct	 	 Fitness
5	 	 	 	 	 25
6	 	 	 	 	 36

The fitness scores increase exponentially relative to the number of correct characters. 36 is a
44% increase over 25.

Here’s another formula.

fitness = 2(number of correct characters)

Characters correct	 	 Fitness
1	 	 	 	 	 2
2	 	 	 	 	 4
3	 	 	 	 	 8
4	 	 	 	 	 16

Here, the fitness scores increase at a faster rate, doubling with each additional correct character.

Exercise: Rewrite the fitness function to increase exponentially according to the number of
correct characters. Note you will also have to normalize the fitness values to a range between 0
and 1 so they can be added to the mating pool a reasonable number of times.

While this rather specific discussion of exponential vs. linear fitness functions is an important
detail in the design of a good fitness function, I don’t want us to miss the more important point
here: Design your own fitness function! I seriously doubt that any project you undertake in
Processing with genetic algorithms will actually involve counting the correct number of
characters in a String. In the context of this book, it’s more likely you will be looking to evolve
a creature that is part of a physics system. Perhaps you are looking to optimize the weights of
steering behaviors so a creature can best escape a predator or avoid an obstacle or make it
through a maze. You have to ask yourself, what are you looking to evaluate?

Let’s consider a racing simulation in which a vehicle is evolving a design optimized for speed.

fitness = total number of frames required for vehicle to reach target

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 23

How about a cannon that is evolving the optimal way to shoot a target?

fitness = cannonball distance to target

The design of computer-controlled players in a game is also a common scenario. Let’s say you
are programming a soccer game in which the user is the goalie. The rest of the players are
controlled by your program and have a set of parameters that determine how they kick a ball
towards the goal. What would the fitness score for any given player be?

fitness = total goals scored

This, obviously, is a simplistic take on the game of soccer, but it illustrates the point. The more
goals a player scores, the higher its fitness, and the more likely its genetic information will
appear in the next game. Even with a fitness function as simple as the one described here, this
scenario is demonstrating something very powerful—the adaptability of a system. If the players
continue to evolve from game to game to game, when a new human user enters the game with a
completely different strategy, the system will quickly discover that the fitness scores are going
down and evolve a new optimal strategy. It will adapt. (Don’t worry, there is very little danger
in this resulting in sentient robots that will enslave all humans.)

In the end, if you do not have a fitness function that effectively evaluates the performance of the
individual elements of your population, you will not have any evolution. And the fitness
function from one example will likely not apply to a totally different project. So this is the part
where you get to shine. You have to design a function, sometimes from scratch, that works for
your particular project. And where do you do this? All you have to edit are those few lines of
code inside the function that computes the fitness variable.

void fitness() {
 ????????????
 ????????????
 fitness = ??????????
}

Key #3: Genotype and Phenotype

The final key to designing your own genetic algorithm relates to how you choose to encode the
properties of your system. What are you trying to express, and how can you translate that
expression into a bunch of numbers? What is the genotype and phenotype?

When talking about the fitness function, we happily assumed we could create computer-
controlled kickers that each had a “set of parameters that determine how they kick a ball towards
the goal.” However, what those parameters are and how you choose to encode them is up to
you.

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 24

We started with the Shakespeare example because of how easy it was to design both the
genotype (an array of characters) and its expression, the phenotype (the String drawn in the
window).

The good news is—and we hinted at this at the start of this chapter—you’ve really been doing
this all along. Anytime you write a class in Processing, you make a whole bunch of variables.

class Vehicle {
 float maxspeed;
 float maxforce;
 float size;
 float separationWeight;
 // etc.

All we need to do to evolve those parameters is to turn them into an array, so that the array can
be used with all of the functions—crossover(), mutate(), etc.—found in the DNA class. One
common solution is to use an array of floating point numbers between 0 and 1.

class DNA {

 float[] genes; ! ! $$ An array of floats

 DNA(int num) {
 genes = new float[num];
 for (int i = 0; i < genes.length; i++) {
 genes[i] = float(1);! $$ always pick a number between 0 and 1
 }
 }

Notice how we’ve now put the genetic data (genotype) and its expression (phenotype) into two
separate classes. The DNA class is the genotype and the Vehicle class uses a DNA object to
drive its behaviors and express that data visually—it is the phenotype. The two can be linked by
creating a DNA instance inside the vehicle class itself.

class Vehicle {
 DNA dna;! ! ! ! $$ A DNA object embedded into the Vehicle class

 float maxspeed;
 float maxforce;
 float size;
 float separationWeight;
 // etc.

 Vehicle() {
 DNA = new DNA(4);
 maxspeed = dna.genes[0];!$$ Using the genes to set variables
 maxforce = dna.genes[1];
 size = dna.genes[2];
 separationWeight = dna.genes[3];
 // etc.
 }

Of course, you most likely don’t want all your variables to have a range between 0 and 1. But
rather than try to remember how to adjust those ranges in the DNA class itself, it’s easier to pull

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 25

the genetic information from the DNA object and use Processing’s map() function to change the
range. For example, if you want a size variable between 10 and 72, you would say:

 size = map(dna.genes[2],0,1,10,72);

In other cases, you will want to design a genotype that is an array of objects. Consider the
design of a rocket with a series of “thruster” engines. You could describe each thruster with a
PVector that outlines its direction and relative strength.

class DNA {

 PVector[] genes; ! ! $$ The genotype is an array PVectors

 DNA(int num) {
 genes = new float[num];
 for (int i = 0; i < genes.length; i++) {
 float angle = random(TWO_PI);
 genes[i] = new PVector(cos(angle),sin(angle));!$$ A PVector pointing in a random direction
 genes[i].mult(random(10)); ! ! ! ! $$ And scaled randomly
 }
 }

The phenotype would be a Rocket class that participates in a physics system.

class Rocket {
 DNA dna;
 // etc.

What’s great about this technique of dividing the genotype and phenotype into separate classes
(DNA and Rocket for example) is that when it comes time to build all of the code, you’ll notice
that the DNA class we developed earlier remains intact. The only thing that changes is the
array’s data type (float, PVector, etc.) and the expression of that data in the phenotype class.

In the next section, we’ll follow this idea a bit further and walk through the necessary steps for
an example that involves moving bodies and an array of PVectors as DNA.

9.9 Evolving Forces: Smart Rockets

We picked the Rocket idea for a specific reason. In 2009, Jer Thorp (http://blprnt.com) released
a great genetic algorithms example on his blog entitled “Smart Rockets.” Jer points out that
NASA uses evolutionary computing techniques to solve all sorts of problems, from satellite
antenna design to rocket firing patterns. This inspired him to create a Flash demonstration of
evolving rockets. Here is a description of the scenario:

A population of rockets launches from the bottom of the screen with the goal of hitting a target at
the top of the screen (with obstacles blocking a straight line path).

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 26

http://blprnt.com
http://blprnt.com

Each rocket is equipped with five thrusters of variable strength and direction. The thrusters
don’t fire all at once and continuously; rather, they fire one at a time in a custom sequence.

In this section, we’re going to evolve our own simplified Smart Rockets, inspired by Jer Thorp’s.
When we get to the end of the section, we’ll leave implementing some of Jer’s additional
advanced features as an exercise.

Our rockets will have only one thruster, and this thruster will be able to fire in any direction with
any strength in every single frame of animation. This isn’t particularly realistic, but it will make
building out the framework a little easier. (We can always make the rocket and its thrusters more
advanced and realistic later.)

Let’s start by taking our basic Mover class from Chapter 2 examples and renaming it Rocket.

class Rocket {

 PVector location;! ! $$ A Rocket has three vectors: location, velocity, acceleration
 PVector velocity;
 PVector acceleration;

 void applyForce(PVector f) {! $$ Accumulating forces into acceleration (Newton’s 2nd law)
 acceleration.add(f);
 }

 void update() {!! ! ! $$ Our simple physics model (Euler integration)
 velocity.add(acceleration);! $$ velocity changes according to acceleration
 location.add(velocity);! ! $$ location changes according to velocity
 acceleration.mult(0);
 }
}

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 27

Using the above framework, we can implement our smart rocket by saying that for every frame
of animation, we call applyForce() with a new force. The “thruster” applies a single force to the
rocket each time through draw().

Considering this example, let’s go through the three keys to programming our own custom
genetic algorithm example as outlined in the previous section.

Key #1: Population size and mutation rate

We can actually hold off on this first key for the moment. Our strategy will be to pick some
reasonable numbers (a population of 100 rockets, mutation rate of 1%) and build out the system,
playing with these numbers once we have our sketch up and running.

Key #2: The fitness function

We stated the goal of a rocket reaching a target. In other words, the closer a rocket gets to the
target, the higher the fitness. Fitness is inversely proportional to distance: the smaller the
distance, the greater the fitness; the greater the distance, the smaller the fitness.

Let’s assume we have a PVector target.

 void fitness() {
 float d = PVector.dist(location,target);! $$ How close did we get?
 fitness = 1/d;! ! ! ! ! $$ Fitness is inversely proportional to distance
 }

This is perhaps the simplest fitness function we could write. By using one divided by distance,
large distances become small numbers and small distances become large.

distance 1 / distance
300	 	 	 	 	 1 / 300 = 0.0033
100	 	 	 	 	 1 / 100 = 0.01
5	 	 	 	 	 1 / 5 = 0.2
1	 	 	 	 	 1 / 1 = 1.0
0.1	 	 	 	 	 1 / 0.1 = 10

And if we wanted to use our exponential trick from the previous section, we could use one
divided by distance squared.

distance 1 / distance (1 / distance)2

300	 	 	 	 	 1 / 400 = 0.0025	 	 0.00000625
100	 	 	 	 	 1 / 100 = 0.01	 	 0.0001
5	 	 	 	 	 1 / 5 = 0.2		 	 0.04	
1	 	 	 	 	 1 / 1 = 1.0		 	 1.0

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 28

0.1	 	 	 	 	 1 / 0.1 = 10	 	 	 100

There are several additional improvements we’ll want to make to the fitness function, but this
simple one is a good start.

void fitness() {
 float d = PVector.dist(location,target);!
 fitness = pow(1/d,2);!! ! $$ Squaring 1 divided by distance
}

Key #3: Genotype and Phenotype

We stated that each Rocket has a thruster that fires in a variable direction with a variable
magnitude in each frame. And so we need a PVector for each frame of animation. Our
genotype, the data required to encode the Rocket’s behavior, is therefore an array of PVectors.

class DNA {
 PVector[] genes;

The happy news here is that we don’t really have to do anything else to the DNA class. All of
the functionality we developed for the typing monkey (crossover and mutation) applies here.
The one difference we do have to consider is how we initialize the array of genes. With the
typing monkey, we had an array of characters and picked a random character for each element of
the array. Here we’ll do exactly the same thing and initialize a DNA sequence as an array of
random PVectors. Now, your instinct in creating a random PVector might be as follows:

PVector v = new PVector(random(-1,1),random(-1,1));

This is perfectly fine and will likely do the trick. However, if we were to draw every single
possible vector we might pick, we would get the following:

It’s a square. In this case, it probably doesn’t matter, but there is a slight bias to diagonals here
given that a PVector from the center of a square to a corner is longer than a purely vertical or
horizontal one.

What would be better here is to pick a random angle and make a PVector of length one from that
angle, giving us a circle.

