1

Postscript Tutorial

Reprinted from The Geometry Toolbox by Gerald Farin and
Dianne Hansford, published by AK Peters, Wellesley, MA, 1998.

The figures in this book are created using the PostScript lan-
guage. This is a mini-guide to PostScript with the purpose of
giving you enough information so you can alter these images or
create similar ones yourself.

PostScript is a page description language.! A PostScript
program tells the output device (printer or previewer) how to
format a printed page. Most laser printers today understand
the PostScript language. A previewer, such as Ghostview or
xpsview, allows you to view your document without printing —
a great way to save paper.

Before proceeding, check if you have a previewer available.
If not, there are free versions available. Ghostview for instance
can be found at

http: //www.cs.wisc.edu/ghost/index.html.

In case you would like more in-depth information about PostScript,
see [2, 1] or check out

http: //www.cs.indiana.edu/docproject/programming/postscript/

Tts origins are in the late seventies, when it was developed at Evans &
Sutherland, Xerox, and finally by Adobe Systems, who now owns it.

Postscript Tutorial

for more help.

1.1 A Warm-Up Example

Let’s go through the PostScript file that generates Figure 1.1.

h!

newpath
200 200 moveto
300 200 lineto
300 300 lineto
200 300 lineto
200 200 lineto

stroke

showpage

Figure 1.1 shows the result of this program: we have drawn
a box on a standard size page. (In this figure, the outline of the
page is shown for clarity; everything is reduced to fit here.)

The first line of the file is “%!”. Nothing else belongs on
this line, and there are no extra spaces on the line. This com-
mand tells the printer that what is to come is in the PostScript
language.

The actual drawing is done with the newpath command.
Move to the starting position with moveto. Record the path
with lineto. Finally, indicate that the path should be drawn
with stroke. These commands simulate the movement of a
“virtual pen” in a fairly obvious way.

PostScript uses prefiz notation for its commands. So if you
want to move your “pen” to position (100,200), the command
is 100 200 moveto.

Finally, you need to invoke the showpage command to cause
PostScript to actually print your figure. This is important!

Now for some variation:

h!

1.1 A Warm-Up Example

Figure 1.1.
A simple PostScript example.

% This is a comment line because it begins with a percent sign

% draw the box
newpath
200 200 moveto
300 200 lineto
300 300 lineto
200 300 lineto
200 200 lineto
stroke

80 80 translate
0.5 setgray

newpath
200 200 moveto

Postscript Tutorial

300 200 lineto

300 300 lineto

200 300 lineto

200 200 lineto
£ill

showpage

This is illustrated in Figure 1.2. The 80 80 translate com-
mand moves the origin of your current coordinate system by 80
units in both the e;- and es-directions.

Figure 1.2.
Another simple PostScript example.

The 0.5 setgray command causes the next item to be drawn
in a gray shade (0 is black, 1 is white).

What follows is the same square as before; instead of stroke,
however, there is a £i11. This fills the square with the specified
gray scale. Note how the second square is drawn on top of the
first one!

1.2 Overview

Another handy basic geometry element is a circle. To create
a circle, use the commands

250 250 50 0 360 arc stroke

This generates a circle centered at (250,250) with radius 50.
The 0 360 arc indicates we want the whole circle. To create a
white filled circle change the command to

1.0 setgray
250 250 50 0 360 arc fill

Figure 1.3 illustrates all these additions.

jJ

Figure 1.3.
Yet another simple PostScript example.

1.2 Overview

The PostScript language has primitive graphics operators: shapes
such as line or arc, painting, text, bit mapped images, and co-
ordinate transformation. Variables and calculations are also in

Postscript Tutorial

its repertoire; it is a powerful tool. Nearly all the figures for
this book are available as PostScript (text) files at the book’s
ftp-site. To illustrate the aspects of the file format, we’ll return
to some of these figures.

We use three basic scenarios for generating PostScript files.

1. A program (such as C) generates geometry, then opens a
file and writes PostScript commands to plot the geometry.
This type of file is typically filled simply with move, draw,
and style (gray scale or line width) commands. Example file:
Bez_ex.ps which is displayed in Section 77.

2. The PostScript language is used to generate geometry. Using
a text editor, the PostScript program is typed in. This pro-
gram might even use control structures such as “for loops.”
Example file: D_trans.ps which is displayed in Section ?7.

3. A screen dump creating a bit mapped image is made part
of a PostScript file. This is a “save’ option in the Netscape
Web browser, for example. Example file: Flight.ps which
is displayed in Chapter 77.

There are also figures which draw from more than one of these
scenarios.

Since PostScript tells the printer how to format a page, it is
necessary for the move and draw commands to indicate loca-
tions on the piece of paper. For historical reasons, printers use
a coordinate system based on points, abreviated as pt.

1 inch = 72pt.

PostScript follows suit. This means that an 8% x 11 inch page
has the following extents,

lower left : (0,0) upper right : (612, 792).

Whichever scenario from above is followed, it is always neces-
sary to be sure that the PostScript commands are drawing in
the appropriate area. Keep in mind you probably want a mar-
gin. Chapter 7?7 covers the basics of setting up the dimensions

1.3 Affine Maps

Figure 1.4.
Bez_ex.ps

of the ‘target box’ (on the paper) and that of the ‘source box’ to
avoid unwanted distortions. Getting the geometry in the source
box to the target box is simply an application of affine maps!

1.3 Affine Maps

In our simple examples above, we created the geometry with re-
spect to the paper coordinates. Sometimes this is inconvenient,
so let’s discuss the options.

If you create your geometry in a, say C, program, then it is an
easy task to apply the appropriate affine map to put it in paper
coordinates. However, if this is not the case, the PostScript
language has the affine map tools builtin.?

2There are many techniques for displaying 3D geometry in 2D; some
“realistic” methods are not in the realms of affine geometry. A graphics
text should be consulted to determine what is best.

10

Postscript Tutorial

Figure 1.5.
D_trans.ps

There is a matrix (which describes an affine map, i.e., a linear
map and a translation) in Postscript which assumes the task of
taking “user coordinates” to “device coordinates”. In accor-
dance to the terminology of this book, this is our source box
to target box transformation. This matrix is called the current
transformation matriz, or CTM.

In other words, the coordinates in your PostScript file are
always multiplied by the CTM. If you choose not to change the
CTM, then your coordinates must live within the page coordi-
nates, or “device coordinates”. Here we give a few details on
how to alter the CTM.

There are two “levels” of changing the CTM. The simplest,
and most basic ones use the scale, rotate, and translate
commands. As we know from Chapter 7?7, these are essentially
the most basic affine operations.

Unless you have a complete understanding of the CTM, it is

1.3 Affine Maps

Figure 1.6.
Flight.ps

probably a good idea to use each of these commands only once
in a PostScript file. It can get confusing! (See Section 1.6.)
A scale command such as

72 72 scale

automatically changes one “unit” from being a point to being
an inch. A translate command such as

2 2 translate

will translate the origin to coordinates (2,2). If this translate
was preceded by the scale command, the effect is different.
Try both options for yourself!

A rotate command such as

45 rotate

will cause a rotation of the coordinate system by 45 degrees in
a counterclockwise direction.

12

Postscript Tutorial

These commands are used in the ftp-site files, D_scale.ps,
D_trans.ps, and D_rot.ps.

Instead of the commands above, a more general manipulation
of the CTM is available, see Section 1.6.

1.4 Variables

The figures in this book use variables quite often. This is a
powerful tool that allows a piece of geometry to be defined
once, and then affine maps can be applied to it to change its
appearance on the page.

Let’s use an example to illustrate. Take the file for Figure
1.2. We can rewrite this as

h!

% define the box

/box {
200 200 moveto
300 200 lineto
300 300 lineto
200 300 lineto
200 200 lineto

} def

newpath

box

stroke

80 80 translate
0.5 setgray

newpath
box

£ill

showpage

1.5 Loops

13

The figure does not change. The box that was repeated is de-
fined only once now. Notice the /box {...} def structure.
This defines the variable box. It is then used without the for-
ward slash.

1.5 Loops

The ability to create “for loops” is another very powerful tool.
If you are not familiar with the prefix this might look odd. Let’s
look at the file D_trans.ps, which is displayed in Figure 77.

%!
%/%BoundingBox: 90 100 375 300
/Times-Bold findfont
70 scalefont setfont
/printD {
0 0 moveto
(D) show
} def

100 100 translate

2.5 2.5 scale
.95 -.05 0 {setgray printD 3 1 translate } for

showpage

Before getting to the loop, let’s look at a few other new
things in the file. The BoundingBox command is not used by
PostScript; this is to help in the placement of the figure in a
LaTeX file. The Times-Bold findfont command allows us to
access a particular set of fonts — we want to draw the letter D.