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 29

This is easy to do with polar to Cartesian coordinates (see p. XXX, chapter 3)

for (int i = 0; i < genes.length; i++) {
 float angle = random(TWO_PI);
 genes[i] = new PVector(cos(angle), sin(angle));! $$ Making a PVector from a random angle
}

A PVector of length one is actually going to be quite a large force. Remember, forces are applied
to acceleration, which accumulates into velocity thirty times per second. So, for this example,
we can also add one more variable to the DNA class: a maximum force that scales all the
PVectors. This will control the thruster power.

class DNA {

 PVector[] genes;! ! $$ The genetic sequence is an array of PVectors

 float maxforce = 0.1;!! $$ How strong can the thrusters be?

 DNA() {
 genes = new PVector[lifetime];!! ! $$ We need a PVector for every frame of the
 ! ! ! ! ! ! ! ! rocket’s life!
 for (int i = 0; i < genes.length; i++) {
 float angle = random(TWO_PI);
 genes[i] = new PVector(cos(angle), sin(angle));
 genes[i].mult(random(0, maxforce));! ! $$ Scaling the PVectors randomly, but no
 }!! ! ! ! ! ! ! ! stronger than maximum force
 }

Notice also that we created an array of PVectors with length “lifetime.” We need a PVector for
each frame of the Rocket’s life, and the above assumes the existence of a global variable
“lifetime” that stores the total number of frames in each generation’s life cycle.

The expression of this array of PVectors, the phenotype, is a Rocket class modeled on our basic
PVector and forces examples from Chapter 2. All we need to do is add an instance of a DNA
object to the class. The fitness variable will also live here. Only the Rocket object knows how
to compute its distance to the target, and therefore the fitness function will live here in the
phenotype as well.

class Rocket {

 DNA dna;! ! ! $$ A Rocket has DNA
 float fitness;! ! $$ A Rocket has fitness

 PVector location;
 PVector velocity;
 PVector acceleration;

What are we using the DNA for? We are marching through the array of PVectors and applying
them one at a time as a force to the rocket. To do this, we’ll also have to add an integer that acts
as a counter to walk through the array.

 int geneCounter = 0;

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 30

 void run() {
 applyForce(dna.genes[geneCounter]);! $$ Apply a force from the genes array
 geneCounter++;! $$ Go to the next force in the genes array
 update();! ! $$ Update the Rocket’s physics! !
 }

Putting it all together

We now have our DNA class (genotype) and our Rocket class. The last piece of the puzzle is a
Population class, which manages an array of Rockets and has the functionality for selection and
reproduction. Again, the happy news here is that we barely have to change anything from the
Shakespeare monkey example. The process for building a mating pool and generating a new
array of child Rockets is exactly the same as what we did with our population of Strings.

class Population {

 float mutationRate; !! ! $$ Population has variables to keep track of mutation rate,
 Rocket[] population; ! current population array, mating pool, and number of
 ArrayList<Rocket> matingPool; !generations
 int generations;

 void fitness() {}! ! ! $$ These functions haven’t changed so no need to go through
 void selection() {}! ! ! the code again
 void reproduction() {}

There is one fairly significant change, however. With typing monkeys, a random phrase was
evaluated as soon as it was created. The String of characters had no lifespan; it existed purely for
the purpose of calculating its fitness and then we moved on. The rockets, however, we need to
allow to exist for a period of time. They need to live for a while in order to make their attempt to
reach the target. Therefore, we need to add one more function to the Population class that runs
the physics simulation itself. This is identical to what we did in the run() function of a particle
system—update all the particle locations and draw them.

 void live () {
 for (int i = 0; i < population.length; i++) {
 population[i].run();! ! $$ The run function takes care of the forces,
 }!! ! ! ! ! updating the Rocket’s location, and displaying it
 }

Finally, we’re ready for setup() and draw(). Here in the main tab, our primary responsibility is
implement the steps of the genetic algorithm in the appropriate order by calling the functions in
the Population class.

 population.fitness();
 population.selection();
 population.reproduction();

However, unlike the Shakespeare example, we don’t want to do this every frame. Rather, our
steps work as follows:

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 31

1. Create a population of Rockets
2. Let the Rockets live for N frames
3. Evolve the next generation

a. Selection
b. Reproduction

4. Return to step #2

Example 9.x: Simple Smart Rockets
int lifetime; ! $$ How many frames does! ! !
! ! ! a generation live for?

int lifeCounter;! $$ What frame are we on?

Population population; ! $$ The population

void setup() {
 size(640, 480);
 lifetime = 500;
 lifeCounter = 0;

 float mutationRate = 0.01;
 population = new Population(mutationRate, 50);
}! ! ! ! $$ Step 1. Create the population.
! ! ! ! Here is where we could play with the mutation rate and population size

void draw() {
 background(255);
! ! ! ! ! ! ! $$ The revised genetic algorithm
 if (lifeCounter < lifetime) {! ! !
 population.live();!! ! ! $$ Step 2. The rockets live their life until lifeCounter
 lifeCounter++;! ! ! ! reaches lifetime
 } else {
 lifeCounter = 0;! ! ! ! $$ When lifetime is reached, reset lifeCounter
 population.fitness();! ! ! and evolve the next generation (Steps 3 and 4, selection
 population.selection();! ! ! and reproduction)
 population.reproduction();! !
 }
}

The above example works, but it isn’t particularly interesting. After all, the rockets simply
evolve to having DNA with a bunch of vectors that point straight upwards. In the next section,
we’re going to talk through two suggested improvements for the example and provide code
snippets that implement these improvements.

9.10 Smarter Rockets

Improvement #1: Obstacles

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 32

Adding obstacles that the rockets must avoid will make the system
more complex and demonstrate the power of the evolutionary
algorithm more effectively. We can make rectangular, stationary
obstacles fairly easily by creating a class that stores a location and
dimensions.

class Obstacle {! !

 PVector location;! $$ An obstacle is a location (top left corner of rectangle) with a
 float w,h;! ! width and height

We can also write a contains() function that returns true or false to determine if a Rocket has hit
the obstacle.

 boolean contains(PVector v) {
 if (v.x > location.x && v.x < location.x + w && v.y > location.y && v.y < location.y + h) {
 return true;
 } else {
 return false;
 }
 }

Assuming we make an ArrayList of Obstacles, we can then have each Rocket check to see if it
has collided with an Obstacle and set a Boolean flag to be true if it does, adding a function to the
Rocket class.

 void obstacles() {! ! ! ! $$ This new function lives in the Rocket
 for (Obstacle obs : obstacles) {! class and checks if a Rocket has hit an
 if (obs.contains(location)) {! obstacle
 stopped = true;
 }
 }
 }

If the Rocket hits an obstacle, we choose to stop it from updating its location.

 void run() {
 if (!stopped) {! ! ! ! ! $$ Only run the Rocket if it doesn’t hit
 applyForce(dna.genes[geneCounter]);! an obstacle.
 geneCounter = (geneCounter + 1) % dna.genes.length;
 update();
 obstacles();
 }
 }

And we also have an opportunity to adjust the Rocket’s fitness. We consider it to be pretty
terrible if the Rocket hits an obstacle, and so and its fitness should be greatly reduced.

 void fitness() {
 float d = dist(location.x, location.y, target.location.x, target.location.y);

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 33

 fitness = pow(1/d, 2);
 if (stopped) fitness *= 0.1;! $$ Lose 90% of your fitness if you hit an obstacle
 }

Exercise: Create a more complex obstacle course. As you make it more difficult for the Rockets
to reach the target, do you need to improve other aspects of the GA—for example, the fitness
function?

Improvement #2: Evolve reaching the target faster

If you look closely at our first Smart Rockets example, you’ll notice that the rockets are not
rewarded for getting to the target faster. The only variable in their fitness calculation is the
distance to the target at the end of the generation’s life. In fact, in the event that the rockets get
very close to the target but overshoot it and fly way past it, they may actually be penalized for
getting to the target faster. Slow and steady wins the race in this case.

We could improve the algorithm to optimize for speed a number of ways. First, instead of using
the distance to the target at the end of the generation, we could use the distance that is the closest
to the target at any point during the rocket’s life. We would call this the Rocket’s “record”
distance. (All of the code snippets in this section live inside the Rocket class.)

 void checkTarget() {
 float d = dist(location.x, location.y, target.location.x, target.location.y);
 if (d < recordDist) recordDist = d;! ! $$ Every frame, we check its distance and
! ! ! ! ! ! ! ! see if it’s closer than the “record” distance.
! ! ! ! ! ! ! ! If it is, we have a new record.

In addition, a Rocket should be rewarded according to how quickly it reaches the target. The
faster it reaches the target, the higher the fitness. The slower, the lower. To accomplish this, we
can increment a counter every cycle of the Rocket’s life until it reaches the Rocket. This counter
is then the amount of time it takes to reach the target.

 if (target.contains(location)) {! ! $$ If the object reaches the target, set a
 hitTarget = true;!! ! ! ! Boolean flag to true
 } else if (!hitTarget) {!! !
 finishTime++;! ! ! ! ! $$ As long as we haven’t yet reached the target,
 }!! ! ! ! ! ! ! keep incrementing the counter.
}

Fitness is also inversely proportional to finishTime, and so we can improve our fitness function
as follows:

 void fitness() {

 fitness = (1/(finishTime*recordDist));! $$ Finish time and record distance!
 fitness = pow(fitness, 2);! ! ! $$ Make it exponential

 if (stopped) fitness *= 0.1;
 if (hitTarget) fitness *= 2; ! $$ You are rewarded for reaching the target
 }

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 34

These improvements can both be incorporated into the code of example 9.x: Smart Rockets.

Exercise: Implement the rocket firing pattern of Jer Thorp’s Smart Rockets. Each Rocket only
gets five thrusters (of any direction and strength) that follow a firing sequence (of arbitrary
length). Jer’s simulation also gives the Rockets a finite amount of fuel. To see Jer’s example,
visit: http://www.blprnt.com/smartrockets/

Exercise: Visualize the rockets differently. Can you draw a line for the shortest path to the
target? Can you add particle systems that act as smoke in the direction of the rocket thrusters?

Exercise: Another way to achieve a similar result is to evolve a flow field. Can you make the
genotype of a Rocket a flow field of PVectors?

Exercise: One of the more famous implementations of genetic algorithms in computer graphics is
Karl Sims’ s“Evolved Virtual Creatures.” In Sims’ work, a population of digital creatures (in a
simulated physics environment) are evaluated for their ability to perform tasks, such as
swimming, running, jumping, following, and competing for a green cube.

One of the innovations in Sims’ s work is a node-based genotype. In other words, the creature’s
DNA is not a linear list of PVectors or numbers, but a map of nodes. (For an example of this,
take a look at toxiclibs‘ Force Directed Graph example, p. XXX). The phenotype is the
creature’s design itself, a network of limbs connected with muscles.

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 35

http://www.blprnt.com/smartrockets/
http://www.blprnt.com/smartrockets/

or other computer programs can be useful in expanding the set of
possible results beyond a predefined genetic space of fixed dimen-
sions. Genetic languages such as these allow new parameters and
new dimensions to be added to the genetic space as an evolution
proceeds, and therefore define rather a hyperspace of possible
results. This approach has been used to genetically program solu-
tions to a variety of problems [1,9], as well as to explore procedur-
ally generated images and dynamical systems [18,19].