Now for the “for loop.” The command above

.95 -0.5 0 {...} for

tells PostScript to start with the value 0.95 and decrement by
0.5 until it reaches 0. At each step it will execute the commands

14 Postscript Tutorial

within the parenthesis. This allows the D to be printed 19 times
in different gray scales and translated each time.

1.6 CTM

Figure 1.7.
Nocomm.ps

One of the most complicated figure files is Nocomm.ps, which
is illustrated in Figure ??7. Here is its listing.

h!
%/%BoundingBox: 50 50 350 250
% show that matrix multiply does not commute

% define a set of unit vectors with varying gray scale.
% if a vector points at O or 90 degrees it gets painted
% in a special way.

/vectors

1.6 CTM

15

{ /inc 5 360 div def

/deg O def

/gray O def

0 6 354

{
/gray gray inc add def
gray setgray
newpath
0 0 moveto
0 2 lineto
100 2 lineto
100 5 lineto
120 0 lineto
100 -5 lineto
100 -2 lineto
0 -2 lineto
0 0 lineto
deg 90 eq deg 0 eq or
{stroke}{fill}ifelse
6 rotate
/deg 6 deg add def

}for

}def

%definition of the two matrices:
% rotate 90 deg

/mat1[0 1 -1 O 0 0] def

% shear in x-dir

/mat2[1 O 0.5 1 0 0] def

% inverse matrices defined - computed below
/matlinv[0 O O O O Oldef
/mat2inv[0 0 O O O O]def

% create the inverse of the shear and rotation
matl matlinv invertmatrix

16

Postscript Tutorial

mat2 mat2inv invertmatrix

% move to place on page and scale to fit
100 200 translate
0.35 0.35 scale

% plot the vectors without a transformation
vectors

% plot vectors with rotation
250 0 translate
matl concat
vectors

% undo the rotation
matlinv concat

% plot vectors with rotation then shear
250 0 translate
mat2 concat
matl concat
vectors

% undo shear then rotation -- order important!
matlinv concat
mat2inv concat

% move to a new row and plot vector without a transf.
-500 -300 translate
vectors

% plot vectors with shear
250 0 translate
mat2 concat
vectors

% undo shear

1.6 CTM

mat2inv concat

% plot vectors with shear then rotation
250 0 translate
matl concat
mat2 concat
vectors

% undo rotation then shear (not needed but to illustrate)
mat2inv concat
matlinv concat

showpage

This one is commented a bit more than the original! Hope-
fully the comments help you get a hang of the language. What
makes this figure more complicated than others is that it manip-
ulates the CTM directly rather than only using the translate,
scale, and rotate commands.

Here is the tricky part. PostScript uses a transformation
matrix for “left multiply.” This book works on the basis of “right
multiply”. ® Specifically, this book applies a transformation to

a point p as
r_|a cl |P1
A=l i)

whereas Postscript would apply the transformation as

So the Postscript CTM is the transpose of the matrix in this
book.

3The computer graphics community typically uses left multiply whereas
mathematicians typically use right multiply.

18

Postscript Tutorial

A matrix definition in Postscript has the translation vector
included. The matrix has the syntax

[av b7 Cv d7 tl?a ty]

From the listing above, let’s look at the part where we want
to rotate, then shear.

% plot vectors with rotation then shear
250 0 translate
mat2 concat
matl concat
vectors

From the notation in this book, we would write
p' = SRp,

where S is a shear matrix and R is a rotation matrix. For left
multiply, this becomes

p’ = p’RS.

So our transformation matrix T is 7' = SR, but the Postscript
matrix is 7' = RS! This is reflected in the Postscript code
segment by concatenating (multiplying) the S matrix mat2 to
the CTM first, then concatenating the R matrix.

This same idea is reflected in the procedure to “undo” the
shear and rotation from the CTM. To restore the CTM we
apply,

STIRTIRS(CTM),

which means that the rotation gets taken off first, then the
shear. This is the opposite order they were put on.

That should be enough detail to put you well on your way to
becoming a PostScript expert!

Bibliography

[1] Adobe Systems Inc. PostScript Language Reference Manual.
Reading, MA: Addison-Wesley Publishing Company, Inc., 1985.

[2] Adobe Systems Inc. PostScript Language Tutorial and Cookbook.
Reading, MA: Addison-Wesley Publishing Company, Inc., 1985.