In the spirit of unbounded genetic languages, directed graphs
are presented here as an appropriate basis for a grammar that can
be used to describe both the morphology and nervous systems of
virtual creatures. New features and functions can be added to crea-
tures, or existing ones removed, so the levels of complexity can
also evolve.

The next two sections explain how virtual creatures can be rep-
resented by directed graphs. The system used for physical simula-
tion is summarized in section 4, and section 5 describes how
specific behaviors can be selected. Section 6 explains how evolu-
tions are performed with directed graph genotypes, and finally a
range of resulting creatures is shown.

2 Creature Morphology
In this work, the phenotype embodiment of a virtual creature is a
hierarchy of articulated three-dimensional rigid parts. The genetic
representation of this morphology is a directed graph of nodes and
connections. Each graph contains the developmental instructions
for growing a creature, and provides a way of reusing instructions
to make similar or recursive components within the creature. A
phenotype hierarchy of parts is made from a graph by starting at a

(segment)

(leg
segment)

(body
segment)

(head)

(body)
(limb
segment)

Genotype: directed graph. Phenotype: hierarchy of 3D parts.

Figure 1: Designed examples of genotype graphs and correspond-
ing creature morphologies.

defined root-node and synthesizing parts from the node informa-
tion while tracing through the connections of the graph. The graph
can be recurrent. Nodes can connect to themselves or in cycles to
form recursive or fractal like structures. They can also connect to
the same child multiple times to make duplicate instances of the
same appendage.

Each node in the graph contains information describing a rigid
part. The dimensions determine the physical shape of the part. A
joint-type determines the constraints on the relative motion
between this part and its parent by defining the number of degrees
of freedom of the joint and the movement allowed for each degree
of freedom. The different joint-types allowed are: rigid, revolute,
twist, universal, bend-twist, twist-bend, or spherical. Joint-limits
determine the point beyond which restoring spring forces will be
exerted for each degree of freedom. A recursive-limit parameter
determines how many times this node should generate a phenotype
part when in a recursive cycle. A set of local neurons is also
included in each node, and will be explained further in the next
section. Finally, a node contains a set of connections to other
nodes.

Each connection also contains information. The placement of a
child part relative to its parent is decomposed into position, orien-
tation, scale, and reflection, so each can be mutated independently.
The position of attachment is constrained to be on the surface of
the parent part. Reflections cause negative scaling, and allow simi-
lar but symmetrical sub-trees to be described. A terminal-only flag
can cause a connection to be applied only when the recursive limit
is reached, and permits tail or hand-like components to occur at the
end of chains or repeating units.

Figure 1 shows some simple hand-designed graph topologies
and resulting phenotype morphologies. Note that the parameters in
the nodes and connections such as recursive-limit are not shown
for the genotype even though they affect the morphology of the
phenotype. The nodes are anthropomorphically labeled as “body,”
“leg,” etc. but the genetic descriptions actually have no concept of
specific categories of functional components.

3 Creature Control
A virtual “brain” determines the behavior of a creature. The brain
is a dynamical system that accepts input sensor values and pro-
vides output effector values. The output values are applied as
forces or torques at the degrees of freedom of the body’s joints.
This cycle of effects is shown in Figure 2.

Sensor, effector, and internal neuron signals are represented
here by continuously variable scalars that may be positive or nega-
tive. Allowing negative values permits the implementation of sin-
gle effectors that can both push and pull. Although this may not be
biologically realistic, it simplifies the more natural development of
muscle pairs.

Figure 2: The cycle of effects between brain, body and world.

Physical simulationControl system

Body

3D World

Brain

Effectors

Sensors

[Should I redraw my own figure demonstration? Can I get permission to use this figure from
Sims’ paper?]

Using toxiclibs or box2d as the physics model, can you create a simplified 2D version of Sims’ s
creatures? For a lengthier description of Sims’ s techniques, I suggest you watch the National
Geographic-style video and read Sims’ s paper here: http://www.karlsims.com/evolved-virtual-
creatures.html. In addition, you can find a similar example that uses box2d to evolve a “car”
online at: http://boxcar2d.com/.

9.11 Interactive Selection

In addition to Evolved Virtual Creatures, Sims is also well-known for his museum installation
Galapagos. Originally installed in the Intercommunication Center in Tokyo in 1997, the
installation consists of twelve monitors displaying computer-generated images. These images
evolve over time, following the genetic algorithm steps of selection and reproduction. The
innovation here is not the use of the genetic algorithm itself, but rather the strategy behind the
fitness function. In front of each monitor is a sensor on the floor that can detect the presence of
a user viewing the screen. The fitness of an image is tied to the length of time that viewers look
at the image. This is known as interactive selection, a genetic algorithm with fitness values
assigned by users.

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 36

http://www.karlsims.com/evolved-virtual-creatures.html
http://www.karlsims.com/evolved-virtual-creatures.html
http://www.karlsims.com/evolved-virtual-creatures.html
http://www.karlsims.com/evolved-virtual-creatures.html
http://boxcar2d.com/
http://boxcar2d.com/

Think of all the rating systems you’ve ever used. Could you evolve the perfect movie by scoring
all films according to your Netflix ratings? The perfect singer according to American Idol
voting?

To illustrate this technique, we’re going to build a population of simple faces. Each face will
have a set of properties: head size, head color, eye location, eye size, mouth color, mouth
location, mouth width, and mouth height.

The face’s DNA (genotype) is an array of floating point numbers between zero and one, with a
single value for each property.

class DNA {

 float[] genes;
 int len = 20; $$ We need 20 numbers to draw the face

 DNA() {
 genes = new float[len];
 for (int i = 0; i < genes.length; i++) {
 genes[i] = random(0,1);!! $$ Each gene is a random float between 0 and 1
 }
 }

The phenotype is a Face class that includes an instance of a DNA object.

class Face {

 DNA dna;
 float fitness;

When it comes time to draw the Face on screen, we can use Processing’s map() function to
convert any gene value to the appropriate range for pixel dimensions or color values. (In this
case, we are also using colorMode() to set the RGB ranges between zero and one.)

 void display() {
 float r = map(dna.genes[0],0,1,0,70);! ! ! ! ! $$ Using map() to
 color c = color(dna.genes[1],dna.genes[2],dna.genes[3]);!! convert the genes
 float eye_y = map(dna.genes[4],0,1,0,5);! ! ! ! ! to a range for drawing
 float eye_x = map(dna.genes[5],0,1,0,10);! ! ! ! ! the face.
 float eye_size = map(dna.genes[5],0,1,0,10);
 color eyecolor = color(dna.genes[4],dna.genes[5],dna.genes[6]);
 color mouthColor = color(dna.genes[7],dna.genes[8],dna.genes[9]);

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 37

 float mouth_y = map(dna.genes[5],0,1,0,25);
 float mouth_x = map(dna.genes[5],0,1,-25,25);
 float mouthw = map(dna.genes[5],0,1,0,50);
 float mouthh = map(dna.genes[5],0,1,0,10);

So far, we’re not really doing anything new. This is what we’ve done in every GA example so
far. What’s new is that we are not going to write a fitness() function in which the score is
computed based on a math formula. Instead, we are going to ask the user to assign the fitness.

Now, how best to ask a user to assign fitness is really more of an interaction and GUI design
problem, and it isn’t really within the scope of this book. So we’re not going to launch into an
elaborate discussion of how to program sliders or build your own hardware dials or build a web
app for users to submit online scores. How you choose to acquire fitness scores is really up to
you and the particular application you are developing.

For this simple demonstration, we’ll increase fitness whenever a user rolls the mouse over a face.
The next generation is created when the user presses a button with an “evolve next generation”
label.

Let’s look at how the steps of the Genetic Algorithm are applied in the main tab, noting how
fitness is assigned according to mouse interaction and the next generation is created on a button
press. The rest of the code for checking mouse locations, button interactions, etc. can be found
in the accompanying example code.

Example 9.x: Interactive Selection
Population population;
Button button;

void setup() {
 size(780,200);
 float mutationRate = 0.05;
 population = new Population(mutationRate,10);
 button = new Button(15,150,160,20, "evolve new generation");!
}

void draw() {

 population.display();
 population.rollover(mouseX,mouseY);! $$ The mouse location is passed to the population, which

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 38

! ! ! ! ! ! ! will score each Face according to rollover time
 button.display();
}

void mousePressed() {
 if (button.clicked(mouseX,mouseY)) {! $$ When a button is pressed, the new generation is
 population.selection();! ! ! created via selection and reproduction
 population.reproduction();
 }
}

This example, it should be noted, is really just a demonstration of the idea of interactive selection
and does not achieve a particularly meaningful result. For one, we didn’t take much care in the
visual design of the faces; they are just a few simple shapes with sizes and colors. Sims, for
example, used more elaborate mathematical functions as his images’ genotype. You might also
consider a vector-based approach, in which a design’s genotype is a set of points and/or paths.

The more significant problem here, however, is one of time. In the natural world, evolution
occurs over millions of years. In the computer simulation world of our previous examples, we
were able to evolve behaviors relatively quickly because we were producing new generations
algorithmically. In the Shakespeare monkey example, a new generation was born in each frame
of animation (approximately sixty per second). Since the fitness values were computed
according to a math formula, we could also have arbitrarily large populations that increased the
speed of evolution. In the case of interactive selection, however, we have to sit and wait for a
user to rate each and every member of the population before we can get to the next generation.
A large population would be unreasonably tedious to deal with—not to mention, how many
generations could you stand to sit through?

There are certainly clever solutions around this. Sims’s Galapagos exhibit concealed the rating
process from the users, as it occurred through the normal behavior of looking at artwork in a
museum setting. Building a web application that would allow many users to rate a population in
a distributed fashion is also a good strategy for achieving many ratings for large populations
quickly.

In the end, the key to a successful interactive selection system boils down to the same keys we
previously established. What is the genotype and phenotype? And how do you calculate fitness,
which in this case we can revise to say: “What is your strategy for assigning fitness according to
user interaction?”

Exercise: Build your own interactive selection project. In addition to a visual design, consider
evolving sounds—for example, a short sequence of tones. Can you devise a strategy, such as a
web application or physical sensor system, to acquire ratings from many users over time?

9.12 Ecosystem Simulation

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 39

You may have noticed something a bit odd about every single evolutionary system we’ve built so
far in this chapter. After all, in the real world, a population of babies isn’t born all at the same
time. Those babies don’t then grow up and all reproduce at exactly the same time, then instantly
dying to leave the population size perfectly stable. That would be ridiculous. Not to mention
the fact that there is certainly no one running around the forest with a calculator crunching
numbers and assigning fitness values to all the creatures.

In the real world, we don’t really have “survival of the fittest”; we have “survival of the
survivors.” Things that happen to live longer, for whatever reason, have a greater chance of
reproducing. Babies are born, they live for a while, maybe they themselves have a baby, maybe
they don’t, and then they die.

You won’t necessarily find simulations of “real-world” evolution in artificial intelligence
textbooks. Genetic algorithms are generally used in the more formal manner we outlined in this
chapter. However, since we are reading this book to develop simulations of natural systems, it’s
worth looking at some ways we might extend the genetic algorithm into what we’ll call an
“Ecosystem simulation.”

Let’s begin by developing a very simple scenario. We’ll create a creature called a Bloop, a circle
that moves about the screen according to Perlin noise. The creature will have a radius and a
maximum speed. The bigger it is, the slower it moves; the smaller, the faster.

class Bloop {
 PVector location;! ! $$ A location

 float r;! ! ! ! $$ Variables for size and speed
 float maxspeed;

 float xoff, yoff; ! $$ Some variables for Perlin noise calculations

 void update() {
 float vx = map(noise(xoff),0,1,-maxspeed,maxspeed);
 float vy = map(noise(yoff),0,1,-maxspeed,maxspeed);
 PVector velocity = new PVector(vx,vy);! $$ A little Perlin noise algorithm
 xoff += 0.01;!! ! ! ! ! to calculate a velocity
 yoff += 0.01;

 location.add(velocity);! ! ! ! $$ The Bloop moves
 }

 void display() {! ! ! ! ! $$ A bloop is a circle
 ellipse(location.x, location.y, r, r);
 }
}

The above is missing a few details (such as initializing the variables in the Constructor), but you
get the idea.

For this example, we’ll want to store the population of Bloops in an ArrayList, rather than an
array, as we expect the population to grow and shrink according to how often Bloops die or are

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 40

born. We can store this ArrayList in a class called “World,” which will manage all the elements
of the Bloops’ world.

class World {

 ArrayList<Bloop> bloops; ! ! $$ A list of Bloops

 World(int num) {
 bloops = new ArrayList<Bloop>();

 for (int i = 0; i < num; i++) {
 bloops.add(new Bloop());! ! $$ Making an initial population of Bloops
 }
 }

So far, what we have is just a rehashing of our ParticleSystem example from Chapter 5. We have
an entity (Bloop) that moves around the window and a class (World) that manages a variable
quantity of these entities. To turn this into a system that evolves, we need to add two additional
features to our world:

• Bloops die.
• Bloops are born.

Bloops dying is our replacement for a fitness function, the process of “selection.” If a Bloop dies,
it cannot be selected to be a parent, because it simply no longer exists! One way we can build a
mechanism to ensure Bloop deaths into our world is by adding a health variable to the Bloop
class.

class Bloop {
 float health = 100;! $$ A Bloop is born with 100 health points.

In each frame of animation, a Bloop loses some health.

 void update() {
 // All that other stuff for movement

 health -= 1;! $$ Death is always looming!
 }

If the health drops below zero, the Bloop dies.

 boolean dead() {! ! $$ We add a function to the Bloop class to test
 if (health < 0.0) {!! if the Bloop is alive or dead.
 return true;
 } else {
 return false;
 }
 }

This is a good first step, but we haven’t really achieved anything. After all, if all Bloops start
with 100 health points and lose 1 point per frame, then all Bloops will live for the exact same

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 41

amount of time and die together. If every single Bloop lives the same amount of time, they all
have equal chances of reproducing and therefore nothing will evolve.

There are myriad ways we could achieve variable lifespans with a more sophisticated world. For
example, we could introduce predators that eat Bloops. Perhaps the faster Bloops would be able
to escape being eaten more easily, and therefore our world would evolve to have faster and faster
Bloops. Another option would be to introduce food. When a Bloop eats food, it increases its
health points, and therefore extends its life.

Let’s assume we have an ArrayList of PVector locations for food, named “food.” We could test
each Bloop’s proximity to each food location. If the Bloop is close enough, it eats the food
(which is then removed from the world) and increases its health.

 void eat() {
 for (int i = food.size()-1; i >= 0; i--) {
 PVector foodLocation = food.get(i);
 float d = PVector.dist(location, foodLocation);
 if (d < r/2) {! ! $$ Is the Bloop close to the food?

 health += 100; !! $$ If so, it gets 100 more health points
 food.remove(i);!! $$ The food is no longer available for other Bloops
 }
 }
 }

Now we have a scenario in which Bloops that eat more food live longer and have a greater
likelihood of reproducing. Therefore, we expect that our system would evolve Bloops with an
optimal ability to find and eat food.

Now that we have built our world, it’s time to add the components required for evolution. First
we should establish our genotype and phenotype.

Genotype and Phenotype

The ability for a Bloop to find food is tied to two variables—size and speed. Bigger Bloops will
find food more easily simply because their size will allow them to intersect with food locations
more often. And faster Bloops will find more food because they can cover ground more easily.

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 42

[THIS ILLUSTRATION IS UNCLEAR]

Since size and speed are inversely related (large Bloops are slow, small Bloops are fast), we only
need a genotype with a single number.

class DNA {

 float[] genes;! ! ! !

 DNA() {
 genes = new float[1];! ! ! ! $$ It may seem absurd to use an array
 for (int i = 0; i < genes.length; i++) {! when all we have is a single value
 genes[i] = random(0,1);!! ! ! but we stick with an array in case
 }!! ! ! ! ! ! ! we make the Bloops more sophisticated later
 }

The phenotype then is the Bloop itself, whose size and speed is assigned by adding an instance of
a DNA object to the Bloop class.

class Bloop {
 PVector location;
 float health;

 DNA dna;! ! ! ! $$ A Bloop now has DNA
 float r;
 float maxspeed;

 Bloop(DNA dna_) {
 location = new PVector(width/2,height/2);
 health = 200;
 dna = dna_;

 maxspeed = map(dna.genes[0], 0, 1, 15, 0);!! $$ maxspeed and r (radius) are mapped
 r = map(dna.genes[0], 0, 1, 0, 50);!! to values according to the DNA
 }

Notice that with maxspeed, the range is mapped to between fifteen and zero, meaning a Bloop
with a gene value of zero moves at a speed of fifteen and a Bloop with a gene value of one
doesn’t move at all (speed of zero).

Selection and Reproduction

Now that we have the genotype and phenotype, we need to move on to devising a means for
Bloops to be selected as parents. We stated before that the longer a Bloop lives, the more
chances it has to reproduce. The length of life is the Bloop’s fitness.

One option would be to say that whenever two Bloops come into contact with each other, they
make a new Bloop. The longer a Bloop lives, the more likely it is to come into contact with
another Bloop. (This would also affect the evolutionary outcome given that, in addition to eating
food, their ability to find other Bloops is a factor in increasing the likelihood of having a baby.)

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 43

A simpler option would be to have “asexual” reproduction, meaning a Bloop does not require a
partner. It can, at any moment, make a clone of itself, another Bloop with the same genetic
makeup. If we state this selection algorithm as follows:

At any given moment, a Bloop has a 1% chance of reproducing.

then the longer a Bloop lives, the more likely it will make at least one (if not more) children.
This is equivalent to saying the more times you play the lottery, the greater the likelihood you’ll
win (though I’m sorry to say your chances are still essentially zero).

To implement this selection algorithm, we can write a function in the Bloop class that picks a
random number every frame. If the number is less than 0.01 (1%), a new Bloop is born.

 Bloop reproduce() {! ! ! $$ This function will return a new Bloop, the child

 if (random(1) < 0.01) {! ! $$ A 1% chance of executing the code in this!
 // Make the Bloop baby!! conditional, i.e. a 1% chance of reproducing
 }
 }

How does a Bloop reproduce? In our previous examples, the reproduction process involved
calling the crossover() function in the DNA class and making a new object from the newly made
DNA. Here, since we are making a child from a single parent, we’ll call a function called copy()
instead.

 Bloop reproduce() {
 if (random(1) < 0.0005) {
 DNA childDNA = dna.copy();! ! ! $$ Make a copy of the DNA
 childDNA.mutate(0.01);!! ! ! $$ 1% mutation rate
 return new Bloop(location, childDNA);! $$ Make a new Bloop at the same location
! ! ! ! ! ! ! ! with the new DNA
 } else {! ! ! ! ! !
 return null;! ! ! ! ! $$ If the Bloop does not reproduce, return null
 }
 }

Note also that we’ve reduced the probability of reproducing from 1% to 0.05%. This value
makes quite a difference; with a high probability of reproducing, the system will quickly tend
towards overpopulation. Too low, everything will likely quickly die out.

Writing the copy() function into the DNA class is easy since Processing includes a function
arraycopy() that copies the contents of one array into another.

class DNA {

 DNA copy() {! ! $$ This copy() function replaces crossover() for this example

 float[] newgenes = new float[genes.length];! $$ Make a new array the same length
 arraycopy(genes,newgenes);! ! ! ! and copy its contents
 return new DNA(newgenes);
 }

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 44

}

Now that we have all the pieces in place for selection and reproduction, we can finalize the
World class that manages the list of all Bloop objects (as well as a Food object, which itself is a
list of PVector locations for food).

Before you run the example, take a moment to guess what size and speed of Bloops the system
will evolve towards. We’ll discuss following the code.

World world;

void setup() {! ! ! $$ setup() and draw() do nothing more than create
 size(600,400);! ! ! and run a World object
 world = new World(20);
}

void draw() {
 background(255);
 world.run();
}

class World {

 ArrayList<Bloop> bloops;! ! $$ The World object keeps track of the population
 Food food;! ! ! ! Bloops as well as the food

 World(int num) {
 food = new Food(num);
 bloops = new ArrayList<Bloop>();

 for (int i = 0; i < num; i++) {! ! $$ Creating the population
 PVector location = new PVector(random(width),random(height));
 DNA dna = new DNA();
 bloops.add(new Bloop(l,dna));
 }
 }

 void run() {
 food.run();

 for (int i = bloops.size()-1; i >= 0; i--) {
 Bloop b = bloops.get(i);! ! ! $$ The Bloops live their life
 b.run();

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 45

 b.eat(food);
 if (b.dead()) {! ! ! ! ! $$ If one dies, it is removed from
 bloops.remove(i);! ! ! ! the population and food is added at its
 food.add(b.location);!! ! ! location.
 }

 Bloop child = b.reproduce();!! ! $$ Here is where each living Bloop has a
 if (child != null) bloops.add(child);! chance to reproduce. As long as a child
 }!! ! ! ! ! ! ! is made (i.e. not null) it is added to
 }! ! ! ! ! ! ! ! the population.
}

If you guessed medium-sized Bloops with medium speed, you were right. With the design of
this system, Bloops that are large are simply too slow to find food. And Bloops that are fast are
too small to find food. The ones that are able to live the longest tend to be in the middle, large
enough and fast enough (but not too large or too fast) to find food. There are also some
anomalies. For example, if it so happens that a bunch of large Bloops end up in the same
location (and barely move because they are so large) they may all die out suddenly, leaving a lot
of food for one large Bloop who happens to be there to eat and allowing a mini-population of
large Bloops to sustain themselves for a period of time in one location.

This example is rather simplistic given its single gene and asexual reproduction. Below are
some exercises with suggestions for making a more elaborate ecosystem simulation.

Exercise: Add a population of predators to the Bloop world. Biological evolution between
predators and prey (or parasites and hosts) is often referred to as an “arms race,” in which the
creatures continuously adapt and counter-adapt to each other. Can you achieve this behavior in
a system of multiple creatures?

Exercise: What happens if two Bloops are needed to make a child? Try implementing an
algorithm so that Bloops meet and mate when within a certain proximity. Can you make Bloops
with gender?

Exercise: Try using the weights of multiple steering forces as a creature’s DNA. Can you create
a scenario in which creatures evolve to cooperate with each other?

Exercise: One of the greatest challenges in ecosystem simulations is achieving a nice balance.
You will likely find that most of your attempts result in either mass overpopulation (followed by
mass extinction) or simply mass extinction straight away. What techniques can you employ to
achieve balance? Consider using the genetic algorithm itself to evolve optimal parameters for
an ecosystem.

Daniel Shiffman, Chapter 9 Genetic Algorithms, Nature of Code Draft, August 18, 2011 11:22 PM Page 46

Chapter 10. Neural Networks

“You can't process me with a normal brain.”
! —Charlie Sheen

We’re at the end of our story. This is the last “official” chapter of this book (though I envision
additional supplemental material for the web site and perhaps other new chapters in the future.)
We began with inanimate objects living in a world of forces and gave those objects desires and
autonomy, the ability to take action according to a system of rules. Next, we allowed those
objects to live in a population and evolve over time. Now, we ask, what is each object’s
decision-making process? How can it adjust its choices by learning over time? Can a
computational entity process its environment and generate a decision?

The human brain can be described as a biological neural network—an interconnected web of
neurons transmitting elaborate patterns of electrical signals. Dendrites receive input signals and,
based on those inputs, fire an output signal via an axon. Or something like that. How the human
brain actually works is an elaborate and complex mystery, one that we certainly are not equipped
to tackle in rigorous detail at the moment.

[A BETTER ILLUSTRATION OF BIOLOGICAL NEURAL NETWORK?]

Of course, the good news is that developing engaging animated systems with code does not
required scientific rigor or accuracy, as we’ve learned throughout this book. We can simply be
inspired by the idea of brain function.

10.1 Artificial Neural Networks

Computer scientists have long been inspired by the human brain. In 1943, Warren S.
McCulloch, a neuroscientist, and Walter Pitts, a logician, developed the first conceptual model of
an artificial neural network. In their paper, "A logical calculus of the ideas imminent in nervous

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 1

activity,” they describe the concept of a neuron, a single cell living in a network of cells that
receives inputs, processes those inputs, and generates an output.

Their work, and the work of many scientists and researchers that followed, was not meant to
accurately describe how the biological brain works. Rather, an artificial neural network (which
we will now simply refer to as a “neural network”) was designed as a computational model based
on the brain that can solve certain kinds of problems.

It’s probably pretty obvious to you that there are certain problems that are incredibly simple for a
computer to solve, but difficult for you. Take the square root of 964,324, for example. A quick
line of code produces the value 982, a number Processing computed in less than a millisecond.
There are, on the other hand, problems that are incredibly simple for you or me to solve, but not
so easy for a computer. Show any toddler a picture of a kitten or puppy and they’ll be able to
tell you very quickly which one is which. Say hello and shake my hand one morning and you
should be able to pick me out of a crowd of people the next day. But need a machine to perform
one of these tasks? People have already spent careers researching and implementing complex
solutions.

The most common application of neural networks in computing today is to perform one of these
easy-for-a-human, difficult-for-a-machine” tasks, often referred to as pattern classification.
Applications range from optical character recognition (turning printed or handwritten scans into
digital text) to facial recognition. We don’t have the time or need to use some of these more
elaborate artificial intelligence algorithms here, but if you are interested in researching neural
networks, I’d recommend the books Artificial Intelligence: A Modern Approach by Stuart J.
Russell and Peter Norvig and AI for Game Developers by David M. Bourg and Glenn Seemann.

In this chapter, we’ll instead begin with a conceptual overview of the properties and features of
neural networks and build the simplest example possible of one (a network that consists of a
singular neuron). Afterwards, we’ll examine strategies for building a “Brain” object that can be
inserted into our Vehicle class and used to determine steering. Finally, we’ll also look at
techniques for visualizing and animating a network of neurons.

10.2 Neural Networks: Introduction and Application

A neural network is a “connectionist” computational system. When we write a procedural
program, it starts at the first line of code, executes it, and goes onto the next, following
instructions in a linear fashion. A true neural network does not follow a linear path. Rather,
information is processed collectively, in parallel throughout a network of nodes (the nodes, in
this case, being neurons).

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 2

Here we have yet another example of a complex system, much like the ones we examined in
chapters six, seven, and eight. The individual elements of the network, the neurons, are
incredibly simple. They read an input, process it, and generate an output. A network of many
neurons, however, can exhibit incredibly rich and intelligent behaviors.

One of the key elements of a neural network is its ability to learn. A neural network is not just a
complex system, but a complex adaptive system, meaning it can change its internal structure
based on the information flowing through it. Typically, this is achieved through the adjusting of
weights. In the diagram above, each line represents a connection between two neurons and
indicates the pathway for the flow of information. Each connection has a weight, a number that
controls the signal between the two neurons. If the network generates a “good” output (which
we’ll define later), there is no need to adjust the weights. However, if the network generates a
“poor” output—an error, so to speak—then the system adapts, altering the weights in order to
improve subsequent results.

There are several strategies for learning, and we’ll examine two of them in this chapter.

• Supervised Learning—Essentially, a strategy that involves a teacher that is smarter than
the network itself. For example, let’s take the facial recognition example. The teacher
shows the network a bunch of faces, and the teacher already knows the name associated
with each face. The network makes its guesses, then the teacher provides the network with
the answers. The network can then compare its answers to the known “correct” ones and
make adjustments according to its errors. Our first neural network in the next section will
follow this model.

• Unsupervised Learning—Required when there isn’t an example data set with known
answers. Imagine searching for a hidden pattern in a data set. An example application of
this is clustering, i.e. dividing a set of elements into groups according to some unknown
pattern. We won’t be looking at any examples of unsupervised learning in this chapter, as
this strategy is less relevant for our examples.

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 3

• Reinforcement Learning—A strategy built on observation. Think of a little mouse
running through a maze. If it turns left, it gets a piece of cheese; if it turns right, it receives
a little shock. (Don’t worry, this is just a pretend mouse.) Presumably, the mouse will
learn over time to turn left. Its neural network makes a decision with an outcome (turn left
or right) and observes its environment (yum or ouch). If the observation is negative, the
network can adjust its weights in order to make a different decision the next time.
Reinforcement learning is common in robotics. At time t, the robot performs a task and
observes the results. Did it crash into a wall or fall off a table? Or is it unharmed? We’ll
look at reinforcement learning in the context of our simulated steering vehicles.

This ability of a neural network to learn, to make adjustments to its structure over time, is what
makes it so useful in the field of artificial intelligence. Here are some standard uses of neural
networks in software today.

• Pattern Classification—We’ve mentioned this several times already and its probably the
most common application. Examples are facial recognition, optical character recognition,
etc.

• Time Series Prediction—Neural networks can be used to make predictions. Will the stock
rise or fall tomorrow? Will it rain or be sunny?

• Signal Processing—Cochlear implants and hearing aids need to filter out unnecessary
noise and amplify the important sounds. Neural networks can be trained to process an
audio signal and filter it appropriately.

• Control—You may have read about recent research advances in self-driving cars. Neural
networks are often used to manage steering decisions of physical vehicles (or simulated
ones).

• Soft Sensors—A soft sensor refers to the process of analyzing a collection of many
measurements. A thermometer can tell you the temperature of the air, but what if you also
knew the humidity, barometric pressure, dewpoint, air quality, air density, etc.? Neural
networks can be employed to process the input data from many individual sensors and
evaluate them as a whole.

• Anomaly Detection—Because neural networks are so good at recognizing patterns, they
can also be trained to generate an output when something occurs that doesn’t fit the pattern.
Think of a neural network monitoring your daily routine over a long period of time. After
learning the patterns of your behavior, it could alert you when something is amiss.

This is by no means a comprehensive list of applications of neural networks. But hopefully it
gives you an overall sense of the features and possibilities. The thing is, neural networks are
complicated, and difficult. They involve all sorts of fancy mathematics. While this is all totally
fascinating (and incredibly important to scientific research), a lot of the techniques are not very
practical in the world of building interactive, animated Processing sketches. Not to mention that
in order to cover all this material, we would need another book—or more likely, a series of
books.

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 4

So instead, we’ll begin our last hurrah in the nature of code with the simplest of all neural
networks to understand the how the overall concepts are applied in code, and look at some
Processing sketches that generate visual results inspired by these concepts.

10.3 The Perceptron

Invented in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt, a perceptron is the
simplest neural network possible. A computational model of a single neuron, a perceptron
consists of one or more inputs, a processor, and a single output.

A perceptron follows the “feed-forward” model, meaning inputs are sent into the neuron, are
processed, and result in an output. In the diagram above, this means the network (one neuron)
reads from left to right: inputs come in, output goes out.

Let’s follow each of these steps in more detail.

Step 1. Receive inputs.

Say we have a perceptron with two inputs—let’s call them x and y.

Input 0: ! x = 12
Input 1: ! y = 4

Step 2. Weight inputs.

Each input that is sent into the neuron must first be weighted, i.e. multiplied by some value
(often a number between -1 and 1). Let’s give the inputs the following weights:

Weight 0: ! ! 0.5
Weight 1:! ! -1

We take each input and multiply it by its weight.

Input 0 = Input 0 * Weight 0 ==> 12 * 0.5 ==> 6

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 5

Input 1 = Input 1 * Weight 1 ==> 4 * -1 ==> -4

Step 3. Sum inputs.

The weighted inputs are then summed.

Sum = 6 + -4 = 2

Step 4. Generate output

The output of a perceptron is generated by passing that sum through an activation function. In
the case of a simple binary output, the activation function is what tells the perceptron whether to
“fire” or not. You can envision an LED connected to the output signal: if it fires, the light goes
on; if not, it stays off.

Activation functions can get a little bit hairy. If you start reading one of those artificial
intelligence textbooks looking for more info about activation functions, next you may find
yourself reaching for a calculus textbook. However, with our friend the simple perceptron,
we’re going to do something really easy. Let’s make the activation function the sign of the sum.
In other words, if the sum is a positive number, the output is 1; if it is negative, the output is -1.

Output = sign(sum) ==> sign(2) ==> +1

Let’s review and condense these steps so we can implement them with a code snippet.

The Perceptron Algorithm:

1. For every input, multiply that input by its weight.
2. Sum all of the weighted inputs.
3. Compute the output of the perceptron based on that sum passed through an

activation function (the sign of the sum).

Let’s assume we have two arrays of numbers, the inputs and the weights. For example:

float[] inputs = {12 , 4};
float[] weights = {0.5,-1};

“For every input” implies a loop that multiplies each input by its corresponding weight. Since
we need the sum, we can add up the results in that very loop.

float sum = 0;! ! ! ! ! ! $$ Steps 1 and 2: add up all the weighted inputs
for (int i = 0; i < inputs.length; i++) {
 sum += inputs[i]*weights[i];
}

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 6

Once we have the sum we can compute the output.

float output = activate(sum);!! $$ Step 3: passing the sum through an activation function

int activate(float sum) {! ! $$ The activation function
 if (sum > 0) return 1;! ! $$ return a 1 if positive, -1 if negative
 else return -1;
}

10.4 Simple Pattern Classification using a Perceptron

Now that we understand the computational process of a perceptron, we can look at an example of
one in action. We stated that neural networks are often used for pattern classification
applications, such as facial recognition. Even simple perceptrons can demonstrate the basics of
classification. Let’s take the following example:

Consider a line in two-dimensional space. Points in that space can be classified as living on
either one side of the line or another. While this is a somewhat silly example (since there is
clearly no need for a neural network; we can determine on which side a point lies with some
simple algebra), it shows how a perceptron can be trained to recognize points on one side versus
another.

Let’s say a perceptron has 2 inputs (the x and y coordinates of a point). Using a sign activation
function, the output will either be a -1 or 1—i.e., the input data is classified according to the sign
of the output. In the above diagram, we can see how each point is either below the line (-1) or
above (+1).

The perceptron itself can be diagrammed as follows:

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 7

We can see how there are two inputs (x and y), a weight for each input (weightx and weighty), as
well as a processing neuron that generates the output.

There is a pretty significant problem here, however. Let’s consider the point (0,0). What if we
send this point into the perceptron as its input: x = 0 and y = 0. What will the sum of its
weighted inputs be? No matter what the weights are, the sum will always be 0! But this can’t be
right—after all, the point (0,0) could certainly be above or below various lines in our two-
dimensional world.

To avoid this dilemma, our Perceptron will require a third input, typically referred to as a bias
input. A bias input always has the value of 1 and is also weighted. Here is our Perceptron with
the addition of the bias:

10.5 Coding the Perceptron

We’re now ready to assemble the code for a Perceptron class. The only data the Perceptron
needs to track are the input weights, and we could use an array of floats to store these.

class Perceptron {
 float[] weights;

The constructor could receive an argument indicating the number of inputs (in this case three: x,
y, and a bias) and size the array accordingly.

 Perceptron(int n) {
 weights = new float[n];
 for (int i = 0; i < weights.length; i++) {
 weights[i] = random(-1,1); ! ! ! $$ The weights are picked randomly to start
 }

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 8

 }

A Perceptron needs to be able to receive inputs and generate an output. We can package these
requirements into a function called feedforward(). In this example, we’ll have the Perceptron
receive its inputs as an array (which should be the same length as the array of weights) and return
the output as an int.

 int feedforward(float[] inputs) {
 float sum = 0;
 for (int i = 0; i < weights.length; i++) {
 sum += inputs[i]*weights[i];
 }
 return activate(sum);! ! $$ Result is the sign of the sum, -1 or +1.
 }! ! ! ! ! ! $$ Here the Perceptron is making a guess. Is it on one side
! ! ! ! ! ! of the line or the other?

Presumably, we could now create a Perceptron object and ask it to make a guess for any given
point:

Perceptron p = new Perceptron(3);! ! $$ Create the Perceptron
float[] point = {50,-12,1};! ! ! $$ The input is 3 values: x,y and bias
int result = p.feedforward(point);!! $$ The answer!

Did the Perceptron get it right? At this point, the Perceptron has no better than a 50/50 chance
of arriving at the right answer. Remember, when we created it, we gave each weight a random
value. A neural network isn’t magic. It’s not going to be able to guess anything
correctlyunless we teach it how to!

To train a neural networkto answer correctly, we’re going to employ the method of supervised
learning that we described in section 10.2.

With this method, the network is provided with inputs for which there is a known answer. This
way the network can find out if it has made a correct guess. If it’s incorrect, the network can
learn from its mistake and adjust its weights. The process is as follows:

1. Provide the Perceptron with inputs for which there is a known answer.

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 9

2. Ask the Perceptron to guess an answer.
3. Compute the error. (Did it get the answer right or wrong?)
4. Adjust all the weights according to the error.
5. Return to step 1 and repeat!

Steps 1 through 4 can be packaged into a function. Before we can write the entire function,
however, we need to examine steps 3 and 4 in more detail. How do we define the Perceptron’s
error? And how should we adjust the weights according to this error?

The Perceptron’s error can be defined as the difference between the desired answer and its guess.

ERROR = DESIRED OUTPUT - GUESS OUTPUT

The above formula may look familiar to you. In Chapter 6, we computed a steering force as the
difference between our desired velocity and our current velocity.

STEERING = DESIRED VELOCITY - CURRENT VELOCITY

This was also an error calculation. The current velocity acts as a guess and the error (the steering
force) tells us how to adjust the velocity in the right direction. In a moment, we’ll see how
adjusting the vehicle’s velocity to follow a target is just like adjusting the weights of a neural
network to arrive at the right answer.

In the case of the Perceptron, the output has only two possible values: +1 or -1. This means
there are only three possible errors.

If the Perceptron guesses the correct answer, then the guess equals the desired output and the
error is zero. If the correct answer is -1 and we’ve guessed +1, then the error is -2. If the correct
answer is +1 and we’ve guessed -1, then the error is +2.

Desired Guess Error

-1 -1 0

-1 +1 -2

+1 -1 +2

+1 +1 0

The error is the determining factor in how the Perceptron’s weights should be adjusted. For any
given weight, what we are looking to calculate is the change in weight, often called !weight (or
“delta” weight, delta being the greek letter !).

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 10

NEW WEIGHT = WEIGHT + ΔWEIGHT

!weight is calculated as the error multiplied by the input.

ΔWEIGHT = ERROR * INPUT

Therefore:

NEW WEIGHT = WEIGHT + ERROR * INPUT

To understand why this works, we can again return to the steering example. A steering force is
essentially an error in velocity. If we apply that force as our acceleration (!velocity) then we
adjust our velocity to move in the correct direction. This is what we want to do with our neural
network’s weights. We want to adjust them in the right direction, as defined by the error.

With steering, however, we had an additional variable that controlled the vehicle’s ability to
steer: the maximum force. With a high maximum force, the vehicle was able to accelerate and
turn very quickly; with a lower force, the vehicle would take longer to adjust its velocity. The
neural network will employ a similar strategy with a variable called the “learning constant.”
We’ll add in the learning constant as follows:

NEW WEIGHT = WEIGHT + ERROR * INPUT * LEARNING CONSTANT

Notice that a high learning constant means the weight will change more drastically. This may
help us arrive at a solution more quickly, but with such large changes in weight it’s possible we
will overshoot the optimal weights. With a small learning constant, the weights will be adjusted
slowly, requiring more training time but allowing the network to make very small adjustments
that could improve the network’s overall accuracy.

Assuming the addition of a variable “c” for learning constant, we can now write a training
function for the Perceptron following the above steps.

float c = 0.01;! ! $$ A new variable is introduced to control the learning rate

void train(float[] inputs, int desired) {! $$ Step 1 is providing the inputs and known answer
! ! ! ! ! ! ! ! These are passed in as arguments to train()

 int guess = feedforward(inputs);!! ! $$ Step 2 is guess according to those inputs

 float error = desired - guess;! ! ! $$ Step 3 is compute the error (difference between
! ! ! ! ! ! ! ! answer and guess)

 for (int i = 0; i < weights.length; i++) {! $$ Step 4 is adjust all the weights according to
 weights[i] += c * error * inputs[i]; ! the error and learning constant
 }
}

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 11

We can now see the Perceptron class as a whole.

class Perceptron {
 float[] weights; ! ! $$ The Perceptron stores its weights and learning constants
 float c = 0.01;

 Perceptron(int n) {
 weights = new float[n];
 for (int i = 0; i < weights.length; i++) {!! $$ Weights start off random
 weights[i] = random(-1,1);
 }
 }

 int feedforward(float[] inputs) {! ! ! $$ Return an output based on inputs
 float sum = 0;! ! ! ! ! !
 for (int i = 0; i < weights.length; i++) {!!
 sum += inputs[i]*weights[i];
 }
 return activate(sum);
 }

 int activate(float sum) {! ! ! ! ! $$ Output is a +1 or -1
 if (sum > 0) return 1;
 else return -1;
 }

 void train(float[] inputs, int desired) {! ! $$ Train the network against known data
 int guess = feedforward(inputs);
 float error = desired - guess;
 for (int i = 0; i < weights.length; i++) {
 weights[i] += c * error * inputs[i];
 }
 }
}

To train the Perceptron, we need a set of inputs with a known answer. We could package this up
in a class like so:

class Trainer {

 float[] inputs;!! ! $$ A “Trainer” object stores the inputs and the correct answer.
 int answer; ! ! ! ! !

 Trainer(float x, float y, int a) {
 inputs = new float[3];
 inputs[0] = x;
 inputs[1] = y;
 inputs[2] = 1;
 answer = a;
 }
}

Now the question becomes, how do we pick a point and know whether it is above or below a
line? Let’s start with the formula for a line, where y is calculated as a function of x:

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 12

y = f(x)

In generic terms, a line can be described as:

y = ax + b;

Here’s a specific example:

y = 2*x + 1

We can then write a Processing function with this in mind.

float f(float x) {! ! $$ A function to calculate y based on x along a line
 return 2*x+1;
}

So, if we make up a point:

float x = random(width);
float y = random(height);

Is it above or below a line?

int answer = 1;
if (y < f(x)) answer = -1;

We can then make a Trainer object with the inputs and the correct answer.

Trainer t = new Trainer(x, y, answer);

Assuming we had a Perceptron object “ptron,” we could then train it!

ptron.train(t.inputs,t.answer);

Let’s look at how we would do this with an array of many Training points.

Example 10-1: The Perceptron
Perceptron ptron;!! ! ! ! ! $$ The Perceptron
Trainer[] training = new Trainer[2000];! ! $$ 2,000 training points
int count = 0;

float f(float x) {! ! ! ! ! $$ The formula for a line
 return 2*x+1;
}

void setup() {
 size(400, 400);

 ptron = new Perceptron(3);!! ! ! $$ Make the Perceptron

 for (int i = 0; i < training.length; i++) {! $$ Make 2,000 training points
 float x = random(-width/2,width/2);

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 13

 float y = random(-height/2,height/2);
 int answer = 1;
 if (y < f(x)) answer = -1;! ! ! $$ Is the correct answer 1 or -1
 training[i] = new Trainer(x, y, answer);
 }
}

void draw() {
 background(255);
 translate(width/2,height/2);

 ptron.train(training[count].inputs, training[count].answer);!
 count = (count + 1) % training.length;!! ! !
! ! ! ! ! ! $$ For animation we are training one point at a time.

 for (int i = 0; i < count; i++) {! !
 stroke(0);
 int guess = ptron.feedforward(training[i].inputs);
 if (guess > 0) noFill();!! $$ Show the classification, noFill for -1, fill(0) for +1
 else fill(0);
 ellipse(training[i].inputs[0], training[i].inputs[1], 8, 8);!!
 }
}

Exercise: Instead of using the supervised learning model above, can you train the neural
network to find the right weights by using a genetic algorithm?

Exercise: Visualize the perceptron itself. Draw the inputs, the processing node, and the output.

10.6 A Steering Perceptron

While classifying points according to their position above or below a line was a useful
demonstration of the Perceptron in action, it doesn’t have much practical relevance to the other
examples throughout this book. In this section, we’ll take the concepts of a Perceptron (array of
inputs, single output), apply it to steering behaviors, and demonstrate reinforcement learning
along the way.

We are now going to take significant creative license with the concept of a neural network; this
will allow us to stick with the basics and avoid some of the highly complex algorithms associated
with more sophisticated neural networks. Here we’re not so concerned with following rules
outlined in artificial intelligence textbooks—we’re just hoping to make something interesting
and brain-like.

Remember our good friend, the Vehicle? You know, that object with a location, velocity, and
acceleration? That could obey Newton’s laws with an applyForce() function and move around
the window according to a variety of steering rules?

What if we added one more variable to our Vehicle class?

class Vehicle {

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 14

 Perceptron brain;! ! ! $$ Giving the Vehicle a brain!

 PVector location;
 PVector velocity;
 PVector acceleration;
 etc. . .

Here’s our scenario. Let’s say we have a Processing sketch with an ArrayList of targets and a
single Vehicle.

Let’s say that the Vehicle seeks all of the targets. According to the principles of Chapter 6, we
would next write a function that calculates a steering force towards each target, applying each
force one at a time to the object’s acceleration. Assuming the targets are an ArrayList of PVector
objects, it would look something like:

 void seek(ArrayList<PVector> targets) {
 for (PVector target : targets) {
 PVector force = seek(targets.get(i));! ! $$ For every target, apply a steering force
 applyForce(force);! ! ! ! ! towards the target
 }
 }

In Chapter 6, we also examined how we could create more dynamic simulations by weighting
each steering force according to some rule. For example, we could say that the further you are
from a target, the stronger the force.

 void seek(ArrayList<PVector> targets) {
 for (PVector target : targets) {
 PVector force = seek(targets.get(i));
 float d = PVector.dist(target,location);
 float weight = map(d,0,width,0,5);
 force.mult(weight);! ! ! ! $$ Weighting each steering force individually
 applyForce(force);! ! ! ! !
 }
 }

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 15

But what if instead we could ask our brain (i.e. Perceptron) to take in all the forces as an input,
process them according to weights of the Perceptron inputs, and generate an output steering
force? What if we could instead say:

 void seek(ArrayList<PVector> targets) {

 PVector[] forces = new PVector[targets.size()];! $$ Make an array of inputs for our brain

 for (int i = 0; i < forces.length; i++) {
 forces[i] = seek(targets.get(i));! ! ! $$ Fill the array with a steering force
 }!! ! ! ! ! ! ! ! for each target

 PVector output = brain.process(forces); ! $$ As our brain for a result and apply that
 applyForce(output);!! ! ! ! ! as the force!
 }

In other words, instead of weighting and accumulating the forces inside our Vehicle object, we
simply pass an array of forces to the Vehicle’s “brain” object and allow the brain to weight and
sum the forces for us. The result is then applied as an output. This is how our line classification
Perceptron worked, with one important difference—the inputs are not single numbers, but
vectors!

Let’s look at how the feedforward() function works in our Vehicle’s perceptron, alongside the
one from our previous example.

Vehicle PVector inputs Line float inputs

PVector feedforward(PVector[] forces) {
 // Sum is a PVector
 PVector sum = new PVector();
 for (int i = 0; i < weights.length; i++) {
 // Vector addition and multiplication
 forces[i].mult(weights[i]);
 sum.add(forces[i]);
 }
 return sum; // No activation function
}

int feedforward(float[] inputs) {
 // Sum is a float
 float sum = 0;
 for (int i = 0; i < weights.length; i++) {
 // Scalar addition and multiplication
 sum += inputs[i]*weights[i];

 }
 return activate(sum);
}

Note how these two functions implement nearly identical algorithms, with two differences.

1) Summing PVectors. Instead of a series of numbers added together, each input is a PVector
and must be multiplied by the weight and added to a sum according the mathematical PVector
functions.

2) No activation function. In this case, we’re taking the result and applying it directly as a
steering force for the vehicle, so we’re not asking for a simple boolean value that classifies it
in one of two categories. Rather, we’re asking for raw output itself, the resulting overall force.

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 16

Once the resulting steering force has been applied, it’s time to give feedback to the brain, i.e.
reinforcement learning. Was the decision to steer in that particular direction a good one or a bad
one? Presumably if some of the targets were predators (resulting in being eaten) and some of the
targets were food (resulting in greater health), the network would adjust its weights in order to
steer away from the predators and towards the food.

Let’s take a simpler example, where the Vehicle simply wants to stay close to the center of the
window. We’ll train the brain as follows:

 PVector desired = new PVector(width/2,height/2);
 PVector error = PVector.sub(desired, location);
 brain.train(forces,error);

Here we are passing the brain a copy of all the inputs (which it will need for error correction) as
well as an observation about its environment: a PVector that points from its current location to
where it desires to be. This PVector essentially serves as the error—the longer the PVector, the
worse the Vehicle is performing; the shorter, the better.

The brain can then apply this “error” vector (which has two error values, one for x and one for y)
as a means for adjusting the weights, just as we did in the line classification example.

Training the Vehicle Training the Line Classifier

void train(PVector[] forces, PVector error) {

 for (int i = 0; i < weights.length; i++) {
 weights[i] += c*error.x*forces[i].x;
 weights[i] += c*error.y*forces[i].y;
 }
}

void train(float[] inputs, int desired) {

 int guess = feedforward(inputs);
 float error = desired - guess;

 for (int i = 0; i < weights.length; i++) {
 weights[i] += c * error * inputs[i];

 }
}

Because the Vehicle observes its own error, there is no need to calculate one; we can simply
receive the error as an argument. Notice how the change in weight is processed twice, once for
the error along the x-axis and once for the y-axis.

weights[i] += c*error.x*forces[i].x;
weights[i] += c*error.y*forces[i].y;

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 17

We can now look at the Vehicle class and see how the steer function uses a Perceptron to control
the overall steering force. The new content from this chapter is highlighted.

Example 10-2: Perceptron Steering
class Vehicle {

 Perceptron brain;! ! $$ The Vehicle now has a brain

 PVector location;! ! $$ Same old variables for physics
 PVector velocity;
 PVector acceleration;
 float maxforce;
 float maxspeed;

 Vehicle(int n, float x, float y) {! ! $$ The Vehicle creates a Perceptron with n inputs
 brain = new Perceptron(n,0.001);! ! and a learning constant
 acceleration = new PVector(0,0);
 velocity = new PVector(0,0);
 location = new PVector(x,y);
 maxspeed = 4;
 maxforce = 0.1;
 }

 void update() {!! ! ! ! ! $$ Same old update() function
 velocity.add(acceleration);
 velocity.limit(maxspeed);
 location.add(velocity);
 acceleration.mult(0);
 }

 void applyForce(PVector force) {!! ! $$ Same old applyForce() function
 acceleration.add(force);
 }

 void steer(ArrayList<PVector> targets) {
 PVector[] forces = new PVector[targets.size()];

 for (int i = 0; i < forces.length; i++) {
 forces[i] = seek(targets.get(i));
 }
 PVector result = brain.feedforward(forces);! ! $$ All the steering forces are inputs

 applyForce(result);!! ! ! ! ! ! $$ The result is applied

 PVector desired = new PVector(width/2,height/2);!! $$ The brain is trained according
 PVector error = PVector.sub(desired, location);! ! to distance to center
 brain.train(forces,error);

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 18

 }

 PVector seek(PVector target) {! ! ! $$ Same old seek() function
 PVector desired = PVector.sub(target,location);
 desired.normalize();
 desired.mult(maxspeed);
 PVector steer = PVector.sub(desired,velocity);
 steer.limit(maxforce);
 return steer;
 }

}

Exercise: Visualize the weights of the network. Try mapping each target’s corresponding weight
to its brightness.

Exercise: Try different rules for reinforcement learning. What if some targets are desirable and
some are undesirable?

10.7 It’s a “network,” remember?

Yes, a perceptron can have multiple inputs, but it is still a lonely neuron. The power of neural
networks comes in the networking itself. Perceptrons are, sadly, incredibly limited in their
abilities. If you read an AI textbook, it will say that a Perceptron can only solve linearly
separable problems. What’s a linearly separable problem? Let’s take a look at our first example,
which determined whether points were on one side of a line or the other.

On the left, we have classic linearly separable data. Graph all of the possibilities; if you can
classify the data with a straight line, then it is linearly separable. On the right, however, is non-
linearly separable data. You can’t draw a straight line to separate the black dots from the gray
ones.

One of the simplest examples of a non-linearly separable problem is XOR, or “exclusive or.”
We’re all familiar with AND. For A AND B to be true, both A and B must be true. With OR,
either A or B can be true for A OR B to evaluate as true. These are both linearly separable
problems. Let’s look at the solution space, a “truth table.”

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 19

See how you can draw a line to separate the true outputs from the false ones?

XOR is the equivalent of OR and NOT AND. In other words, A XOR B only evaluates to true if
one of them is true. If both are false or both are true, then we get false. Take a look at the
following truth table.

This is not linearly separable. Try to draw a line to separate the true outputs from the false ones
—you can’t!

So perceptrons can’t even solve something as simple as XOR. But what if we made a network
out of two Perceptrons?

The above diagram is known as a multi-layered Perceptron, a network of many neurons. Some
are input neurons and receive the inputs; some are part of what’s called a “hidden” layer (as they

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 20

are connected to neither the inputs or outputs of the network directly); and then there are the
output neurons, from which we read the results.

Training these networks is much more complicated. With the simple perceptron, we could easily
evaluate how to change the weights according to the error. But here there are so many different
connections, each in a different layer of the network. How does one know how much each
neuron or connection contributed to the overall error of the network?

The solution to optimizing weights of a multi-layered network is known as backpropagation.
The output of the network is generated in the same manner as a Perceptron. The inputs
multiplied by the weights are summed and fed forward through the network. The difference here
is that they pass through additional layers of neurons before reaching the output. Training the
network (i.e. adjusting the weights) also involves taking the error (desired result - guess). The
error, however, must be fed backwards through the network. The final error ultimately adjusts the
weights of all the connections.

Backpropagation is a bit beyond the scope of this book and involves a fancier activation function
(called the sigmoid function) as well as some basic calculus. If you are interested in how
backpropagation works, check the book website (and github repository) for an example that
solves XOR using a multi-layered feed forward network with backpropagation.

Instead, here we’ll focus on a code framework for building the visual architecture of a network.
We’ll make Neuron objects and Connection objects from which a Network object can be created
and animated to show the feed forward process. This will closely resemble some of the force-
directed graph examples we examined in Chapter 5 (toxiclibs).

10.8 Neural Network Diagram

Our goal will be to create the following simple network diagram:

The primary building block for the diagram is a neuron. A neuron is a simple object, an entity
with an (x,y) location.

class Neuron {! ! ! ! ! $$ An incredibly simple neuron class
 PVector location;! ! ! ! Stores and displays the location of a single Neuron

 Neuron(float x, float y) {

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 21

 location = new PVector(x, y);
 }

 void display() {
 stroke(0);
 fill(0);
 ellipse(location.x, location.y, 16, 16);
 }
}

The Network class can then manage an ArrayList of neurons, as well as have its own location (so
that each Neuron is drawn relative to the Network’s center.) This is Particle Systems 101. We
have a single element (a Neuron) and a Network (a “system” of many Neurons).

class Network {! ! ! ! ! $$ A Network is a list of neurons
 ArrayList<Neuron> neurons;
 PVector location;

 Network(float x, float y) {
 location = new PVector(x,y);
 neurons = new ArrayList<Neuron>();
 }

 void addNeuron(Neuron n) {!! ! $$ We can add an neuron to the network
 neurons.add(n);
 }

 void display() {! ! ! ! ! $$ We can draw the entire network
 pushMatrix();
 translate(location.x, location.y);
 for (Neuron n : neurons) {
 n.display();
 }
 popMatrix();
 }
}

Now, we can pretty easily make the diagram above.

Network network;! ! ! ! ! !

void setup() {
 size(640, 360);
 network = new Network(width/2,height/2);! $$ Make a Network

 Neuron a = new Neuron(-200,0);! ! ! $$ Make the Neurons!
 Neuron b = new Neuron(0,100);
 Neuron c = new Neuron(0,-100);
 Neuron d = new Neuron(200,0);

 network.addNeuron(a);!! ! ! ! $$ Add the Neurons to the network
 network.addNeuron(b);
 network.addNeuron(c);
 network.addNeuron(d);
}

void draw() {
 background(255);
 network.display();! ! ! ! ! $$ Show the network
}

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 22

The above example yields:

What’s missing, of course, is the connection. We can consider a Connection object to be made
up of three elements, two Neurons (from Neuron “a” to neuron “b”) and a weight.

class Connection {
 Neuron a;!! ! $$ The Connection is between two neurons
 Neuron b;
 float weight;! ! $$ The Connection has a weight

 Connection(Neuron from, Neuron to,float w) {
 weight = w;
 a = from;
 b = to;
 }

 void display() {! $$ The connection is drawn as a line
 stroke(0);
 strokeWeight(weight*4);
 line(a.location.x, a.location.y, b.location.x, b.location.y);
 }
}

Once we have the idea of a Connection object, we can write a function (let’s put it inside the
Network class) that connects two neurons together.—the goal being that in addition to making
the Neurons in setup(), we can also connect them.

void setup() {
 size(640, 360);
 network = new Network(width/2,height/2);

 Neuron a = new Neuron(-200,0);
 Neuron b = new Neuron(0,100);
 Neuron c = new Neuron(0,-100);
 Neuron d = new Neuron(200,0);

 network.connect(a,b);!! ! ! $$ Making connections between the Neurons
 network.connect(a,c);
 network.connect(b,d);
 network.connect(c,d);

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 23

 network.addNeuron(a);
 network.addNeuron(b);
 network.addNeuron(c);
 network.addNeuron(d);
}

The Network class therefore needs a new function called connect(), which makes a Connection
object between the two specified Neurons.

 void connect(Neuron a, Neuron b) {
 Connection c = new Connection(a, b, random(1));! $$ Connection has a random weight

 $$ But what do we do with the Connection object?
 }

Presumably, we might think that the Network should store an ArrayList of Connection objects,
just like it stores an ArrayList of Neurons. While useful, in this case such an ArrayList is not
necessary and is missing an important feature that we need. Ultimately we plan to “feed
forward” through the network. So the Neuron objects themselves need to know to which
Neurons they are connected in the “forward” direction. In other words, each Neuron should have
its own list of Connection objects. When A connects to B, we want A to store a reference of that
connection so that it can pass its output to B when the time comes.

 void connect(Neuron a, Neuron b) {
 Connection c = new Connection(a, b, random(1));
 a.addConnection(c);
 }

In some cases, we also might want Neuron b to know about this Connection object, but in this
particular example we are only going to pass information in one direction.

For this to work, we have to add an ArrayList of Connection objects to the Neuron class. Then
we implement the addConnection() function that stores the Connection in that ArrayList.

class Neuron {
 PVector location;

 ArrayList<Connection> connections;! ! ! $$ The Neuron stores its connections

 Neuron(float x, float y) {
 location = new PVector(x, y);
 connections = new ArrayList<Connection>();
 }

 void addConnection(Connection c) {! ! ! $$ Adding a Connection to this Neuron
 connections.add(c);
 }

The Neuron’s display() function can draw the connections as well.

 void display() {
 stroke(0);
 strokeWeight(1);

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 24

 fill(0);
 ellipse(location.x, location.y, 16, 16);

 for (Connection c : connections) {! ! $$ Drawing all the Connections
 c.display();
 }
 }
}

Finally, we have our Network diagram.

Example 10-x: Neural Network Diagram

10.9 Animating Feed Forward

An interesting problem to consider is how to visualize the flow of information as it travels
throughout a neural network. Our network is built on the feed forward model, meaning an input
arrives at the first neuron (drawn on the lefthand side of the window) and the output of that
neuron flows across the connections to the right until it exits as output from the network itself.

Our first step is to add a function to the network to receive this input, which we’ll make a
random number between zero and one.

void setup() {
 // all our old network set up code

 network.feedforward(random(1));! ! $$ A new function to send in an input
}

The network, which manages all the neurons, can choose to which neurons it should apply that
input. In this case, we’ll do something simple and just feed a single input into the first neuron in
the ArrayList, which happens to be the left-most one.

class Network {

 void feedforward(float input) {! ! $$ A new function to feed an input into the Neuron
 Neuron start = neurons.get(0);
 start.feedforward(input);
 }

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 25

What did we do? Well, we made it necessary to add a function called feedforward() in the
Neuron class that will receive the input and process it.

class Neuron

 void feedforward(float input) {
 // What do we do with the input?
 }

If you recall from working with our Perceptron unit, the standard task that the processing unit
performs is to sum up all of its inputs. So if our neuron class adds a variable called sum, it can
simply accumulate the inputs as they are received.

class Neuron

 int sum = 0;

 void feedforward(float input) {
 sum += input;!! ! ! ! $$ Accumulate the sums
 }

The neuron should then decide whether it should “fire,” or pass an output through any of its
connections to the next layer in the network. Here we can create a really simple activation
function: if the sum is greater than one, fire!

 void feedforward(float input) {
 sum += input;!
 if (sum > 1) {! ! $$ Activate the neuron and fire the outputs?
 fire();
 sum = 0;! ! ! $$ If we’ve fired off our output, we can reset our sum to 0.
 }
 }

Now, what do we do in the fire() function? If you recall, each neuron keeps track of its
connections to other neurons. So all we need to do is loop through those connections and
feedforward() the Neuron’s output. For this simple example, we’ll just take the Neuron’s sum
variable and make it the output.

 void fire() {
 for (Connection c : connections) {
 c.feedforward(sum);! ! $$ The Neuron sends the sum out through all of its connections
 }
 }

Here’s where things get a little tricky. After all, our job here is not to actually make a
functioning neural network, but to animate a simulation of one. If the neural network were just
continuing its work, it would instantly pass those inputs (multiplied by the connection’s weight)
along to the connected Neurons. We’d say something like:

class Connection {

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 26

 void feedforward(float val) {
 b.feedforward(val*weight);
 }

But this is not what we want. What we want to do is draw something that we can see traveling
along the connection from Neuron A to Neuron B.

Let’s first think about how we might do that. We know the location of Neuron A; it’s the PVector
a.location. Neuron B is located at b.location. What we need to do is start something
moving from Neuron A by creating another PVector that will store the path of our traveling data.

 PVector sender = a.location.get();

Once we have a copy of that location, we can use any of the motion algorithms that we’ve
studied throughout this book to move along this path. Here—let’s pick something very simple
and just interpolate from A to B.

 sender.x = lerp(sender.x, b.location.x, 0.1);
 sender.y = lerp(sender.y, b.location.y, 0.1);

Along with the connection’s line, we can then draw a circle at that location:

 stroke(0);
 line(a.location.x, a.location.y, b.location.x, b.location.y);
 fill(0);
 ellipse(sender.x, sender.y, 8, 8);

This resembles the following:

[DIAGRAM, LABEL A and B Neurons]

Ok, so that’s how we might move something along the connection. But how do we know when
to do so? We start this process the moment the Connection object receives the “feedforward”
signal. We can keep track of this process by employing a simple boolean to know whether the
connection is sending or not. Before, we had:

 void feedforward(float val) {
 b.feedforward(val*weight);
 }

Now, instead of sending the value on straight away, we’ll trigger an animation:

class Connection {

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 27

 boolean sending = false;
 PVector sender;
 float output;

 void feedforward(float val) {
 sending = true;! ! ! ! $$ Sending is now true
 sender = a.location.get();! ! $$ Start the animation at location of Neuron A
 output = val*weight;! ! ! $$ Store the output for when it is actually time to
 }! ! ! ! ! ! ! feed it forward

Notice how our connection class now needs three new variables. We need a boolean “sending”
that starts as false and that will track whether or not the Connection is actively sending (i.e.
animating). We need a PVector “sender” for the location where we’ll draw the traveling dot.
And since we aren’t passing the output along this instant, we’ll need to store it in a variable that
will do the job later.

The feedforward() function is called the moment the Connection becomes active. Once it’s
active, we’ll need to call another function continuously (each time through draw()), one that will
update the location of the traveling data.

 void update() {
 if (sending) {
 sender.x = lerp(sender.x, b.location.x, 0.1);! ! $$ As long as we’re sending interpolate
 sender.y = lerp(sender.y, b.location.y, 0.1);! ! our points
 }
 }

We’re missing a key element, however. We need to check if the sender has arrived at location B,
and if it has, feed forward that output to the next Neuron.

 void update() {
 if (sending) {
 sender.x = lerp(sender.x, b.location.x, 0.1);! !
 sender.y = lerp(sender.y, b.location.y, 0.1);! !

 float d = PVector.dist(sender, b.location);! ! $$ How far are we from Neuron b

 if (d < 1) {! ! ! ! $$ If we’re close enough (within one pixel)
 b.feedforward(output);! ! Pass on the output.
 sending = false;! ! ! Turn off sending.
 }
 }
 }

 Let’s look at the Connection class all together, as well as our new draw() function.

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 28

Example 10.x: Animating Neural Network Diagram

void draw() {
 background(255);
 network.update();! ! ! ! $$ The Network now has a new update() method
 network.display();! ! ! ! that updates all of the Connection objects

 if (frameCount % 30 == 0) {
 network.feedforward(random(1));! $$ We are choosing to send in an input every 30 frames
 }
}

class Connection {
 float weight;! ! ! $$ The Connection’s data
 Neuron a;
 Neuron b;

 boolean sending = false;! $$ Variables to track the animation
 PVector sender;
 float output = 0;

 Connection(Neuron from, Neuron to, float w) {
 weight = w;
 a = from;
 b = to;
 }

 void feedforward(float val) {! $$ The Connection is active with data traveling from A to B
 output = val*weight;
 sender = a.location.get();
 sending = true;
 }

 void update() {!! ! ! $$ Update the animation if it is sending
 if (sending) {
 sender.x = lerp(sender.x, b.location.x, 0.1);
 sender.y = lerp(sender.y, b.location.y, 0.1);
 float d = PVector.dist(sender, b.location);
 if (d < 1) {
 b.feedforward(output);
 sending = false;
 }
 }
 }

 void display() {! ! ! $$ Draw the connection as a line and traveling circle
 stroke(0);
 strokeWeight(1+weight*4);
 line(a.location.x, a.location.y, b.location.x, b.location.y);

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 29

 if (sending) {
 fill(0);
 strokeWeight(1);
 ellipse(sender.x, sender.y, 16, 16);
 }
 }
}

Exercise: The Network in the above example was manually configured by setting the location of
each Neuron and its connections with hard-coded values. Rewrite this example to generate the
network’s layout via an algorithm. Can you make a circular network diagram? A random one?

Exercise: Rewrite the example so that each Neuron keeps track of its forward and backward
connections. Can you feed inputs through the network in any direction?

Exercise: Create a moving body (a Vehicle) that features a visualization of its brain inside the
object itself. Can you actually make the brain function—control the movement of the Vehicle
itself?

Daniel Shiffman, Chapter 10 Neural Networks, Nature of Code Draft, December 16, 2011 3:12 PM Page 30

	chapter01_vectors_2011_004
	chapter02_forces_2011_004
	chapter03_oscillation_2011_v3
	chapter04_particles_2011_v3
	chapter05_physicslibs_2011_v2
	chapter06_steering_2011_v1
	chapter07_ca_2011_v1
	chapter08_fractals_2011_v1
	chapter09_ga_2011_v1
	chapter10_nn_2011_v1

